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Over the last approximately 2.6 Myr, Earth’s climate has been dominated by
cyclical ice ages that have profoundly affected species’ population sizes, but
the impact of impending anthropogenic climate change on species’ extinction
potential remains a worrying problem. We investigated 11 bat species from
different taxonomic, ecological and geographical backgrounds using com-
bined information from palaeoclimatic habitat reconstructions and genomes
to analyse biotic impacts of historic climate change. We discover tightly cor-
related fluctuations between species’ historic distribution and effective
population size, identify frugivores as particularly susceptible to global
warming, pinpoint large insectivores as having overall low effective popu-
lation size and flag the onset of the Holocene (approx. 10–12 000 years ago)
as the period with the generally lowest effective population sizes across the
last approximately 1 Myr. Our study shows that combining genomic and
palaeoclimatological approaches reveals effects of climatic shifts on genetic
diversity and may help predict impacts of future climate change.
1. Introduction
Quaternary climatic fluctuations (i.e. those over the last approx. 2.6 Myr) have
produced recurrent glacial periods resulting in global habitat shifts that affect a
multitude of organisms [1–3]. Colder climatic episodes have generally led to
significant drops in global temperatures and increased glaciation, shrinking
habitat space for many taxa (especially at higher latitudes) and forcing them
into isolated pockets of local refugia. However, these periods have also pro-
duced reductions in global sea levels, thereby connecting isolated landmasses
in shelf areas and expanding habitat space for many other organisms [1,4].
Such cyclical periods of isolation and connectivity have alternately triggered
fluctuations in population size, with significant implications for speciation
and survival potential in animals and plants [1–3,5–9]. If we could characterize
these Quaternary fluctuations across a wide panel of species with different eco-
logical backgrounds, it would allow us to pinpoint species groups with
specific ecological requirements that will be particularly extinction-prone with
impending anthropogenic climate change [10].

Bats (order Chiroptera) are excellent bioindicators as they are highly
sensitive to climate change, habitat change, food availability and other environ-
mental aspects [11,12]. For many chiropteran species, climate change has been
an agent of isolation, population fluctuations and gradual divergence [13–16].
However, while it is well established that these volant mammals are susceptible
to short-term habitat shifts [17,18], the impact of long-term climatic and environ-
mental fluctuations on their population sizes remains relatively unexplored (for
exceptions, see [18,19]).
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The genetic diversity of a species is positively correlated
with its effective population size (Ne) and is an important
underlying parameter defining the evolutionary and long-
term survival potential of a species [20,21]. A recently devel-
oped method, pairwise sequentially Markovian coalescent
(PSMC) [22], makes use of heterozygosity and recombination
information from a single genome to provide deep insights
into a species’s fluctuations in population genetic diversity
by estimating fluctuations in effective population size over
time [2,23–27]. While the Ne of a single representative
genome does not always perfectly reflect the genetic diversity
of the whole species, especially in cases of populations that
have undergone an atypical population development,
PSMC has proven to be a powerful tool to infer temporal
trends in genetic diversity [2,27]. In conjunction with ecologi-
cal niche models that reconstruct changes in distribution on
the basis of palaeoclimatic data, such methods can provide
much needed information on the effects of episodic climatic
fluctuations on the population genetic history of a species
and help us understand its vulnerability to future climate
change. On a comparative scale, such methods have the
power to reveal differences in evolutionary trajectories
across species and may help us understand how species
biology shapes fluctuations in genomic diversity [24,26,27].

Comparative research to link differences in long-term fluc-
tuations in genetic diversity to species biology remains in its
infancy, with few systematic studies reported for major mam-
malian groups (for exceptions, see [27]). In the present study,
we analysed 11 genomes of both megabats and microbats,
representing species across most major continents, size classes
and ecological requirements, and evaluated fluctuations in Ne

across their evolutionary history. We also reconstructed fluctu-
ations in species distribution during the most recent glacial
cycles. This new approach of directly comparing palaeo-distri-
butions with fluctuations in Ne allowed us to make inferences
about the long-term survival potential of species across differ-
ent niches and ecological requirements. We predicted that
fluctuations in species distribution would correlate with fluctu-
ations in population Ne, and that species biology would affect
long-term fluctuations in Ne depending on diet, body size and
other ecological factors.
2. Methods
(a) Experimental design
Out of 13 bat genomes on GenBank available at the time of analy-
sis, we used publicly available raw reads from 11 species
comprising both megabats and microbats from five out of 18
extant bat families covering a diverse range of size classes, ecologi-
cal preferences, habitats and geographical regions (electronic
supplementary material, table S1). Where possible, we obtained
the collection locality for the sampled individual of each species
(electronic supplementary material, table S1). Based on our distri-
bution models (see below) as well as the available literature
(electronic supplementary material, table S1), we termed each
genome as belonging to a refugial or non-refugial population by
placing sampling locations (whenever available) or region of
occurrence into the context of our reconstructions of species
distribution across the late Quaternary.

(b) PSMC analyses
We obtained raw reads of the 11 bat genomes either from the
Sequence Read Archive (SRA) or the European Bioinformatics
Institute (electronic supplementary material, table S1). We first
checked the quality of the raw reads of each species in FastQC
[28], and then used the repair.sh script from BBMap 35.51 [29]
to repair disordered paired end reads and remove orphan reads.
For each species, we performed multiple steps of filtering to
remove reads aligning to the mitogenome as well as sex chromo-
somes and then proceeded to map the remaining reads to the
respective genome.Whenever available, we used the mitogenome
of the species of interest to map against genomic reads for filter-
ing, or otherwise used the mitogenome of a closely related
species within the same genus (exceptMegaderma lyra and Eidolon
helvum; electronic supplementary material, table S1). As the sex
chromosomes of bats are not yet characterized, we used the
sequences of mouse sex chromosomes (CM001013 and
CM001014) for filter mapping. We used the ‘view’ command
within SAMtools 0.1.19 [30,31] to obtain unmapped reads (in
bam format) and then converted the bam files to paired-end
Fastq reads using the bamToFastq tool in the HYDRA 0.5.3 pack-
age [32]. These filtered reads (after removing readsmapping to the
mitogenome and sex chromosomes) were then mapped onto the
genome using the BWA-MEM 0.7.7-r441 [33] algorithm. We
only kept reads with a mapping score greater than 20, and used
PICARDTOOLS 1.95 (http://broadinstitute.github.io/picard) to
sort bam files.We implemented SAMtools mpileup in conjunction
with bcftools to identify variable sites, adjusting the mapping
quality score (−C50) to reduce the effect of excessive mismatch
and setting the minimum depth to ten and maximum depth to
100 for SNP calling. Based on previous studies, a minimum
depth coverage of 10 is recommended for SNP calling for PSMC
analysis (PSMC instructions; https://github.com/lh3/psmc).

We used the following parameters for PSMC analysis: −t 15
−r 5 −p 4 + 25 * 2 + 4 + 6 (where p is the number of free atomic
time intervals, t is the upper limit of time to most recent
common ancestor and r is the ratio of the scaled mutation rate
and the recombination rate). We performed 30 iterations for
optimization of parameters, and ran 100 bootstrap replicates
for each genome to determine the uncertainty in our estimates.
For bootstrap replicates, long chromosome segments were split
into smaller segments and then randomly sampled with
replacement.

To obtain estimates of effective population size, we used a
previously proposed mammalian mutation rate of 2.2 × 10−9

per base pair per year [34] and three different estimates of gener-
ation time (1 year, 2 years and 8 years) as all three estimates are
quite commonly used in studies on bats [14,35–42].
(c) Species and climatic data
Species occurrence records were collected from GBIF (accessed
August 2017) using the rgbif package [43] as well as from the
scientific literature whenever possible (electronic supplementary
material, table S2).

We employed ecological niche modelling (ENM) to predict
the distribution of each species during four periods: at the pre-
sent time, Mid-Holocene (approx. 6000 years ago), Last Glacial
Maximum (LGM, approx. 20 000 years ago) and Last Interglacial
period (LIG, approx. 110 000–130 000 years ago). Environmental
variables were extracted from the WORLDCLIM database (ver-
sion 1.4) [44] at a resolution of 30 arc seconds (for current,
Holocene and LIG) and 2.5 min (for LGM). Layers were resized
in DIVA GIS (version 7.5) [45] according to the individual
species’ study area. From the 19 available bioclimatic variables,
we removed non-independent ones and further chose a subset
of variables which maximized variability within our dataset
(electronic supplementary material) through correlation analyses
and principal component analyses to select a total of five vari-
ables for ENM: annual mean temperature (Bio1), mean diurnal
range (Bio2), isothermality (Bio3), precipitation of driest quarter
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(Bio17) and precipitation of warmest quarter (Bio18) (electronic
supplementary material, table S3). Most of these variables have
been previously used for ENM of bats [18]. We additionally fol-
lowed two alternative approaches in which climatic variables
were extracted from distribution points of species subgroups,
rather than the global set of distribution points of all 11 species
(see electronic supplementary material).

(d) Ecological niche modelling
We applied the MaxEnt algorithm (version 3.3.3 k) [46] for the
modeling of species distributions. MaxEnt is based on a probabil-
istic framework and generates predictions about distributions
from an incomplete set of information. The main assumption is
based on the probability distribution of maximum entropy,
which is subject to certain environmental constraints that along
with species occurrence information ultimately generate a
species’ potential distribution pattern [46]. MaxEnt consistently
outperforms other programs and provides simple predictions
for habitat suitability, which are useful for qualitative analyses
[47,48]. We mostly applied default parameters, used 25% of
data for testing purposes and selected feature classes based on
species occurrence records. We set up the following parameters
for niche modelling analyses in MaxEnt: 10 000 background
points (selected by MaxEnt), 10 runs of cross validations
(reduced to one run in analyses under subgroup partitioning
schemes, see the electronic supplementary material), 500 iter-
ations and setting the regularization multiplier at 1. Feature
selection was in accordance with occurrence records and we gen-
erated output in logistic format with probability of presence
(electronic supplementary material). We selected the mean rep-
resentation of all 10 runs for further analysis of each species
across each time period.

(e) Model evaluation and area analysis
Prediction accuracy of the modelling exercise was tested using a
receiver operating characteristics (ROC) plot analysis, a widely
applied measure for model performance evaluation [49,50].
Taking into account the sensitivity and commission error
(1-specificity) of the ROC curve plots, we observed that all poss-
ible thresholds fell between 0 and 1. A model was considered
better than random if the curve was above the diagonal, as indi-
cated by the area under the curve (AUC) being greater than 0.5.
Furthermore, a Jackknife test of variable importance was con-
ducted for each species to identify the variable with maximum
contributions.

The model maps were transferred to DIVA GIS for further
analysis. We opted for a continuous distribution map rather
than a binary one as the former map depicts all probable areas
(low to high probabilities) and is free of threshold-related
uncertainties [51]. Changes across different time periods were
assessed only for medium- to high-probability regions (i.e.
approx. 0.36–1; blue regions in figure 1) and grid areas were calcu-
lated after accounting for latitudinal effects (see the electronic
supplementary material).

( f ) Correlation between historical fluctuations in Ne and
habitat

To assess the correlation between habitat fluctuations and Ne

fluctuations across study species, we specifically concentrated
on two periods (LIG to LGM, and LGM to Holocene), approxi-
mating two key Earth historic events in the last 150 000 years
for which we were able to obtain comparative estimates of
change in Ne and change in suitable habitat. For each period
(LIG to LGM, and LGM to Holocene), we coded changes in Ne

and habitat as increasing or decreasing, except for three species
(Eidolon helvum, Eptesicus fuscus and Rhinolophus sinicus) in
which Ne remained identical between the LGM and Holocene
and was hence classified as ‘stable’ (figure 1 and table 1). From
a contingency table thus created for each period, we checked
for significance of association between habitat and Ne fluctuation
using a χ2-test. We further performed a phi-test to determine the
extent of significance of the correlation. Values of phi vary
between −1 and +1, with 0 meaning no association, values
approaching +1 suggesting a strong positive association and
values approaching −1 suggesting a strong negative association.
3. Results
(a) Strong Quaternary fluctuations in genetic diversity
Our results revealed genomic signatures of drastic fluctu-
ations in Ne correlated with Quaternary climatic oscillations
in virtually all 11 bat species under study (figure 1; electronic
supplementary material, figure S1 and table S1). We recon-
structed the demographic history dating back to at least
1 Myr, and in some cases significantly beyond (electronic
supplementary material, figures S1–S3). For all species,
whole-genome based estimates of Ne fell within the distri-
bution of bootstrap estimates (figure 1). Although in many
species of bat female age of first reproduction varies between
1 and 2 years, the average age of reproduction will be much
higher as bats generally live longer than expected based on
body size [14,35–42,52]. To account for a wide range of poss-
ible generation times, including first and average age of
reproduction, we have consequently used three different
values for generation time, namely 1, 2 and 8 years, revealing
identical temporal patterns of change, with Ne negatively cor-
related to generation time (electronic supplementary
material, figures S1–S3; akin to previous studies [2,26]).

Large-bodied insectivores (including carnivores) experi-
enced comparatively lesser fluctuations in their Ne during the
LIG to the LGM compared to small insectivores and large fru-
givores (figure 1; electronic supplementary material, figures
S1–S3). Furthermore, we observed that the overall Ne for
most bats was low as they entered the Holocene, especially
when assuming a generation time of 8 years (table 1).

(b) Ecological niche modelling reveals fluctuations in
geographical distribution

When bioclimatic variables were extracted from the global set
of all 11 species’ distribution points, MaxEnt generated stat-
istically validated models with AUC > 0.9 (both training
and testing AUCs; electronic supplementary material, table
S4). Environmental parameters varied in their impact on
reconstructed distributions depending on species and time
scales (electronic supplementary material, table S5). Iso-
thermality was the most important climatic variable for all
three frugivorous bats (electronic supplementary material,
table S5). Among insectivores, the importance of climatic
variables differed according to time scales (electronic
supplementary material, table S5).

The ENM suggested that all bats experienced periodic
fluctuations of suitable habitat during the LIG, LIG to
LGM, as well as throughout the Holocene (figure 1 and
table 2). We used these habitat reconstructions from regions
of sample collection as additional information to categorize
each genome as part of refugial or non-refugial populations
(electronic supplementary material, table S1).
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Figure 1. Temporal fluctuations in effective population size (Ne) between approximately 400 000 and 10 000 years before present, with extent of suitable habitat
mapped for the Last Interglacial (LIG) and the Last Glacial Maximum (LGM), respectively. Black arrows indicate estimated net change in suitable habitat availability
based on the ecological niche models from the LIG to the LGM (see table 2 for more details). We assumed a generation time of 2 years and a mutation rate of
2.2 × 10−9 per base pair per year for all PSMC plots. (a–d) Species with a relatively high Ne leading to the LGM along with concomitant increase in habitat. (e–j)
Species with a relatively low Ne and decrease in habitat leading to the LGM. Megaderma lyra (k) shows a slight increase in Ne and decrease in habitat leading to the
LGM. Collection localities for bat genomes are mapped using a white circle with black margin whenever available (see the electronic supplementary material, table
S1 for more information). (Online version in colour.)
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Extracting bioclimatic variables from subgroups of the
total set of 11 species (either divided into individual species
or into continental groups) led to the selection of sets of vari-
ables that exhibited an approximately 17–50% overlap with
those from the global species dataset. In the same vein, tem-
poral population trends from the LIG to the LGM and from
the LGM to the Holocene (not shown) agreed with those of
the global set only 50% (individual species) and 62.5% (con-
tinental groups) of the time, confirming previous results that
such reconstructions should optimally be based on a large set
of species to avoid idiosyncratic biases [53].

(c) Correlation between historical fluctuations in Ne and
distribution

We performed a phi-test to assess potential associations
between palaeo-habitat fluctuations and Ne fluctuations
within our study species during the time intervals between
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the LIG and the LGM, and between the LGM and the Holo-
cene. During the period of overall climatic cooling from the
LIG to the LGM, we observed a significant and strong posi-
tive correlation ( p-value 0.006; phi-value 0.828) between
change in habitat and change in Ne. However, for the
period from the LGM to the Holocene, when the most
recent climate warming commenced, no significant corre-
lation ( p-value 0.632; phi-value 0.289) was observed.
4. Discussion
Quaternary climatic fluctuations have played a major role in
shaping evolutionary trajectories of populations and species
across all major biomes and taxonomic groups [1,7,8,54,55].
These climatic cycles have caused episodes of population
isolation and demographic fluctuations, and remain an
important driver of biotic diversification and speciation [1].
Critically, each individual genome carries with it the record
of a species’s response to Quaternary warming and cooling
episodes [2,22,26,56], teaching us important insights on the
impact of climate change on genetic diversity and extinction
potential of a species.

In the present era of the sixth mass extinction, knowledge
of the standing genetic variation of extant natural popu-
lations and their vulnerability to future climate change is
imperative for conservation management [57,58]. An effective
way to predict vulnerability of species to such future threats
is to understand their response to historic climatic change
and concomitant habitat fluctuations. In the present study,
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we have used whole genomes to estimate late Quaternary
fluctuations in Ne as a proxy for genetic diversity across a
representative panel of bats spanning all major taxonomic
groups, size classes and ecological lifestyles (electronic sup-
plementary material, table S1). We also reconstructed
historical fluctuations in their distribution and compared
these to understand their evolutionary trajectories in
response to late Quaternary climatic change.

(a) Climate change leaves a genomic imprint of genetic
diversity fluctuations

We show that bats have undergone periods of pronounced
fluctuations in Ne and geographical distribution throughout
the late Quaternary (figure 1 and table 2). Our comparative
analysis focuses on the period between approximately
200 kyr and 10 kyr for two reasons: (1) palaeoclimatic habitat
layers are only available until the LIG (http://www.
worldclim.org/paleo-climate1) and (2) PSMC inferences
based on single genomes are known to be less reliable at
very recent timescales, in our case the Holocene [22].

Overall, during the period of global cooling between the
LIG and the LGM, most species (10 out of 11) showed a
strongly positive correlation between extent of suitable habitat
and genetic diversity (figure 1 and table 2). Specifically, five
species (figure 1a–d and k) exhibited a relative increase in Ne

from the LIG to the LGM, whereas six species (figure 1e–j)
displayed a relative decrease in Ne (= drop in diversity).

The only species in which habitat availability did not
track Ne fluctuations was Megaderma lyra, the sole carnivor-
ous bat in the panel, whose geographical distribution
decreased (figure 1k and table 2) towards the LGM despite
a slight increase in net-population genetic diversity
(figure 1k). However, the genome-sequenced individual of
Megaderma lyra is derived from a population in southern
India, well inside the stable, refugial range of this species,

http://www.worldclim.org/paleo-climate1
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Table 1. Effective population sizes estimated for approximately 10 000 years ago, the LGM and the LIG. Effective population sizes are approximate values
extracted from the PSMC graphs (figure 1; electronic supplementary material, figures S2 and S3). LGM, Last Glacial Maximum; LIG, Last Interglacial.

species

effective population size approximately

10 000 years ago

effective population size during the Last

Glacial Maximum

effective population size during the

Last Interglacial

generation time (in years) generation time (in years) generation time (in years)

1 2 8 1 2 8 1 2 8

Pteropus alecto 70 000 35 000 8000 1 260 000 620 000 156 000 600 000 300 000 70 000

Pteropus vampyrus 1 300 000 640 000 160 000 2 250 000 1 100 000 280 000 400 000 200 000 50 000

Eidolon helvum 1 000 000 500 000 125 000 1 000 000 500 000 125 000 460 000 220 000 58 000

Pteronotus parnellii 60 000 30 000 7500 95 000 48 000 12 000 60 000 30 000 7500

Megaderma lyra 110 000 55 000 14 000 155 000 75 000 19 000 130 000 75 000 15 000

Hipposideros armiger 65 000 32 000 5600 45 000 22 000 5200 345 000 170 000 43 000

Eptesicus fuscus n.a. n.a. n.a. 1 000 000 500 000 125 000 1 800 000 860 000 215 000

Rhinolophus ferrumequinum 15 000 7500 2000 55 000 25 000 7500 340 000 170 000 43 000

Rhinolophus sinicus 420 000 210 000 52 000 420 000 210 000 52 000 660 000 330 000 82 000

Myotis davidii 150 000 76 000 19 000 135 000 66 000 16 500 190 000 94 000 23 500

Myotis brandtii 85 000 45 000 11 000 85 000 45 000 11 000 255 000 115 000 31 000

Table 2. Fluctuations in suitable habitat reconstructed across major climatic periods expressed as percentage of maximum value. LGM, Last Glacial Maximum;
LIG, Last Interglacial.

species current Mid-Holocene LGM LIG

Pteropus alecto 35.08 18.9 100 4.69

Pteropus vampyrus 100 84.46 60.05 53.82

Eidolon helvum 44.31 36.67 100 27.34

Pteronotus parnellii 74.56 100 19.06 12

Megaderma lyra 100 69.29 7.27 83.02

Hipposideros armiger 100 84.34 21.76 57.24

Eptesicus fuscus 95.72 100 49.09 88.42

Rhinolophus ferrumequinum 100 68.72 28.05 41.36

Rhinolophus sinicus 100 87.33 0.36 64.51

Myotis davidii 99.88 94.12 14.2 100

Myotis brandtii 100 91.64 19.38 27.53
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suggesting that this population may not reflect the demo-
graphic changes that non-refugial populations (i.e. those
impacted by climate change) have undergone (figure 1; electronic
supplementary material, table S1).

This result is consequential in that our increasing knowledge
of palaeo-habitats allows us to make direct inferences on genetic
diversity fluctuations, provided we understand the habitat pre-
ferences of a species. More importantly, we are able to predict
whether future warming trends and concomitant changes in
habitat availability will be likely to impact the genetic diversity
and survival potential of specific target species.
(b) Species biology predicts response to climate change
Signatures of Ne across eleven bat genomes suggest an impor-
tant role for species biology and life history in determining
the course of genetic diversity fluctuations during the Late
Quaternary. Large-bodied frugivores (Pteropus alecto, Pteropus
vampyrus and Eidolon helvum), characterized by massive colo-
nies and a great dispersal capability [59,60], showed an
overall increase in Ne and distribution range during the
most recent major period of climatic cooling (LIG to LGM)
(figure 1a–c), perhaps reflecting reduced aridity favouring
expansions of fruit-dependent species. Pteropus alecto and
Pteropus vampyrus have an archipelagic distribution and
have benefitted from Quaternary land expansion for gene
flow when sea levels recede [61]. Eidolon helvum, a generalist
African open-country dweller, would also have taken advan-
tage of decreased aridity from the LIG to the LGM [62] to
increase in Ne (figure 1c).

Across insectivores (including carnivores), larger bats
(Megaderma lyra, Hipposideros armiger, Pteronotus parnellii)
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were characterized by overall low effective population sizes,
with often limited fluctuations in population genetic diversity
from the LIG to the LGM (figure 1; electronic supplementary
material, table S1), whereas smaller bats (Rhinolophus ferrume-
quinum, Rhinolophus sinicus, Eptesicus fuscus, Myotis davidii
and Myotis brandtii) generally tended to exhibit higher
values of Ne that often fluctuated more substantially
(figure 1), invariably declining from the warmer LIG towards
the cooler LGM.

(c) Most bats have entered the Holocene with a low Ne
Most bat species analysed in this study have been character-
ized by an average vertebrate Ne across the Late Quaternary
(table 1). Comparative PSMC analyses across vertebrates
remain scant (e.g. six felids and 38 bird species [2,27]): inter-
estingly, the Ne of many bat species in this study roughly
equals that of many birds [2] but generally exceeds that of
Carnivora [27].

One species, Rhinolophus ferrumequinum, a fairly large-
sized insectivore, exhibited an exceptionally low Ne (table 1).
Its genetic diversity rivalled that of endangered birds and
mega-mammals [2,27,56]. However, its genome was derived
from a non-refugial population in Britain, so its exceptionally
low current Ne might reflect the great bottlenecks that this
peripheral and periodically isolated island population has
gone through.

Our comparisons of Ne are based on three plausible gen-
eration times according to estimates of first and median age
of reproduction (table 1) [35,38,41,63]. If a generation time
of 8 years is accepted, many bats in our panel would have
entered the Holocene with an alarmingly low population
genetic diversity (table 1; electronic supplementary material,
figure S2). Regardless of generation time, 7 out of 11 (approx.
64%) species in our panel displayed the absolute lowest levels
of genetic diversity during their entry into the Holocene as
measured across the entire Late Quaternary (figure 1), attest-
ing that the Early Holocene has not been a time of great
population genetic stability in many bat species. Depending
on the magnitude of imminent anthropogenic climate
change [10], bats may be particularly extinction-prone,
given that extreme aridification and warming episodes have
been implicated in calamitous bat mortality events [17,41]

(d) Limitations and future challenges
Ancient range reconstruction is a promising method to infer
the impact of climate change on natural populations but can
be fraught with limitations and imprecision [64,65]. One of
the technical challenges of ENM relates to the choice of biocli-
matic variables, and whether—in multi-species datasets—
these variables should be extracted from the set of distribution
points of all species, or subgroups, or individual species.
Júnior & Nóbrega [53] showed that inferences on the basis of
smaller datasets are subject to strong biases of idiosyncrasy,
and that larger datasets combining multiple species should
be used as the basis of ENM analyses if present. Our analyses
confirm that idiosyncratic biases may operate in our bat data-
set, leading us to adopt a global dataset approach for the
extraction of bioclimatic variables. Fortunately, our dataset of
11 worldwide species covering approximately 1700 distri-
bution points should render our analysis robust to
idiosyncratic biases, but future research into the lower
thresholds of distribution data is a worthwhile avenue of
inquiry.

A well-established limitation of PSMC analysis is that
population subdivision and migration may contribute to
genealogies that mimic signals of expansion and contraction
[66–70]. Changes in PSMC plots may therefore not always
reflect changes in Ne. Yet these changes are still important in
terms of a species’s extinction potential and susceptibility to
environmental change [71]. Similarly, single genome compari-
sons may often track local population history rather than
global species history (this study and [26]). Hence inferences
made from PSMC analysis need to be interpreted while keep-
ing in mind the complex demographic history of species in
question. Additionally, the choice of mutation rates is known
to affect PSMC calculations considerably [22]. For our present
study, we used a generic mammalian mutation rate [34] as is
commonly employed in the literature [15,72,73] due to the
lack of bat specific mutation rates. Regardless, PSMC remains
ideal to track changes in population genetic diversity across a
species’s evolutionary history.

Future applications should focus on the incorporation of
genomic information of multiple individuals to improve Ne

estimates across a wider time scale, including into more
recent millennia [74]. Given the sharp rise in the availability
of genomes over the last few years, we expect that future ana-
lyses will be able to incorporate more species, expanding on
the vast ecological breadth of bats and other vertebrates, to
allow for more detailed insights and conclusions.
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