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BRIEF REPORT

Abstract: It has been argued that survival bias may distort results in 
Mendelian randomization studies in older populations. Through simu-
lations of a simple causal structure we investigate the degree to which 
instrumental variable (IV)-estimators may become biased in the context 
of exposures that affect survival. We observed that selecting on survival 
decreased instrument strength and, for exposures with directionally 
concordant effects on survival (and outcome), introduced downward 
bias of the IV-estimator when the exposures reduced the probability 
of survival till study inclusion. Higher ages at study inclusion gener-
ally increased this bias, particularly when the true causal effect was not 
equal to null. Moreover, the bias in the estimated exposure-outcome 
relation depended on whether the estimation was conducted in the 
one- or two-sample setting. Finally, we briefly discuss which statistical 
approaches might help to alleviate this and other types of selection bias. 
See video abstract at, http://links.lww.com/EDE/B589.
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It has been argued that, in Mendelian randomization stud-
ies in older populations, survival bias may distort results, 

as these populations necessarily consist of the nonrandom 
subset of the population who have survived long enough to 
be included.1,2 We aimed to investigate the impact of survival 
bias on Mendelian randomization analyses with a continuous 
outcome through a simulation study. In particular, we will ex-
amine whether instrumental variable (IV) estimators become 
biased within aging populations, for one- or two-sample Men-
delian randomization settings. We will also discuss which sta-
tistical approaches may help to minimize or address this bias.

METHODS
Suppose we are interested in estimating the causal effect 

of X (e.g., cholesterol) on an outcome Y (e.g., cognitive test 
performance) in older individuals (Figure 1), where survival 
until study inclusion (S) is influenced by the exposure of in-
terest X. If there is a second, uncorrelated exposure R (e.g., 
smoking) (Figure 1A) that also affects S, conditioning on sur-
vival (S = 1) will induce an association between X and R, and 
therefore also between G and R. We therefore expect that the 
previously uncorrelated variables will become associated, as 
an indirect path from G to Y going through R is opened.

In addition, conditioning on S implies partial con-
ditioning on X. Therefore, if confounders U (e.g., alcohol 
intake) of the X–Y association were to exist, G and U may 
become correlated (Figure 1B).

Data Generation
All simulation scenarios assume the basic causal structure 

shown in Figure 1A. The causal associations are chosen such that 
an increase in cause will lead to an increase in the consequence, 
except for the effect on survival where higher values in exposures 
correspond to lower survival times. In our simulations, we used 
linear models to generate the exposure and outcome. We assumed 
a homogeneous treatment effect, meaning that there was no addi-
tive effect modification by the confounder, the instrument, and 
the other exposure. For each scenario we generated a dataset of 
10 million observations with multiple randomly generated vari-
ables: a binary genetic instrument (G), a continuous exposure (X) 
influenced by G, a binary exposure (R), a continuous outcome (Y) 
influenced by R and variably influenced by X, and finally an age 
of death influenced by both X and R. In secondary analyses, we 
added a continuous confounder (U) with equal effects on X and 
Y. We also repeated the simulations for a normally distributed R, 
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and when interaction exists between X and R on age of death.3 
Details of data generation and parameters values are presented in 
the Table, and results of the secondary analyses are presented in 
eAppendix 1; http://links.lww.com/EDE/B568.

To generate survival time we used the 2016 mortality 
data of the United States from the Human Mortality Database.4 

Using the MortalityLaws R-package we estimated the param-
eters of the Gompertz model (eFigure 1; http://links.lww.com/
EDE/B568), which were subsequently used to generate sur-
vival times for our simulated population. Effects of both X and 
R on age of death were modeled as hazard ratios, with having 
higher levels of X and/or R translating into an earlier death (on 
average). Subsequently, we considered different age boundar-
ies for study inclusion, from 75 to 95 years, thereby steadily 
decreasing the number of surviving participants (S = 1). We 
used R (version 3.4.1) for all data generation and analyses. 
Annotated code is provided as eAppendix 2; http://links.lww.
com/EDE/B569.

Effects on Instrumental Variable Estimators
Increasingly, summarized data (coefficients and standard 

errors) from large genome-wide association study consortia 
are made publicly available, which enables researchers to per-
form two-sample Mendelian randomization even if their own 
study does not allow for estimation of both coefficients nec-
essary to calculate the Wald ratio.5 These external datasets are 
generally more likely to have primarily included middle-aged 
participants,6,7 and thus less likely to be affected by survival 
bias. Therefore, under the assumption of no age-related effect 
modification, we not only considered the scenario where both 
coefficients are estimated in the same increasingly selected 
dataset (i.e., “internal” estimation), but also what happens if 
the association measure between G and X is taken from an 
external dataset not selected on survival (i.e., “external” esti-
mation, by taking the fixed value of our total population). We 
assumed different true effects of X on Y (Table). We calculated 

A

B

FIGURE 1.  For two exposures 
increasing the risk of death, condi-
tioning on survival (S) may induce 
an association between the previ-
ously uncorrelated risk factors X (and 
its genetic proxy G) and R (panel A). 
Additionally, conditioning on sur-
vival may induce an association be-
tween the genetic instrument G and 
any confounders U of the X–Y associ-
ation (panel B), even in the absence 
of risk factor R.

TABLE.  Parameters Values and Details of Data Generation

Parameter (Scale) Data Generation

G (binary) Prevalence of 50%

X (continuous) Normally distributed with mean 0 and 

var(X|G) = 1

Variance of X explained by G 5% of X

R (binary) Prevalence of 25%

Age of death (continuous) Gompertz distributed with baseline parameters 

a = 4.59053 × 10–5 and b = 8.76978320 × 10–2, 

with (additional) contribution of X and R

Effects of X on age of death HR of 1.25 per one unit increase in X

Effects of R on age of death HR of 1.5 per one unit increase in R

S (binary) Indicates whether age of death is larger than 

age at inclusion

Y (continuous) Normally distributed with mean 0 and variance 

(Y|X,R) = 1, with fixed contribution of R and 

varying contribution of X

Effects of X on Y Increase of 0, 0.5, or 2 per one unit increase 

in X

Effects of R on Y Increase of 0.5 per one unit increase in R

No. observations 10,000,000

HR, hazard ratio.
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confidence intervals for the internally estimated Wald ratio 
using the SEM R-package.

RESULTS
For our instrument, which explained 5% of variance 

in the exposure in the unselected (i.e., entire) sample, the R2 
declined from 4.9% at 75 years to 4.5% at 95 years. The prev-
alence of G declined from 0.49 at age 75 years to 0.46 at age 
95. Furthermore, of the population alive at 75 years, 15.6% 
were still alive at 95 years.

Bias to Instrumental Variable Estimator
The bias in the IV-estimator depended on (a) whether the 

association between G and X is estimated within the same selected 
dataset as the association between G and Y was, or within an ex-
ternal source not selected on age and (2) whether the true effect of 
X on Y is null or not (Figure 2). In general, selecting higher ages 
at study inclusion increased the amount of bias. In cases where 
the true effect >0, a clear downward bias was seen, underestimat-
ing the true effect. Where the true effect of X on Y was null, the 
resulting association became nominally negative (Figure 2A).

When both the numerator (Y ~ G) and denominator (X ~ 
G) of the Wald ratio are estimated in the same selected data-
set, we observed that they were similarly biased. Taking the 
ratio, therefore seemingly cancels out much of the bias, com-
pared to the situation where only the numerator is estimated 
in the selected population. In this latter situation, the relative 
degree of the bias equals that seen for the association measure 
between G and Y (eFigures 2–3; http://links.lww.com/EDE/
B568). The two IV-estimators diverge more strongly as the 
true effect of X on Y is stronger.

Secondary Analyses
Simulation results for the causal structure depicted under 

Figure 1B, and for the combination of Figure 1A and B, did not 
show markedly different results (eFigures 4–6; http://links.lww.
com/EDE/B568). For the normally distributed R, we observed 
similar results, though selection bias partially persisted for 
the internally estimated IV-estimator (eFigure 3; http://links.
lww.com/EDE/B568). Positive interaction between X and R on 
age of death increased the amount of downward bias. In con-
trast, sufficiently strong negative interaction led to upward bias 
(eFigure 7; http://links.lww.com/EDE/B568).

DISCUSSION
We observed that, for selection-related exposures with 

directionally concordant effects on survival (and outcome), 
the IV-estimator based on a genetic proxy of that exposure 
became downwardly biased. In addition, we observed that 
when selection increased the instrument strength decreased, 
as measured by R2.

While our simulations specifically examined age-related 
selection, researchers with data on populations selected on al-
ternative characteristics (e.g., disease status) will similarly 
have to consider the possible influence of selection bias in 

FIGURE 2.  Estimating the causal effect of X on Y. Wald ratios 
(95% CI) based on internally (white ribbon) versus externally 
(gray ribbon) estimated X–Y association, for different true 
effects of exposure X on outcome Y. Dashed lines denote the 
true (i.e., unselected) Wald ratio, which equals the true causal 
effect of X on Y. CI, confidence interval.

http://links.lww.com/EDE/B568
http://links.lww.com/EDE/B568
http://links.lww.com/EDE/B568
http://links.lww.com/EDE/B568
http://links.lww.com/EDE/B568
http://links.lww.com/EDE/B568
http://links.lww.com/EDE/B568


Smit et al.	 Epidemiology  •  Volume 30, Number 6, November 2019

816  |  www.epidem.com	 © 2019 Wolters Kluwer Health, Inc. All rights reserved.

genetic analyses.8–10 Alternative causal structures that might 
give rise to selection bias in Mendelian randomization studies 
have been presented elsewhere.11

Recent work by Canan et al.2 suggests that, for the 
causal structure under investigation in our simulations, se-
lection bias may be corrected via inverse probability weight-
ing. In general, we expect that if the selection gradient solely 
depends on measured variables which are available for the en-
tire original study population (i.e., also for those individuals 
who are not selected in the study sample), and assuming a 
constant treatment effect, both inverse probability weighting 
and multiple imputation could be suitable solutions for selec-
tion bias. If data are only available for the selected individuals, 
but a sufficient set of selection-related variables are precisely 
measured, then inclusion of these selection-related variables 
in multivariable regression models may resolve the bias if the 
models are well-specified. The value of representative cohorts 
with little selection (e.g., birth cohorts) cannot be overstated 
in this context,11,12 though genotyping genetically informative 
family members may hold promise as well.13 Alternative strat-
egies have been proposed in the context of hazard models,14–16 
which may fare better when selection depends on (partially) 
unobserved variables. In addition, methods of using covariate 
balance to detect dependent censoring in longitudinal studies 
exist, though these approaches have not been extended to IV-
analysis where bias amplification may occur.17,18

In our simulations, we assumed that survival bias would 
similarly affect different components of the causal structure 
(e.g., both the numerator and denominator of the Wald ratio). 
In addition, we solely considered one commonly occurring 
genetic instrument and uncorrelated exposures with direc-
tionally concordant effects on survival (and the outcome of 
interest), though R could be considered a combined vector 
for many possible competing causes of death. Furthermore, 
we did not consider a binary outcome, to avoid the issue of 
non-collapsibility, and restricted our investigations to a linear 
instrument-exposure association.

It will be of interest to examine more detailed simula-
tions using greater numbers of instruments and exposures to 
derive bias formulas (as others have done for collider bias in 
binary variable structures19). Of particular interest would be 
to examine whether sets of polygenic instruments, whose in-
dividual metabolic pathways to the intermediate phenotype 
may differ, might be differentially affected by survival bias. 

Finally, future work should explore the implications of using 
different IV assumptions such as monotonicity.
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