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Aromatic medicinal plants have long been utilized as spices 
or curative agents throughout human history. In particular, 
many commercial essential oils are derived from flowering 

plants in the tree genus Cinnamomum L. (Lauraceae). For exam-
ple, camphor, a bicyclic monoterpene ketone (C10H16O) that can be 
obtained from many members of this genus, has important indus-
trial and pharmaceutical applications1. Cinnamomum includes 
approximately 250 species of evergreen aromatic trees belonging 
to Lauraceae (laurel family), which is an economically and eco-
logically important family that includes 2,850 species distrib-
uted mainly in tropical and subtropical regions of Asia and South 
America2. Among them, avocado (Persea americana), bay laurel 
(Laurus nobilis), camphor tree or camphor laurel (Cinnamomum 
camphora), cassia (Cinnamomum cassia) and cinnamon (includ-
ing several Cinnamomum spp.) are important spice and fruit spe-
cies. Lauraceae has traditionally been classified as one of the seven 
families of Laurales, which together with Canellales, Piperales and 
Magnoliales constitute the Magnoliidae (‘magnoliids’ informally).

The magnoliids (Magnoliidae), containing about 9,000 species, 
are characterized by three-merous flowers with diverse volatile 
secondary compounds, one-pored pollen and insect pollination3. 
Many magnoliids—such as custard apple (Annonaceae), nutmeg 
(Myristica), black pepper (Piper nigrum), magnolia and tulip tree 
(Liriodendron tulipifera)—produce economically important fruits, 
spices, essential oils, drugs, perfumes, timber and horticultural 
ornamentals. However, the phylogenetic position of magnoliids 
has been uncertain. They were considered to be (1) sister to the 
Chloranthaceae4, (2) sister to the monocots5, (3) sister to the clade 
containing monocots and eudicots6, (4) sister to the clade compos-
ing Chloranthaceae and Ceratophyllaceae7, or (5) sister to the clade 
including eudicots and Chloranthaceae–Ceratophyllaceae8, based on 

plastid genes, plastomic inverted repeat regions, four mitochondrial 
genes, inflorescence and floral structures, and 59 conserved nuclear 
genes, respectively. Similar to the Angiosperm Phylogeny Group 
(APG) III system, the APG IV system9 placed Magnoliidae and 
Chloranthaceae together as sister to a robust clade, including mono-
cots and Ceratophyllales +​ eudicots. Furthermore, there are also unre-
solved questions about genome evolution within the Magnoliidae. 
Analysis of transcriptome sequences has implicated two rounds of 
genome duplication in the ancestry of Persea (Lauraceae) and one in 
the ancestry of Liriodendron (Magnoliaceae)10, but the relative timing 
of these events remains ambiguous.

Cinnamomum kanehirae, commonly known as the stout cam-
phor tree (SCT), a name referring to its bulky, tall and strong 
trunk, is endemic to Taiwan and under threat of extinction. It has a 
restricted distribution in broadleaved forests in an elevational band 
between 450 and 1,200 m11. Cinnamomum, including SCT and six 
congeneric species, contributed to Taiwan’s position as the larg-
est producer and exporter of camphor in the nineteenth century, 
and the value of their wood was further enhanced by their massive 
trunk diameters—the largest diameters among flowering plants of 
Taiwan—and their aromatic, decay-resistance quality that has been 
attributed to the essential oil d-terpinenol12. Antrodia cinnamomea 
is a parasitic fungus that infects the trunks of SCT causing heart 
rot13. The fungus produces several medicinal triterpenoids that 
impede the growth of liver cancer cells14 and act as antioxidants that 
protect against atherosclerosis15. Owing to intensive deforestation in 
the past half century, followed by poor seed germination and illegal 
logging to cultivate the fungus, natural populations of SCT are frag-
mented and threatened16.

Here, we report a chromosome-level genome assembly of SCT. 
Comparative analyses of the SCT genome with those of ten other 
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angiosperms and two gymnosperms (ginkgo and Norway spruce) 
allow us to resolve the phylogenetic position of the magnoliids and 
shed new light on flowering plant genome evolution. Several gene 
families seem to be uniquely expanded in the SCT lineage, includ-
ing the terpenoid synthase superfamily. Terpenoids play vital pri-
mary roles as photosynthetic pigments (carotenoids), electron 
carriers (plastoquinone and ubiquinone side chains) and regula-
tors of plant growth (the phytohormone gibberellin and phytol 
side chain in chlorophyll)17. Specialized volatile or semi-volatile 
terpenoids are also important biological and ecological signals that 
protect plants against abiotic stress and promote beneficial biotic 
interactions above and below the ground with pollinators, patho-
gens, herbivorous insect and soil microorganisms17. Analyses of 
the SCT genome inform understanding of gene family evolution 
contributing to terpenoid biosynthesis, shed light on early events 
in flowering plant diversification and provide new insights into the 
demographic history of SCT with important implications for future 
conservation efforts.

Results
Assembly and annotation of C. kanehirae. SCT is diploid 
(2n =​ 24; Supplementary Fig. 1a) with an estimated genome size 
of 823.7 ±​ 58.2 Mb/1 C (Supplementary Figs. 1b and 2). We pro-
duced an assembly derived solely from 85×​ PacBio long reads 
(read N50 =​ 11.1 kb; contig N50 =​ 0.9 Mb) spanning 728.3 Mb. 
The consensus sequences of the assembly were corrected using 
141×​ Illumina reads and further scaffolded with 207×​ ‘Chicago’ 
reconstituted chromatin and 204×​ Hi-C paired-end reads using 
the HiRise pipeline (Supplementary Fig. 3). A final, integrated 
assembly of 730.7 Mb was produced in 2,153 scaffolds, comprising 
91.3% of the flow cytometry genome size estimate. The final scaf-
fold N50 was 50.4 Mb with more than 90% in 12 pseudomolecules 
(Supplementary Table 1), presumably corresponding to the 12  
SCT chromosomes.

Using a combination of reference plant protein homology sup-
port and transcriptome sequencing derived from various tissues 
(Supplementary Fig. 1c and Table 2) and ab initio gene predic-
tion, 27,899 protein-coding gene models were annotated using 
the MAKER2 pipeline18 (Supplementary Table 1). Of these, 93.7% 
were found to be homologous to proteins in the TrEMBL database 
and 50% could be assigned Gene Ontology terms using eggNOG-
mapper19. The proteome was estimated to be at least 89% complete 
based on BUSCO20 (benchmarking universal single-copy orthologs) 
assessment, which is comparable to other sequenced plant species 
(Supplementary Table 1). Orthofinder21 clustering of SCT gene mod-
els with those from 12 diverse seed plant genomes yielded 20,658 
orthologous groups (Supplementary Table 3). 24,148 SCT genes 
(86.56%) were part of orthologous groups with orthologues from at 
least one other plant species. 3,744 gene models were not ortholo-
gous to others, and only 210 genes were part of the 48 SCT-specific 
orthologous groups. Altogether, they suggest that the phenotypic 
diversification in magnoliids may be fuelled by de novo birth of spe-
cies-specific genes and expansion of existing gene families.

Genome characterization. We identified 3,950,027 biallelic het-
erozygous sites in the SCT genome, corresponding to an average 
heterozygosity of 0.54% (one heterozygous single nucleotide poly-
morphism (SNP) per 185 bp). The alternative (non-reference) allele 
frequencies at these sites had a major peak around 50% consistent 
with the fact that SCT is diploid with no evidence for recent aneu-
ploidy (Supplementary Fig. 4). The spatial distribution of heterozy-
gous sites was highly variable, with 23.9% of the genome exhibiting 
less than 1 SNP locus per kb compared to 10% of the genome 
with at least 12.6 SNP loci per kb. Runs of homozygosity regions 
appeared to be distributed randomly across SCT chromosomes, 
reaching a maximum of 20.2 Mb in scaffold 11 (Fig. 1a). Such long 

runs of homozygosity regions have equal sequence coverage than 
the rest of the genome (Supplementary Fig. 5) and may be associ-
ated with selective sweeps, inbreeding or recent population bottle-
necks. Genes located in these runs of homozygosity regions were 
found to be enriched in lignin biosynthetic process and galactose 
metabolism (Supplementary Table 4), which suggest some potential 
roles in the formation of lignin–carbohydrate complexes22. Pairwise 
sequentially Markovian coalescent23 (PSMC) analysis based on 
heterozygous SNP densities implicated a continuous reduction 
of effective population size over the past 9 million years (Fig. 1b), 
with a possible bottleneck coincident with the mid-Pleistocene cli-
matic shift 0.9 million years ago (Ma). Such patterns may reflect a 
complex population history of SCT associated with the geological 
history of Taiwan, including uplift and formation of the island in 
the late Miocene (9 Ma) followed by mountain building 5–6 Ma,  
respectively24.

Transposable elements and interspersed repeats made up 48% 
of the genome assembly (Supplementary Table 5). The majority of 
the transposable elements belonged to long terminal repeat (LTR) 
retrotransposons (25.53%), followed by DNA transposable elements 
(12.67%). Among the LTRs, 40.75% and 23.88% retrotransposons 
belonged to Ty3/Gypsy and Ty1/Copia, respectively (Supplementary 
Table 5). Phylogeny of the reverse transcriptase domain showed that 
the majority of Ty3/Gypsy copies formed a distinct clade (20,092 
copies), presumably as a result of recent expansion and prolif-
eration, whereas Ty1/Copia elements were grouped into two sister 
clades (7,229 and 2,950 copies) (Supplementary Fig. 6). With the 
exception of two scaffolds, both Ty3/Gypsy and Ty1/Copia LTR 
transposable elements were clustered within the pericentromeric 
centres of the 12 largest scaffolds (Fig. 1c and Supplementary Fig. 7).  
In addition, the LTR-enriched regions (defined by 100 kb with an 
excess of 50% comprising LTR class transposable elements) had on 
average 35% greater coverage than the rest of the genome (Fig. 1c and 
Supplementary Fig. 8), suggesting that these repeats were collapsed 
in the assembly and may have contributed to the differences in flow 
cytometry and k-mer genome size estimates. The coding sequence 
content of SCT is similar to the other angiosperm genomes included 
in our analyses (Supplementary Table 1), whereas introns are slightly 
longer in SCT owing to a higher density of transposable elements 
(P <​ 0.001, Wilcoxon rank-sum test; Supplementary Fig. 9).

As has been described for other plant genomes25, the chro-
mosome-level scaffolds of SCT exhibit low protein-coding gene 
density and high transposable element density in the centres of 
chromosomes, and increased gene density towards the chromo-
some ends (Fig. 1c). We identified clusters of a putative subtelo-
mere heptamer, TTTAGGG, extending as long as 2,547 copies, 
which implicate telomeric repeats in plants26 (Supplementary 
Table 6). In addition, 687 kb of nuclear plastid DNA-like 
sequences (NUPTs), averaging around 202.8 bp, were uncovered 
(Supplementary Table 7). SCT NUPTs were overwhelmingly dom-
inated by short fragments, with 96% of the identified NUPTs less 
than 500 bp (Supplementary Table 8). The longest NUPT is ~20 kb 
in length and syntenic with 99.7% identity to a portion of the SCT 
plastome that contains seven protein-coding and five tRNA genes 
(Supplementary Fig. 10).

Phylogenomic placement of C. kanehirae sister to eudicots. To 
resolve the long-standing debate over the phylogenetic placement 
of magnoliids relative to other major flowering plant lineages, we 
constructed a phylogenetic tree based on 211 strictly single-copy 
orthologue sets (that is, one and only one homologue in all species) 
identified through OrthoFinder21 gene family circumscription of all 
gene models from the SCT and 12 other seed plant genomes (see 
Methods). A single species tree was recovered through maximum 
likelihood analysis27 of a concatenated supermatrix of the single-
copy gene alignments and coalescent-based analysis using the 211 
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gene trees28 (Fig. 2 and Supplementary Fig. 11). SCT, representing the 
magnoliid lineage, was placed as sister to the eudicot clade (Fig. 2).  
This topology remained robust when we included a transcriptome 
data set of an additional 22 species of magnoliids order from the 
1,000 plants initiative29 (1KP), although lower bootstrap support 
was obtained (Supplementary Fig. 12). Using MCMCtree30 with 
fossil calibrations, we calculated a 95% confidence interval for the 
time of divergence between magnoliids and eudicots to be 136.0–
209.4 Ma (Fig. 2), which overlaps with two other recent estimates 
(114.8–164.1 Ma31 and 118.9–149.9 Ma32).

Synteny analysis/whole-genome duplication. Previous investi-
gations of expressed sequence tags data inferred a genome-wide 
duplication within the magnoliids before the divergence of the 
Magnoliales and Laurales10, but synteny-based testing of this hypoth-
esis has not been possible without an assembled magnoliid genome. 
A total of 16,498 gene pairs were identified in 992 syntenic blocks 
comprising 72.7% of the SCT genome assembly. Of these intrage-
nomic syntenic blocks, 72.3% were found to be syntenic to more 
than one location on the genome, suggesting that more than one 
whole-genome duplication (WGD) occurred in the ancestry of SCT 

(Fig. 3a). Two rounds of ancient WGD were implicated by extensive 
synteny between pairs of chromosomal regions and significant but 
less syntenic pairing of each region with two additional genomic 
segments (Supplementary Fig. 13). Synteny blocks of SCT’s 12 larg-
est scaffolds were assigned to five clusters that may correspond to 
pre-WGD ancestral chromosomes (Fig. 3a, Supplementary Fig. 13 
and Supplementary Note).

Amborella trichopoda is the sole species representing the sister 
lineage to all other extant angiosperms and it has no evidence of 
WGD since divergence from the last common ancestor extant flow-
ering plant lineages33. To confirm that two rounds of WGD took 
place in the ancestry of SCT after divergence of lineages leading 
to SCT and A. trichopoda, we assessed synteny between the two 
genomes. Consistent with our hypothesis, one to four segments of 
the SCT genome were aligned to a single region in the A. trichopoda 
genome (Fig. 3b and Supplementary Fig. 14).

To more precisely infer the timing of the two rounds of WGD 
evident in the SCT genome, intragenomic and interspecies homo-
logue Ks (synonymous substitutions per synonymous site) distri-
butions were estimated. SCT intragenomic duplicates showed two 
peaks around 0.46 and 0.76 (Fig. 4a), congruent with the two WGD 
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events. Based on these two peaks, we were able to infer the karyo-
type evolution by organizing the clustered synteny blocks further 
into four groups presumably originating from one of the five pre-
WGD chromosomes (Supplementary Fig. 15). Comparison between 

Aquilegia coerulea (Ranunculales, a sister lineage to all other extant 
eudicots33) and SCT orthologues revealed a prominent peak around 
Ks =​ 1.41 (Fig. 4a), whereas the Aquilegia intragenomic duplicate 
was around Ks =​ 1, implicating independent WGDs following the 
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divergence of lineages leading to SCT and Aquilegia. The availability 
of the transcriptome of 17 Laurales +​ Magnoliales from the 1KP29 
allowed us to test the hypothesized timing of the WGDs evident in 
the SCT genome8. Ks distribution of five out of six available spe-
cies from Lauraceae revealed two peaks (Fig. 4b and Supplementary 
Fig. 16), as was seen in the SCT Ks distribution (Fig. 4a) and corre-
sponding to two synteny-based inferences of WGDs in the ancestry 
of SCT (Fig. 3 and Supplementary Fig. 15). Only one Ks peak was 
observed in the remaining Laurales and Magnoliales species, sug-
gesting only one WGD event occurred in the ancestry of these spe-
cies (Supplementary Figs. 17 and 18). The Ks peak seen in Aquilegia 
data is probably attributable to WGD within the Ranunculales well 
after the divergence of eudicots and magnoliids (Fig. 4a).

Specialization of the magnoliids proteome. We sought to identify 
genes and protein domains specific to SCT by annotating protein 
family (Pfam) domains and assessing their distribution across the 
13 seed plant genomes included in our phylogenomic analyses. 
Consistent with the observation that there were very few SCT-
specific orthologous groups, principal component analysis of Pfam 
domain content clustered SCT with the monocots and eudicots, 
with the first two principal components separating gymnosperms 
and A. trichopoda from this group (Supplementary Fig. 19a). There 
were considerable overlaps between SCT, eudicot and monocot spe-
cies, suggesting significant functional diversification since these 
three lineages split. SCT also showed a significant enrichment and 
reduction of 111 and 34 protein domains compared to other plant 
species, respectively (Supplementary Fig. 19b and Supplementary 
Table 9). Gain of protein domains included the terpene synthase 
(TPS) carboxy-terminal domain involved in defence responses and 
the leucine-rich repeats (628 versus 334.4) in plant transpiration 
efficiency34. Interestingly, we found that SCT possesses 21 copies 
of EIN3/EIN3-like (EIL) transcription factor, more than the previ-
ously reported maximum of 17 copies in the banana genome (Musa 
acuminata)35. EILs initiate an ethylene signalling response by acti-
vating ethylene response factor (ERF), which we also found to be 
highly expanded in SCT (150 copies versus an average of 68.3 copies 
from nine species reported in ref. 35; Supplementary Fig. 20). ERF 

responds and positively modulates biosynthesis of phytohormonal 
signals, including ethylene36. Expression of ERF has been implicated 
in positively modulating plant development from fruit ripening35 to 
secondary growth in wood formation37, as well as in increased resis-
tance to abiotic38 or biotic39 factors. Thus, expansion of EILs in SCT 
may stimulate ERF, leading to various regulation of downstream 
effectors that result in traits specific to SCT.

We next assessed orthologous group expansions and contractions 
across the seed plant phylogeny (Fig. 2). Gene family size evolution 
was dynamic across the phylogeny, and the branch leading to SCT did 
not exhibit significantly different numbers of expansions and con-
tractions. Enrichment of Gene Ontology terms revealed either differ-
ent gene families sharing common functions or single-gene families 
undergoing large expansions (Supplementary Tables 10 and 11).  
For example, expanded members of plant resistance (R) genes add 
up to ‘plant-type hypersensitive response’ (Supplementary Table 10).  
By contrast, the enriched Gene Ontology terms from the contracted 
gene families of the SCT branch (Supplementary Table 11) contain 
members of ABC transporters, indole-3-acetic acid-amido synthe-
tase, xyloglucan endotransglucosylase/hydrolase and auxin-respon-
sive protein, all of which are part of the ‘response to auxin’.

R genes. The SCT genome annotation included 387 R gene models, 
82% of which belong to nucleotide-binding site leucine-rich repeat 
(NBS-LRR) or coiled-coil NBS-LRR types. This result is consistent 
with a previous report that LRR is one of the most abundant protein 
domains in plants and it is highly likely that SCT is able to recognize 
and fight off pathogen products of avirulence (Avr) genes40. Among 
the sampled 13 genomes, SCT harbours the highest number of R 
genes among non-cultivated plants (Supplementary Fig. 21). The 
phylogenetic tree constructed from 2,465 NBS domains also sug-
gests that clades within the gene family have diversified indepen-
dently within the eudicots, monocots and magnoliids. Interestingly, 
the most diverse SCT NBS gene clades were sister to depauperate 
eudicot NBS gene clades (Supplementary Fig. 22).

TPS gene family. One of the most striking features of the SCT 
genome is the large number of TPS genes (CkTPS). A total of 101 
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CkTPS genes were predicted and annotated, the largest number for 
any other genome to date. By including a transcriptome data set of 
two more species from magnoliids (P. americana and Saruma hen-
ryi), phylogenetic analyses of TPS from 15 species placed CkTPS 
genes among six of seven TPS gene subfamilies that have been 
described for seed plants41 (Fig. 5, Table 1 and Supplementary Figs. 
23–28). CkTPS genes placed in the TPS-c (2) and TPS-e (5) subfam-

ilies probably encode diterpene synthases, such as copalyl diphos-
phate synthase and ent-kaurene synthase42. These are key enzymes 
catalysing the formation of the 20-carbon isoprenoids (collectively 
termed diterpenoids; C20s), which were thought to be eudicot spe-
cific41 and serve primary functions such as regulating plant primary 
metabolism. The remaining 94-predicted CkTPS genes probably 
encode the 10-carbon monoterpene (C10) synthases, 15-carbon 
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Fig. 5 | Phylogenetic placements of the 101 CkTPS genes. The phylogenetic tree was constructed using putative or characterized TPS genes from 13 
sequenced land plant genomes and two magnoliids with available transcriptomic data.
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sesquiterpene (C15) synthases and additional 20-carbon diterpene 
(C20) synthases (Table 1). With 25 and 58 homologues, respectively, 
TPS-a and TPS-b subfamilies are most diverse in SCT, presumably 
contributing to the mass and mixed production of volatile C15s  
and C10s43.

It is noteworthy that the TPS gene tree resolved Lauraceae-
specific TPS gene clades within the TPS-a, TPS-b, TPS-f and TPS-g 
gene subfamilies (Supplementary Figs. 23, 24, 27 and 28). This pat-
tern of TPS gene duplication in a common ancestor of Persea and 
Cinnamomum and subsequent retention may indicate subfunction-
alization or neofunctionalization of duplicated TPS genes within the 
Lauraceae. A magnoliids-specific subclade in the TPS-a subfamily 
was also identified in analyses, including more magnoliid TPS genes 
with characterized functions (Supplementary Fig. 23). Indeed, we 
detected positive selection in the Lauraceae-specific TPS-f -I and -II 
subclades, implying functional divergence (Supplementary Table 13).  
Together, these data indicate increasing diversification of magnoliid 
TPS genes both before and after the origin of the Lauraceae.

CkTPS genes are not uniformly distributed throughout the chro-
mosomes (Supplementary Table 12) and clustering of members 
from individual subfamilies was observed as tandem duplicates 
(Supplementary Fig. 29). Seventy-six TPS genes were observed in the 
largest 12 scaffolds of SCT. Of those, 60.5% (46 copies) belonging  

to different subfamilies were found in the 0.5–15 Mb and 22.0–
24.5 Mb region of scaffolds 7 and 10, respectively (Supplementary 
Fig. 29). Scaffold 7 contains 29 CkTPS genes belonging to several 
subfamilies, including all of the eight CkTPS-a, 12 CkTPS-b, five 
CkTPS-e and three CkTPS-f (Supplementary Fig. 29). By contrast, 
only two members of CkTPS-c reside in scaffold 1. Twenty-four 
CkTPS genes are located in other smaller scaffolds, 22 of which 
encode the subfamily TPS-b (Supplementary Fig. 24). Some of these 
subfamilies located on scaffolds 7 and 10 are physically in proxim-
ity of each other (Supplementary Fig. 29). For instance, 3 out of 11 
TPS-b-Lau III subfamily members were located adjacent to 4 out 
of 11 TPS-b-Lau V subfamily (Supplementary Fig. 29), whereas 
other subfamily members were found not in corresponding syn-
tenic regions but elsewhere in the genome (Supplementary Fig. 30). 
Genes belonging to this cluster were not grouped together in their 
corresponding subfamily phylogeny (Supplementary Fig. 30), sug-
gesting that their arrangement might have occurred more recently 
than the last WGD event.

Discussion
It is currently challenging to find wild SCT populations, making the 
conservation and basic study of this tree a priority. Camphor trees 
have been intensively logged since the nineteenth century, initially 

Table 1 | Numbers of TPS subfamilies in the 13 genomes and three transcriptomes of major seed plant lineages

Primary metabolism Secondary metabolism

TPS subfamilies Genome size 
(Mb)

c e a b da f g Total no.

Function species CPS, C20 KS, C20 C15 IspS, C10 C10, C15, C20 C20 C10

Gymnosperms
 G. biloba 10,609 1 1 – – 49 – – 51

 P. abies 12,301 2 1 – – 59 – – 62

Angiosperms
 A. trichopoda 706 1 1 – 7 – 3 5 17

Chloranthaceae
 S. glabrab – – 1 2 – – – – 3

Magnoliids
 Lauraceae
 C. kanehirae 731 2 5 25 58 – 7 4 101

 P. americanab – – – 11 12 – 1 9 33

Piperales
 S. henryib – 1 – 1 2 – – 1 5

Monocots
 M. acuminata 473 2 2 21 13 – 3 3 44

 O. sativa 375 3 10 19 – – – 1 33

 Z. mays 2,068 8 6 30 2 – – 5 51

Eudicots
 A. coerulea 307 15 13 12 34 – – 8 82

Rosids
 A. thaliana 120 1 1 23 5 – 1 1 32

 P. trichocarpa 473 2 2 16 14 – 1 3 38

 V. viniferac 434 2 1 29 10 – 2c 14 58

Asterids
 D. carota 422 3 2 1 15 – 1 7 29

 M. guttatus 313 13 13 19 17 – – 1 63
aTPS-d subfamily is gymnosperm specific. bTranscriptome data of these three taxa were highly likely incomplete for covering all TPS transcripts, so that their total numbers of TPS were not reliable but are 
for reference only. cThese two TPS-f were previously characterized from grape floral cDNA without identical genomic VvTPS genes (Martin et al.103); VvTPS sequences labelled as unknown (Martin et al.103) 
in the TPS gene tree were not counted. CPS, copalyl diphosphate synthase; KS, kaurene synthase; IspS, isoprene synthase.
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for hardwood properties and association with the fungus A. cinna-
momea. The apparent runs of homozygosity have been observed 
due to anthropogenic selective pressures or inbreeding in several 
livestock44, although inbreeding as a result of recent population 
bottleneck may be a more likely explanation for SCT. Interestingly, 
continuous decline in effective population size was inferred since 
9 Ma. These observations may reflect a complex population history 
of SCT and Taiwan itself after origination and mountain building of 
the island that occurred around late Miocene (9 Ma) and 5–6 Ma, 
respectively24. The availability of the SCT genome will help the 
development of precise genetic monitoring and tree management 
for the survival of SCT’s natural populations.

Our phylogenomic analyses of 211 single-copy orthologues from 
13 representative seed plant genomes, including the first magno-
liid representative, SCT, resolve magnoliids to be closer to eudicots 
than to monocots. This result disagrees with APG IV’s resolution 
placing magnloliids as an outgroup to a clade containing monocots, 
Ceratophyllales and eudicots, but is in good agreement with a recent 
analysis of 59 orthologous nuclear genes based on transcriptome 
data of 26 seed plants8. Unfortunately, no complete genomic data 
of either Chloranthaceae or Ceratophyllacae are currently avail-
able for further re-examining the relationships of these two taxa, 
magnoliids, monocots, eudicots and the Amborella–Nymphaeles–
Austrobaileyales grade. However, the placement of SCT as a sister to 
the eudicots in our analysis has important implications for compar-
ative genomic analyses of evolutionary innovations within the eudi-
cots, which comprise ~75% of extant flowering plants8. Consistent 
to early isozyme analysis45, within the Lauraceae, we identified the 
timing of two rounds of independent WGD events that contributed 
to gene family expansions and innovations in pathogen, herbivore 
and mutualistic interactions. Large Ks peak ranges in the Laurales 
and Magnoliales from the 1KP transcriptome data set may be due 
to variation of synonymous substitution rates in the different lin-
eages29. Complete genome assemblies for representatives of addi-
tional magnoliid lineages are needed to pinpoint the exact timing 
of these WGD events. The SCT genome will serve as an important 
reference outgroup for reconstructing the timing and nature of 
polyploidy events that gave rise to the hexaploid ancestor of all core 
eudicots (Pentapetalae)46,47.

Gene tree topologies for each of the six angiosperm TPS sub-
families revealed diversification of TPS genes and gene function in 
the ancestry of SCT. The C20s, producing TPS-f genes, were sug-
gested to be eudicot specific because both rice and sorghum lack 
this subfamily41. Our data clearly indicate that this subfamily was 
present in the last common ancestor of all angiosperms but was 
lost from the grass family (Table 1). Massive diversification of the 
TPS-a and TPS-b subfamilies within the Lauraceae is consistent 
with a previous report that the main constituents of 58 essential 
oils produced in Cinnamomum leaves are C10s and C15s43. These 
findings are in congruent with the fact that fruiting bodies of the 
SCT-specific parasitic fungus Antrodia cinamomea can produce 78 
kinds of terpenoids, including 31 structure-different triterpenoids 
(C30s)48, many of which are synthesized via the mevalonate path-
way, as are C10s and C15s followed by cyclizing squalenes (C30H50) 
into the skeletons of C30s49. It is reasonable to suggest that this fun-
gus obtained intermediate compounds through decomposing trunk 
matters from SCT.

The 101 CkTPS genes identified in the SCT genome are unevenly 
distributed across the 12 chromosomal scaffolds and include gene 
clusters from multiple subfamilies (Supplementary Fig. 30). In the 
Drosophila melanogaster genome, ‘tandem duplicate overactivity’ 
has been observed, with tandemly duplicated Adh genes showing 
2.6-fold greater expression than single-copy Adh genes50. These 
rearrangement events may have also contributed to diversification 
of TPS enzymes in the SCT lineage and subsequent clustering of 
genes associated with mass production of terpenoids.

In summary, the availability of the SCT genome establishes a 
valuable genomic foundation that will help to unravel the genetic 
diversity and evolution of other magnoliids, and to give a better 
understanding of flowering plant genome evolution and diversifica-
tion. At the same time, the reference-quality SCT genome sequence 
will enable efforts to conserve genome-wide genetic diversity in this 
culturally and economically important broadleaved forest species.

Methods
Plant materials. All plant materials used in this study were collected from a 
12-year-old SCT growing in Ershui Township, Changhua County, Taiwan (23° 49′​ 
25.9″​ N, 120° 36′​ 41.2″​ E) during April–July of 2014–2016. The tree was grown up 
from a seedling obtained from the Forestry Management Section, Department of 
Agriculture, Taoyuan City, Taiwan. The specimen (voucher number: Chaw 1501) 
was deposited in the Herbarium of Biodiversity Research Center, Academia Sinica, 
Taipei, Taiwan.

Genomic DNA extraction and sequencing. We used a modified high-salt 
method51 to eliminate the high content of polysaccharides in SCT leaves, followed 
by total DNA extraction with a modified cetyltrimethylammonium bromide 
(CTAB) method52. Three approaches were employed in DNA sequencing. First, 
paired-end and mate-pair libraries were constructed using the Illumina TruSeq 
DNA HT Sample Prep Kit and Illumina Nextera Mate Pair Sample Prep Kit 
following the kit’s instructions, respectively. All obtained libraries were sequenced 
on an Illumina NextSeq 500 platform to generate ~278.8 Gb of raw data. Second, 
SMRT libraries were constructed using the PacBio 20-kb protocol (https://www.
pacb.com/). After loading on SMRT cells (SMRT Cell 8Pac), these libraries were 
sequenced on a PacBio RS-II instrument using P6 polymerase and C4 sequencing 
reagent (Pacific Biosciences). Third, a Chicago and a Hi-C library were prepared 
by Dovetail Genomics (Santa Cruz) and sequenced on an Illumina HiSeq 2500 to 
generate 150-bp read pairs.

RNA extraction and sequencing. Opening flowers, flower buds (two stages), 
immature leaves, young leaves, mature leaves, young stems and fruits were 
collected from the same individual (Supplementary Fig. 1c) and their total RNAs 
were extracted53. The extracted RNA was purified using poly-T oligo-attached 
magnetic beads. All transcriptome libraries were constructed using the Illumina 
TruSeq library Stranded mRNA Prep Kit and sequenced on an Illumina HiSeq 
2000 platform. A summary of transcriptome data is shown in Supplementary  
Table 2.

Chromosome number assessment. Root tips from cutting seedlings were used 
to examine the chromosome number based on Suen et al.’s method54. The stained 
samples were observed under a Nikon Eclipse 90i microscope (Supplementary  
Fig. 1a).

Genome size estimation. Fresh leaves of SCT were finely chopped with a new 
razor blade in 250 µ​l isolation buffer (200 mM Tris, 4 mM MgCl2-6H2O and 0.5% 
Triton X-100) and mixed well, following the protocol of Dolezel et al.55. The 
mixture was filtered through a 40-μ​m nylon mesh, followed by incubation of 
the filtered suspensions with a DNA fluorochrome (50 μ​g ml−1 propidium iodide 
containing RNase A). Samples were analysed on the MoFlo XDP Cell Sorter 
(Beckman Coulter Life Science) and the Attune NxT Flow Cytometer (Thermo 
Fisher Scientific) in the Institute of Plant and Microbial Biology Flow Cytometry 
Analysis and Sorting Services at Academia Sinica, Taipei, Taiwan. Two and one 
replicates were performed on the former and latter machines, respectively, using 
chicken erythrocyte (BioSure) as an internal reference (Supplementary Fig. 1b). 
The 1 C genome size for SCT was estimated to be 781–890 Mb (Supplementary 
Figs. 1b and 2). Estimates of genome size from Illumina paired-end sequences were 
inferred using Genomescope56 (version 1.0; based on k-mer 31).

De novo assembly of SCT. PacBio reads were assembled using the FALCON57 
(version 0.5.0) assembler. The consensus sequences of the assembly were further 
corrected using PacBio reads using Quiver58 and Illumina reads using Pilon59 
(version 1.22). The PacBio assembly was scaffolded using the HiRISE scaffolder60 
(version July2015_GR), and consensus sequences were further improved using 
Pilon with one iteration59. The genome completeness was assessed using a plant 
data set of BUSCO20 (version 3.0.2). To identify putative telomeric repeats, 
the assembly was searched for high copy number repeats less than 10 bp using 
tandem repeat finder61 (version 4.09; options: 2 7 7 80 10 50 500). The heptamer 
TTTAGGG was identified (Supplementary Table 6).

Gene predictions and functional annotation. Transcriptome paired-end reads 
were aligned to the genome using STAR62 (version 2.5.3a). Transcripts were 
identified using two approaches: (1) assembled de novo using Trinity63 (version 
2.3.2) and (2) reconstructed using Stringtie64 (version 1.3.1c) as well as CLASS2 
(ref. 65) (version 2.1.7). Transcripts generated from Trinity were remapped to the 
reference using GMAP66. The three sets of transcripts were merged and filtered 

Nature Plants | VOL 5 | JANUARY 2019 | 63–73 | www.nature.com/natureplants70

https://www.pacb.com/
https://www.pacb.com/
http://www.nature.com/natureplants


ArticlesNaTure PLanTS

using MIKADO67 (version 1.1). Proteomes from representative reference species 
(Uniprot plants; proteomes of Amborella trichopoda and Arabidopsis thaliana) 
were downloaded from Phytozome (version 12.1; https://phytozome.jgi.doe.gov/). 
The gene predictor Augustus68 (version 3.2.1) and SNAP69 were trained either on 
the gene models predicted using BRAKER1 (ref. 70) or MAKER2 (ref. 18) (version 
2.31.9). The assembled transcripts, reference proteomes, BRAKER1 and the 
BUSCO predictions were combined as evidence hints for input of the MAKER2 
(ref. 18) annotation pipeline. MAKER2 (ref. 18) invoked the two trained gene 
predictors to generate a final set of gene annotation. Amino acid sequences of the 
proteome were functionally annotated using Blast2GO71 and eggNOG-mapper19 
(version 1.0.3). NUPTs of SCT were searched against its plastid genome (plastome; 
KR014245 (ref. 72)) using blastn (parameters were followed from Smith et al.73).

Analysis of genome heterozygosity. Paired-end Illumina reads of SCT were 
aligned to reference using bwa mem74 (version 0.7.17-r1188). PCR duplicates 
were removed using SAMtools75 (version 1.8). Heterozygous biallelic SNPs were 
called using SAMtools75 and consensus sequences were generated using bcftools76 
(version 1.7). Depth of coverage and alternative allele frequency plots were 
conducted using R version 3.4.2. The consensus sequence was fed to the PSMC 
program23 to infer past effective population size. All of the parameters used for 
the PSMC program were at default with the exception of -u 7.5 ×​ 10−9 taken from 
A. thaliana77 and -g 20 taken from Neolitsea sericea (Lauraceae)78.

Identification of repetitive elements. Repetitive elements were first identified 
by modelling the repeats using RepeatModeler79 and then searched and 
quantified repeats using RepeatMasker80. Repeat types modelled as ‘unknown’ 
by RepeatModeler were further annotated using TEclass81. Tandem repeats were 
identified using Tandem Repeats Finder61. The proportions of different types of 
repeats were quantified by dissecting the 12 largest scaffolds into 100,000-bp chunks 
and calculating the total lengths and percentages of the repetitive elements within 
the chunks. LTR retrotransposons (LTR-RT) domains were extracted following 
Guan et al.’s method82. Briefly, a two-step procedure was applied on the genomes. The 
first was to find candidate LTR-RTs similar to known reverse transcriptase domains 
and the second was to identify other LTR-RTs using the candidates identified in the 
first step. The identified LTR-RT domains were integrated with those downloaded 
from the Ty1/Copia and Ty3/Gypsy trees of Guan et al.82. Trees were built by  
aligning the sequences using MAFFT83 (version 7.310; --genafpair --ep 0)  
and applied FastTree84 with the Jones, Taylor and Thornton (JTT) model on  
the aligned sequences, and were coloured using the APE package85.

Gene family or orthogroup inference and analysis of protein domains. The amino 
acid and nucleotide sequences of 12 representative plant species were downloaded 
from various sources: A. coerulea, A. thaliana, Daucus carota, Mimulus guttatus, 
M. acuminata, Oryza sativa japonica, Populus trichocarpa, Vitis vinifera and Zea mays 
from Phytozome (version 12.1; https://phytozome.jgi.doe.gov/), Picea abies from the 
Plant Genome Integrative Explorer Resource86 (http://plantgenie.org/), Ginkgo biloba 
from GigaDB87 and A. trichopoda from Ensembl plants88 (release 39). Gene families 
or orthologous groups of these species and SCT were determined by OrthoFinder21 
(version 2.2.0). Pfams of each species were calculated from the Pfam website (version 
31.0; https://pfam.xfam.org/). Pfam numbers of every species were transformed 
into z-scores. Significant expansions or reductions of Pfams in SCT were based on a 
z-score greater than 1.96 or less than −​1.96, respectively. The significant Pfams were 
sorted by Pfam numbers (Supplementary Fig. 19). Gene family expansion and loss 
were inferred using CAFE89 (version 4.1, with an input tree as the species tree inferred 
from the single-copy orthologues).

Phylogenetic analysis. MAFFT83 (version 7.271; option --maxiterate 
1000) was used to align 13 sets of amino acid sequences of 211 single-copy 
orthologous groups. Each orthologous group alignment was used to compute 
a maximum likelihood phylogeny using RAxML27 (version 8.2.11; options: -m 
PROTGAMMAILGF -f a) with 500 bootstrap replicates. The best phylogeny and 
bootstrap replicates for each gene were used to infer a consensus species tree 
using ASTRAL-III28. A maximum likelihood phylogeny was constructed with 
the concatenated amino acid alignments of the single-copy orthogroups (version 
8.2.11; options: -m PROTGAMMAILGF -f a), also with 500 bootstrap replicates.

Estimation of divergence time. Divergence time of each tree node was inferred 
using MCMCtree of the PAML30 package (version 4.9g; options: correlated 
molecular clock, JC69 model and rest being default). The final species tree and the 
concatenated translated nucleotide alignments of 211 single-copy orthologues were 
used as input of MCMCtree. The phylogeny was calibrated using various fossil 
records or molecular divergence estimate by placing soft bounds at split node of:(1) 
A. thaliana–V. vinifera (115–105 Ma)90, (2) M. acuminata–Z. mays (115–90 Ma)90, 
(3) Ranunculales (128.63–119.6 Ma)32, (4) Angiospermae (247.2–125 Ma)32, (5) 
Acrogymnospermae (365.629–308.14 Ma)32 and (6) a hard bound of 420 Ma of 
outgroup Physcomitrella patens91.

Analysis of genome synteny and WGD. Dot plots between SCT and A. trichopoda 
assemblies were produced using SynMap from the Comparative Genomics 

Platform (Coge92) to visualize the paleoploidy level of SCT. Synteny blocks within 
SCT and between A. trichopoda and A. coerulea were identified using DAGchainer93 
(same parameters as Coge:92 -E 0.05 -D 20 -g 10 -A 5). Ks between syntenic group 
pairs were calculated using the DECIPHER94 package in R. Depth of the inferred 
syntenic blocks were calculated using Bedtools95. Both the Ks distribution and 
the syntenic block depth were used to determine the paleopolyploidy level96 of 
SCT. Using the quadruplicate or triplicate orthologues in the syntenic blocks as 
backbones, as well as A. trichopoda regions showing up to four syntenic regions, we 
identified the start and end coordinates of linkage clusters (Supplementary Note).

R genes. R genes were identified based on ref. 97. Briefly, the predicted genes of 
the 13 sampled species were searched for the Pfam NBS (NB-ARC) protein family 
(PF00931) using HMMER version 3.1b2 (ref. 98) with an e-value cut-off of 1 ×​ 10−5. 
Extracted sequences were then checked for protein domains using InterproScan99 
(version 5.19–58.0) to remove false-positive NB-ARC domain hits. The NBS 
domains of the genes that passed both HMMER and InterproScan were extracted 
according to the InterproScan annotation and aligned using MAFFT83 (version 
7.310; --genafpair --ep 0); the alignment was then input into FastTree84 with the 
JTT model and visualized using EvolView100.

TPS genes. In addition to the 13 species proteome data set used in this study, 
transcriptome data from one Chloranthaceae species, Sarcandra glabra, and two 
magnollids representatives, P. americana (avocado) and S. henryi (saruma), were 
downloaded from the 1KP transcriptome database29. Previously annotated TPS 
genes of four species: A. thaliana101, O. sativa41, P. trichocarpa102 and V. vinifera103 
were retrieved. For species without a priori TPS annotations, two Pfam domains: 
PF03936 and PF01397, were used to identify against the proteomes using 
HMMER104 (version 3.0; cut-off at e <​ 10−5). Pseudogenes and sequence lengths 
shorter than 200 amino acids were excluded from further analysis. Putative 
or annotated protein sequences of TPS (n =​ 702) were aligned using MAFFT83 
(version 7.310 with default parameters) and manually adjusted using MEGA105 
(version 7.0). The TPS gene tree was constructed using FastTree84 (version 2.1.0) 
with 1,000 bootstrap replicates. The subfamily TPS-c was designated as the 
outgroup. Branching nodes with bootstrap values of <​80% were treated  
as collapsed.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the raw sequence reads used in this study have been deposited in NCBI 
under the BioProject accession number PRJNA477266. The assembly of SCT is 
available under the accession number GCA_003546025.1.
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upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All of raw sequence reads used in this study have been deposited in NCBI under the BioProject accession number PRJNA477266. The assembly  of 
SCT is available under the accession number SAMN09509728.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For comparative genome analyses, the amino acid and nucleotide sequences of 12 representative plant species were downloaded from 
various sources: Aquilegia coerulea, Arabidopsis thaliana, Daucus carota, Mimulus guttatus, Musa acuminata, Oryza sativa japonica, Populus 
trichocarpa, Vitis vinifera and Zea mays from Phytozome (ver. 12.1; https://phytozome.jgi.doe.gov/), Picea abies from the Plant Genome 
Integrative Explorer Resource (http://plantgenie.org/), Ginkgo biloba from GigaDB, and Amborella trichopoda from Ensembl plants (Release 
39).

Data exclusions No data exclusions in this manuscript

Replication No replication in this manuscript

Randomization No randomization in this manuscript as genomes assemblies were not allocated into experimental groups.

Blinding No blinding in this manuscript as the data were not allocated into groups

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Tissues of about 0.25 square centimeters were excised from freshly collected leaves, and placed in plastic petri dishes (35 mm x 
10 mm) on ice, and then sliced to fine pieces using a new razor blade in extraction buffer for 1~2 min.

Instrument The data were collected using MoFlo XDP Cell Sorter (Beckman Coulter Life Science, Indianapolis, IN) and Attune NxT Flow 
Cytometer  (Thermo Fisher Scientific Inc., Waltham, MA).

Software Summit (ver5.3)

Cell population abundance Flow cytometry was used for quantification purposely only, and no post-sorting fraction was collected.

Gating strategy Filter-575-25 was used in gating. The FSC-Area/SSC-Area gate (R1) method was used to eliminate debris, cell fragments, and 
dead cells. Single cell and double cells were discriminated by using RPE-Height/ RPE-Area (R4).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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