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Metabolic activity sets the rates of individual resource uptake from the
environment and resource allocations. For this reason, the relationship with
body size has been heavily documented from ecosystems to cells. Until now,
most of the studies used the fluxes of oxygen as a proxy of energy outputwith-
out knowledge of the efficiency of biological systems to convert oxygen into
ATP. The aim of this studywas to examine the allometry of coupling efficiency
(ATP/O) of skeletal muscle mitochondria isolated from 12 mammal species
ranging from 6 g to 550 kg. Mitochondrial efficiencies were measured at
different steady states of phosphorylation. The efficiencies increased sharply
at higher metabolic rates. We have shown that body mass dependence of
mitochondrial efficiency depends on metabolic intensity in skeletal muscles
of mammals. Mitochondrial efficiency positively depends on body mass
when mitochondria are close to the basal metabolic rate; however, the
efficiency is independent of body mass at the maximum metabolic rate. As a
result, it follows that large mammals exhibit a faster dynamic increase in
ATP/O than small species when mitochondria shift from basal to maximal
activities. Finally, the invariant value of maximal coupling efficiency across
mammal species could partly explain why scaling exponent values are very
close to 1 at maximal metabolic rates.
Significance statement
Until now, most of the studies used the fluxes of oxygen as a proxy of energy
output without knowledge of the efficiency of mitochondrial oxidative phos-
phorylation system to convert oxygen into ATP. Here we found a positive
correlation between mitochondrial efficiency and body mass at a basal metabolic
rate only. At a maximum metabolic rate, we did not observe this relationship.
Allometry of mitochondrial efficiency is thus dependent on metabolic intensity.
These observations reveal that smaller mammals are less efficient for producing
ATP, thereby producing more heat at rest, but are as efficient as larger species
when muscle energy demands reach maximum intensity.
1. Background
Body mass dependence of individual metabolic rate has been heavily documen-
ted for a long time [1] because it is linked to biological processes at all levels of the
organization, ranging from cells to ecosystems [2–6]. Empirical and theoretical
studies describe the body mass dependence of individual metabolic rate in the
form P = aMb, where P is themetabolic rate andM the bodymass [3]. The propor-
tionality constant ‘a’ varies within and between species and the scaling exponent
‘b’ ranges from approximately 0.60 to 0.94 depending on clades and metabolic
activity [7–9]. Several hypotheses have been suggested to explain the mechanistic
basis of this power law for interspecific metabolic scaling. One hypothesis deals
with the rates of resource supply to cells via branching or fractal-like structures
[10,11]. Another hypothesis examines the sum of various cellular and mitochon-
drial properties involved in energy demand and supply pathways, i.e. in ATP
turnover [8,12–16]. Mitochondria significantly contribute to metabolism in
aerobic eukaryotic organisms by providing most of the cellular energy needs
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in the form of ATP [17]. The coupling efficiency (ATP/O ratio)
is an important parameter of this energy transduction process,
as it affects how much oxygen is needed to yield ATP in
sufficient quantities to sustain animal performance.

However, not all of themitochondrial oxygen consumption
is coupled to ATP synthesis. A significant proportion of the
electrochemical gradient of protons built up by the respiratory
chain is consumed through proton conductance pathways in
the inner membrane [18]. These proton leak reactions account
for a significant proportion of cellular resting metabolic rates,
20% in hepatocytes, 50% in resting skeletal muscle and up to
20–25% of whole-body basal metabolic rate [18]. It follows
that a significant part of mitochondrial oxygen consumption
is not directly linked to ATP synthesis but rather is dissipated
as heat. Because proton leak and ATP synthesis compete for
the same driving force (the proton motive force), the activity
of proton leakage across the inner membrane greatly alters
the amount of ATP molecules synthetized by mitochondria
for each oxygen atom consumed, i.e. the mitochondrial coup-
ling efficiency [18,19]. Proton leak has been found to correlate
negatively with increasing body mass in species from different
taxa [20–23]. Given that proton leak is a major determinant of
coupling efficiency [19], we hypothesized an increase in the
coupling efficiency of mitochondria with body mass.

Nevertheless, oxygen consumed to counteract proton leak-
age decreases sharply as more ATP is synthesized, indicating
that coupling efficiency will also increase steeply as mitochon-
drial ATP synthesis increases [24,25]. This relationship would
indicate that proton leak would have less impact on coupling
efficiency when mitochondrial metabolism shifts from basal
non-phosphorylating to maximal phosphorylating activities.
Accordingly, the global impact of proton leak upon coupling
efficiency would decrease during the dynamic transition of
mitochondrial activities from basal to maximal oxidative
phosphorylation states. Whether such a dynamic functioning
of mitochondrial bioenergetics depends upon body mass has
not been tested and quantified yet. Therefore, the aim of the
present study is to evaluate (i) how mitochondrial oxidative
phosphorylation fluxes (oxygen consumption and ATP
synthesis) and resulting coupling efficiency (ATP/O ratio)
evolves during the transition from basal non-phosphorylating
to maximal phosphorylating states, and (ii) whether these
parameters correlate with body mass in mammals.
2. Material and methods
(a) Animals and tissue sampling
We selected 12 species of mammals ranging from 6 g (pygmy
mouse) to 550 kg (bovine), representing a 92 000-fold difference
in bodymass andapproximately 35-folddifference inmass-specific
metabolic rate (electronic supplementary material, table S1).
Muscle tissue from everymammal studied (allmales) was acquired
fresh and used for mitochondrial extraction. Pygmy mice (Mus
minutoïdes) and feral mice (Mus musculus) were obtained from
laboratories (ISEM, Montpellier, France for M. minutoides; LBBE,
Lyon, France for M. musculus) and killed by cervical dislocation.
Striped mice (Rhabdomys pumilio), European hamsters (Cricetus
cricetus), golden hamsters (Mesocricetus auratus) and black rats
(Rattus rattus), were obtained from laboratories (IPHC, Strasbourg,
France for R. pumilio and C. cricetus; Chronobiotron, Strasbourg,
France forM. auratus; Jardin Zoologique de la Citadelle, Besançon,
France for R. rattus) and were killed under isoflurane-induced
general anaesthesia. Fresh tissue for bovines (Bos taurus), horses
(Equus caballus) and sheep (Ovis aries) were obtained from a local
slaughterhouse (Cibevial, Corbas, France). Fresh tissues for
all other mammals were obtained from pest control (Nutria,
Myocastor coypus), local farmers (rabbits, Oryctolagus cuniculus) or
Fondation Pierre Vérot at Saint-André-de-Corcy, France (boar, Sus
scrofa). All experiments were conducted in accordance with
the animal care guidelines of the Ministère de la Recherche et de
l’Enseignement Supérieur.

(b) Mitochondrial isolation
For pygmy mice, skeletal muscle samples from three or four indi-
viduals were used for each mitochondrial preparation. Muscle
mitochondria were isolated in an ice-cold isolation buffer
(100 mM sucrose, 50 mM KCl, 5 mM EDTA, 50 mM Tris-base,
pH 7.4) according to a standard extraction protocol, involving
Potter homogenization, protease digestion and differential centri-
fugations, all steps at 4°C [26]. Briefly, hind-limb skeletal muscles
from pygmy mice and feral mice were cut up finely, homogenized
with a Potter–Elvehjem homogenizer (five passages) and there-
after treated with protease Subtilisin A (1 mg g−1 muscle wet
mass) for 5 min in an ice-bath. The muscle mixture was diluted
1 : 2 in an isolation buffer and centrifuged at 1000g for 10 min
and the resulting supernatant centrifuged at 8700g for 10 min.
The resulting pellet was resuspended in isolation buffer and
centrifuged at 1000g for 10 min to remove any cellular debris con-
taminating mitochondrial suspensions. The resulting supernatant
was filtered through cheesecloth and centrifuged at 8700g for
10 min to pellet mitochondria. This procedure was applied to
small samples of tissue in order to minimize the loss of mitochon-
drial material [27]. For all other mammals, mitochondria were
isolated as described previously [26]. Protein concentrations
were determined in mitochondrial suspension using the Biuret
method with bovine serum albumin as standard. To take into
account any contamination with haemoglobin, the absorbance
of the same volume of mitochondria assayed in Biuret solution
without copper sulfate was subtracted.

(c) Mitochondrial oxidative phosphorylation efficiency
Mitochondrial oxidative phosphorylation efficiency was deter-
mined at 37°C by measuring oxygen consumption and associated
ATP synthesis in 500 µl respiratory buffer (120 mM KCl, 5 mM
KH2PO4, 1 mM EGTA, 2 mM MgCl2, 20 mM glucose, 1.6 U ml−1

hexokinase, 0.3% essentially free-fatty acid bovine serum albumin
(w/v) and 3 mMHepes, pH 7.4) as described previously [28]. Res-
piration was measured in a glass cell fitted with a Clark oxygen
electrode (Rank Brothers Ltd, UK) and calibratedwith air-saturated
respiratory buffer. Mitochondria were energized with a mixture of
respiratory substrates (5 mM pyruvate/2.5 mMmalate/5 mM suc-
cinate). Thereafter, different steady states of phosphorylation were
obtained by adding different concentrations of ADP (10, 20, 100
and 500 µM). The phosphorylating respiration rates were recorded
for 3 min, then four 100 µl aliquots of mitochondrial suspension
were withdrawn every 30 s and immediately quenched in ice-cold
100 µl perchloric acid solution (10% HClO4, 25 mM EDTA).
Samples were kept on ice less than 2 h until being assayed at the
end of the day time experiment. Then, denaturedproteinswere cen-
trifuged at 20 000g for 5 min (4°C), and 180 µl of the resulting
supernatants were neutralized with KOH solution (2 M KOH, 0.3
M MOPS). Neutralized samples were centrifuged at 20 000g for
5 min (4°C) and themitochondrialATPproductionwasdetermined
from the glucose-6-phosphate content of the resulting supernatants
[28]. Glucose-6-phosphate content was determined by spectropho-
tometry at 340 nm in an assay medium consisting 7.5 mM MgCl2,
3.75 mM EDTA, 50 mM triethanolamine–HCl, pH 7.4 at room
temperature) supplemented with 0.5 mM NAD and 0.5 U glu-
cose-6-phosphate dehydrogenase from Leuconostoc mesenteroides
[29]. Note also that we determined oxygen consumption and ATP
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JOligo = 150 × mass–0.124

(r2
 = 0.91; p < 0.001)

JO = 834 × mass–0.129

(r2
 = 0.82; p < 0.001)

JATP = 1939 × mass–0.137

(r2
 = 0.79; p < 0.01)

maximal coupling efficiency: JATP/JO = 2.32 × mass–0.008

(r2 = 0.097; p = 0.98)

Figure 1. Body mass dependence of mitochondrial oxidative phosphorylation activity and efficiency. (a) Relationships between the rates of ATP synthesis and oxygen
consumption in muscle mitochondria isolated from mammals of different body mass. Red symbols illustrate the linearity of the relationships for three mammal
species taken to cover the whole range of body mass (bovine with the highest mass, pygmy mice with the lowest mass and European hamster with an intermediate
mass). Values are means from (n) independent mitochondrial preparations; (n) is given alongside the name of the species. Error bars (s.d.) are omitted for clarity but
were on average 19% for maximal oxygen consumption (ranging from 7% in mice to 47% in sheep) and 25% for maximal ATP synthesis rate (ranging from 9% in
pygmy mice to 46% in sheep). (b) Relationships between body mass and maximal ATP synthesis rate (JATP, black diamonds; F1,10 = 20.54; p < 0.01), maximal
phosphorylating oxygen consumption (JO, white diamonds; F1,10 = 32.17; p < 0.001), oligomycin-induced basal non-phosphorylating oxygen consumption (JOligo,
white triangles; F1,10 = 49.49; p < 0.001) and maximal coupling efficiency (JATP/JO, grey diamonds; not significant) of muscle mitochondria from mammals. Values
are means ± s.d. (Online version in colour.)
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synthesis rates in the presence of oligomycin (2 µg ml−1) in order to
make sure that ATP synthesis rates were specific of the mitochon-
drial ATP synthase activity. Oligomycin-insensitive ATP synthesis
activity was measurable only at 100 and 500 µMADP. In our mito-
chondrial preparations, these oligomycin-insensitive ATP synthesis
rates did not correlatewith a bodymass of mammals, averaging 21
± 1 nmol ATP min−1 mg−1 of protein and 73 ± 4 nmol ATP min−
1 mg−1 of protein in the presence of 100 µM and 500 µM ADP,
respectively. These values were taken into account to calculate the
rate of mitochondrial ATP synthesis.

Respiratory control ratio was calculated as the ratio between
the rates of ADP (500 µM)-induced maximal phosphoryla-
ting respiration and oligomycin (2 µg ml−1)-induced basal
non-phosphorylating respiration [25]. Mitochondrial respiratory
control ratios ranged from 4.2 to 8.1, with a mean of 5.5 ± 0.3,
and did not depend on body mass (electronic supplementary
material, table S1). Accordingly, mitochondria from larger
mammals functioned as well as those from smaller species.
(d) Statistical analyses
All statistical analyses were conducted on data corrected by the
phylogenetic independent contrast model [30] in order to get the
data phylogenetically independent using R software 3.5.0 (R Foun-
dation for Statistical Computing, Vienna, Austria, 2018). Briefly, a
phylogenic tree has been created from the mammal phylogenetic
super-tree proposed by Fritz et al. [31] using the ‘phytools’ package
(electronic supplementary material, figure S1). Then, data were
log10-transformed and corrected by the PIC function found in
the ‘ape’ package that uses the phylogenetic independent contrast
method described by Felsenstein [30], which assumes a Brownian
motion as an evolution model for life-history traits [30]. Finally,
allometric relationships between body mass and mitochondrial
bioenergetics parameters (oxygen consumption rate, ATP syn-
thesis rate and efficiency) were analysed by the linear model
(LM) with body mass as a fixed term. Normality and
homoscedasticity criteria for the model’s residues were checked
by a Shapiro–Wilk normality test coupled to the plot diagnostics
for an LM object. Means are given ±s.d. and p-values less than
0.05 were considered as significant.
3. Results and discussion
The relation between the rates of ATP synthesis and oxygen
consumption is linear and differs for each mammal species
(figure 1a). The maximal rates of ATP synthesis and oxygen
consumption (the highest points to the right of the linear
relationships in figure 1a) decreased with an increasing body
mass of mammals according to the same scaling exponents
(figure 1b). Consequently, the maximal coupling efficiency of
mitochondria, calculated as the ratio between the maximal
fluxes of oxygen consumed and corresponding ATP synthe-
tized, was independent of body mass (figure 1b). The slopes
of linear relationships shown in figure 1awere also independent
of bodymass (slopeATP/O = 2.84 ×mass−0.006; r2 = 0.096, F1,10 =
0.00; p = 0.885), but the intercepts with the x-axis, i.e. the basal
non-phosphorylating respiration measured in the presence of
oligomycin (JOligo), decreased with increasing body mass of
mammals (figure 1b). In the basal non-phosphorylating
respiration, there is no ATP synthesis, the proton motive force
is high, the proton leak-dependent respiration is maximal and
controlled mostly by the activity of the proton leak pathway
[25]. Thus, the data suggest that mitochondrial proton conduc-
tance in skeletal muscle mitochondria would depend
negatively on body mass in mammals, as reported previously
for liver mitochondria in species from different taxa [20–23].

The data further indicate that the linear relationships were
parallel and significantly shifted to the left in larger mam-
mals. In other words, larger mammals consume less
oxygen to produce a given amount of ATP and thus are
more efficient than smaller species. This is better shown in
figure 2a where mitochondrial efficiency (ATP/O ratio) is
plotted against the rate of ATP synthesis. The effective
ATP/O ratio rose steeply as the ATP synthesis rate increased,
reaching the same maximum but at the different maximal
phosphorylating activity (figure 2a). Calculation of the effec-
tive ATP/O ratio of mitochondria working at fixed ATP
synthesis rates shows that mitochondrial coupling efficiencies
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had a positive dependence on body mass (figure 2b). This
positive dependence on body mass was even stronger
as mitochondria were closer to a non-phosphorylating state
(figure 2b). Hence, when the rate of ATP synthesis is reduced
40-fold, the mitochondrial efficiency dropped by 20-fold in the
smallest mammal and only by 7-fold in the largest one. Smaller
mammals thus exhibited a more flexible coupling efficiency,
being able to reduce their effective ATP/O ratio to lower values
than larger species. Alternatively, mitochondria from larger
mammals reach their maximal coupling efficiency faster than
those from smaller species when mitochondrial metabolism
shifts from a basal non-phosphorylating to amaximal phosphor-
ylating state (figure 2). With all data taken into consideration, it
appears that divergences in coupling efficiency values and flex-
ibilities among species can be explained mostly by one trait of
mitochondrial function: the basal non-phosphorylating respir-
ation (i.e. the intercept on the abscissa axis in figure 1a).
Because proton leaking and ATP synthesis compete for the
same driving force, i.e. the proton motive force, when
ATP synthesis decreases, the proton current via leak pathway
increases, leading to an increase in oxygen consumption and
associated drop inATP/O ratio. In this context, the drop in coup-
ling efficiency should bemore pronounced inmitochondriawith
higherprotonconductance.Hence, thehigherdrop in theATP/O
ratio of smallermammals shown in figure 2b at low levels of ATP
synthesis could be explained mostly by a higher proton leak
activity compared with larger mammals.

Nevertheless, mitochondrial coupling efficiency (ATP/O
ratio) is not only controlled by proton leak but also by ATP
synthesis reactions, which involve properties of the F1F0-
ATP synthase, the adenine nucleotide translocase and the phos-
phate carrier [32,33]. Given that half to two-thirds of the basal
proton conductance could also be catalysed by the adenine
nucleotide carrier [33], this highlights the complex interplay
between reactions that control mitochondrial efficiency
during the transition from resting to maximal mitochondrial
activities. Therefore, we cannot completely rule out that both
proton leak and phosphorylation reactions may interact
to mechanistically explain why ATP/O ratios reached their
maximum faster in large mammals than in small species
during the dynamic transition from basal tomaximal oxidative
phosphorylation state (figure 2). Notwithstanding the under-
lying mechanisms and in order to find a single parameter
that could integrate these two sides of the mitochondrial
efficiency control, we propose to use the gradient of the non-
linear curve seen in figure 2a as an integrative coupling
factor. To do so, we fitted the relationships between ATP/O
ratios and the rates of ATP synthesis with a mono-exponential
function ½ATP=O ¼ P=Omax � ð1� e�mtEC�JATPÞ�, where JATP is
the ATP synthesis rate and ‘mtEC’ is the gradient of the non-
linear curve which we named the mitochondrial efficiency
channelling (mtEC) factor, because it describes how fast coup-
ling efficiencies seen in figure 2a reach theirmaximum. Figure 3
indicates that there was a strong and significant positive
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dependence of this mtEC factor on body mass in mammals,
with an exponent of 0.13. Accordingly, skeletal muscle mito-
chondria would reach their maximal efficiency 3.25-fold
faster with an increase in body mass of 10 000-fold.
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4. Conclusion
All the results show that smaller mammals have a more
flexible coupling efficiency, being able to reduce their mito-
chondrial coupling efficiency to lower values than larger
species. Such flexibility of coupling efficiency may explain the
highermass-specific heat generation of smallmammals imposed
by their high surface-area-to-volume ratio, and more generally,
differences in mass-specific basal metabolic rate between
endotherms of different masses. In addition, with skeletal
musclesbeing themajor tissuecontributing to themaximalmeta-
bolic rate [8], the invariant value of maximal coupling efficiency
across mammal species reported here could give a mechanistic
explanation for why scaling exponent values are very close to 1
at maximal metabolic rates, i.e. at maximum ATP turnover.
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