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Abstract

Stem cell therapies have been explored as a new avenue for the treatment of neurologic disease
and damage within the CNS in part due to their native ability to mimic repair mechanisms in the
brain. Mesenchymal stem cells have been of particular clinical interest due to their ability to
release beneficial neurotrophic factors and their ability to foster a neuroprotective
microenviroment. While early stem cell transplantation therapies have been fraught with technical
and political concerns as well as limited clinical benefits, mesenchymal stem cell therapies have
been shown to be clinically beneficial and derivable from nonembryonic, adult sources. The focus
of this review will be on emerging and extant stem cell therapies for juvenile and adult-onset
Huntington’s disease.

Keywords
Huntington’s disease; regenerative medicine; stem cell; transplantation

Significant advances in stem cell therapies

The clinical use of stem cell therapies has gained approval for a variety of injuries and
diseases of the CNS. While much work is still needed before the widespread use of stem
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cells in a clinical setting can be realized, this mode of therapy may be advantageous to treat
neurological disorders than many others because of the ability of stem cells to accurately
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mimic the normal cell repair and development process in the brain [1]. Although cell
transplantation therapies have been fraught with technical and political problems, there are
signs that this approach has considerable potential. Early work with Parkinson’s disease,
where the first clinical trials were performed in the mid-1980s and a total of 300—400
patients have been treated subsequently with fetal cell transplantation and in the open label
studies, has yielded evidence of some functional improvement [for review [2,3]] as
measured by withdrawal of anti-parkinsonian medications. Patients with Huntington’s
disease (HD) have received clinical benefits from implants of fetal/embryonic stem cells as
well, however, these effects have been shown to be temporal [4-6].

Another type of cells, mesenchymal stem cells (MSCs), have emerged for clinical
transplantation studies due to their capacity to release neurotrophic factors and their ability
to create a neuroprotective microenvironment through the release of specific ILs and
cytokines. Clinical trials using MSCs in the CNS are now also underway, and are focused on
the safety of the cells. MSCs have been autologously transplanted into the subventricular
zone in patients with advanced Parkinson’s disease [7], intravenously in patients that had
suffered a stroke [8,9], and umbilical cord MSCs have been administered intravenously in
children with cerebral palsy [10] with no adverse side effects from the cells and observed
clinical efficacy as measured by improvements in neurological domains and fractional
anisotropy values in brain MRI-DTI.

Stem cell clinical trials for stroke, spinal cord injury and amyotrophic lateral sclerosis are
already underway while additional studies utilizing adult stem cells are nearing clinical trials
for Parkinson’s and Alzheimer’s and HD.

The goal of stem cell transplantation should focus on providing therapeutic benefit through
two main mechanisms. Successful cell transplantation should be able to work synergistically
with the endogenous microenvironment to upregulate intrinsic cell proliferation or
neuroprotection via trophic factor secretion and immune modulation, potentially enhancing
the overall regenerative capacity of the transplanted tissue [11], or by being capable of
integrating into the endogenous host network and replacing or repairing the lost neurons.
This review will focus on the potential of adult stem cells to provide neuroprotection and
immune modulation in adult-onset and juvenile HD.

Huntington’s disease

HD is an autosomal-dominant disorder caused by an expanded and unstable CAG
trinucleotide repeat that causes a progressive degeneration of neurons, primarily in the
putamen, caudate nucleus and cerebral cortex [12]. In the USA, there is estimated to be
approximately 30,000 individuals with HD while the Europe Union has a slightly higher
prevalence of individuals with symptomatic HD with an estimated 45,000 patients [13].
Juvenile HD (JHD) is defined by disease onset before the age of 20 years and occurs in less
than 10% of all HD cases [14]; however, JHD may be further subdivided into patients that
have disease onset prior to the age of 10 years or between 10 and 20 years of age as they
present with different clinical characteristics [15].
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HD occurs when the gene that codes for the htt protein, located on the short arm of
chromosome 4, shows an increased number of CAG repeats [16]. Typically, greater than 38
CAG repeats correlate with an onset of the illness in adulthood. JHD is typically transmitted
from the paternal allele and usually have more than 60 CAG repeats [14], although there is a
reported case of a JHD patient with 250 CAG repeats [17]. Disease onset prior to the age of
20 years is clearly dominated by paternal transmission (about 3:1 paternal-maternal), and
paternal transmission is, to date, solely responsible for disease onset prior to the age of 10
years [18].

Adult HD is dominated by chorea and other involuntary movements in the initial and middle
stages of the disease, but it is becoming clearer that HD patients have cognitive and
emotional deficits including slowing of psychomotor speed, impairment of attention and
memory as well as executive and visuospatial functions that eventually degrade into
dementia along with depression and apathy, although the emotional features are more
variable than the motor or cognitive features [19,20]. Typically, HD eventually culminates in
death around 15-20 years after the onset of motor symptoms. The disease progression is
more rapid in children than in adults and has been described in three phases: initial phase of
behavioural disorder, learning difficulty, gait disturbance and mild chorea; a florid phase
with signs of mental deterioration, rigidity, speech disturbance and seizures; and a terminal
phase of bed confinement, hypotonia and increasing seizures [15]. JHD patients typically
have less chorea than adult onset HD with rigidity reported as the dominant clinical
manifestation [14].

Historically, the neuroanatomical changes in the striatum have been the focus of
neuropathological and neuroimaging studies, but recently, the presence of abnormalities
throughout the cerebellum, specifically in JHD [21], including cortical thinning and
decreased white matter volumes, in the prefrontal cortex, have gained significant interest
[20,22]. Striatal atrophy as well as white matter loss, as measured by MRI studies, can detect
HD-like degeneration 15 years prior to the onset of motor symptoms [23,24], suggesting that
once the clinical onset of motor symptoms appear, significant striatal loss has already
occurred.

Although HD and JHD have a single genetic cause, HD as a whole has a very complex
pathology, with detrimental effects on a wide variety of cellular processes [25]. It has
recently been uncovered that while conditional knockout of mutant huntingtin in the striatum
of transgenic mice leads to partial motor and psychiatric recovery, silencing of mutant
huntingtin in both the cortex and striatum is needed to ameliorate HD-like symptoms [26].
This is suggestive that symptomology is due to widespread dysfunction of the brain and even
possibly in other organs as well [27-30].

Currently, only symptomatic treatments are available. Pharmacotherapy is difficult in HD
due to the complexity and amount of damage to the brain. The symptomatology of JHD is
complex and causes suffering in all domains of life and the pharmacological treatment is
difficult as there are no studies to guide the current trial-and-error approach to treating these
patients [21]. Clinical outlooks for HD patients and the care given to their family members
have improved due to the increased recognition of the disorder, better access to genetic
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counseling, and more availability to specialized care programs that utilize behavioral,
neurological and psychiatric rehabilitation programs [13]. Treatment for patients suffering
from HD generally comprises neuroleptics, anticonvulsants [31] or tetra-benazine. The latter
of which involves a complicated prescribing process, specialty pharmacies for delivering the
drug, strictly managed doses and annual costs exceeding US$70,000 which makes it
prohibitively expensive for many patients [32].

Thus, due to the time and nature in diagnosing HD following neuronal loss and motor
deficits, restorative therapies should focus on creating a neuroprotective environment to slow
the loss of endogenous neurons as well as replacing lost neurons through either stimulating
endogenous neurogenesis or transplanting cells capable of differentiating, integrating and
replacing lost cells.

MSCs for HD

At the time of manuscript preparation, 16 published articles have implicated improvement of
either behavioral or neuropathological deficits in rodent models of HD following treatment
with MSCs (Table 1). These studies have used MSCs from multiple sources including
autologous transplantation of unpurified whole bone marrow from rats [33], purified rat
MSCs [34-38], mouse bone marrow-derived MSCs [39,40], mouse umbilical cord-derived
MSCs [41], human adipose derived MSCs [42-44] and human bone marrow MSCs [45-47].

These studies have demonstrated improvement in motor function [34-36,39-40,42-46,48],
cognition [33,40,48], anxiety-like behaviors [42] and the ability to extend the lifespan of
these animals [44]. Decreases in the striatal lesion size, less neuronal and medium spiny
neuron loss, stimulation of endogenous neurogenesis and reduction of huntingtin
aggregation has also been observed following transplantation of MSC [34,37,39-41,43-47].

Several groups have reported that MSCs have the ability to differentiate into neuronal
lineages /n vitro [49-52] and following transplantation into the brain [53-58]. However, the
stance that MSCs have the ability to transdifferentiate into mature neuronal phenotypes in
vitro or in vivo remains controversial [59] and none of the aforementioned studies observed
neuronal differentiation of the transplanted MSC.

There are several possible mechanisms that MSCs may provide 7 /ieu of neuronal
differentiation such as trophic support and immunomodulation. These hypotheses are
supported from studies of other neurological disorders (Huang et al., [60]; Lin et al., [61];
Han et al., [62] Uccelli et al. [63]) and were observed in many HD studies following MSC
transplantation (Table 1).

One of the most common mechanism of action postulated following MSC transplantation in
HD is that the cells are capable of providing trophic support, specifically BDNF [33-35,37—
41,43-44,46,48]. As a reduction in BDNF levels has been noted in HD patients [64,65] and
BDNF targeted therapies have shown to ameliorate partial disease pathology [66-93]
upregulating BDNF in the HD brain has become a lead therapeutic candidate.
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As trophic support is speculated to be the main contributor to behavioral and histological
recovery following transplantation of MSC, the potential of MSCs as a delivery vehicle for
gene therapy has been examined [94-97]. Due to the nature in which MSC can be
engineered /n vitro, a study tested MSCs that overproduced either BDNF, nerve growth
factor or a combination of both [39]. YAC128 transgenic mice that received transplantations
of the MSC to overexpress BDNFdisplayed a reduction in motor deficits and had
significantly more NeuN- and Darpp32-positive cells (mature and medium spiny neurons,
respectively) in the striatum than all other YAC128 groups [39]. The results from this study,
along with the previously discussed literature of successful pre-clinical trials has led to
translational studies using engineered human MSC in the preparation of a clinical trial [98].
However, many of the successful pre-clinical studies only examine the efficacy of the MSC
treatment for a period of days to weeks (refer to Table 1), and the long-term efficacy of this
strategy needs to be examined.

Clinical cell transplantation in HD

As mentioned previously, several clinical studies have been conducted to assess the viability
of fetal cells as a therapeutic treatment for HD. However, there have been varying results for
the long-term viability of fetal cells for HD (Table 2). Bachloud-Levi, et a/., found that three
out of five patients transplanted with ganglionic eminence cells showed metabolically active
graft cells 10 years following transplantation [99] and these results correlated with a slowing
of the progressive nature of the disease, with even some functional recovery observed at the
early time points; however, in another study the transplanted ganglionic eminence underwent
a similar neurodegeneration associated with HD [5], likely due to accumulation of mutant
huntingtin in the neuronal graft [100,101]. It has since been postulated that mutant
huntingtin is transneuronally propagated along neuronal networks, likely contributing to the
pathophysiology of HD [102]. This theory has been reported in other disease models and it
is thought that the mutant protein is transferred from the host into the transplanted fetal
neurons via retrograde transfer [103]. Even in studies where the transplanted cells were still
viable, their effect on behavioral recovery began to diminish between 2 and 4 years
following the treatment [99,101,104]. While ganglionic eminence transplantations into HD
patients have shown considerable promise as a treatment for HD there are many problems
with the continued use of fetal cells for transplantation therapies such as ethical, logistical
and availability issues [105-107].

Embryonic cell transplantation in HD

Preclinical research using ganglionic eminence transplanted into rodent models of HD has
yielded similar results in that the cells can differentiate into mature neurons and astrocytes
[119], rescue the behavioral deficits [120], but that these effects are not long lasting [121]. It
has been observed that HD animals receiving pluripotent embryonic stem cells (ESCs) show
transient recovery of motor deficits, but this effect rarely extends beyond 8 weeks [121].
Similar to what is observed in animals receiving transplants of fetal tissue, ESCs are either
rejected by the host immune system or overpro-liferate, disrupting the host cytoarchitechure
and causing teratoma formation [122]. This short-term effect of the cells is likely due to a
failure of the graft to successfully rebuild or replace the lost cellular connections, or due to
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the grafts being systematically rejected by the host immune system. Induced pluripotent
stem cells have recently been transplanted into a 3-nitropropionic acid (3-NP) toxic lesion
models of HD [123] and in the transgenic YAC128 [124] with both studies reporting
significant behavioral improvement and that the transplanted cells were capable of
differentiating into neuronal phenotypes. However, more work is still needed to characterize
the safety and immunological profile of these cells following transplantation before they
could be considered for clinical use.

Neuronal cell transplantation in HD

Another stem cell type that has been shown to be a potential avenue for cell replacement
therapy in HD is neuronal stem cells (NSCs). Immortalized human [125], mouse [126] and
rat [127] embryonic NSCs have all shown considerable promise when transplanted into
various models of HD. In both transgenic mice and toxic lesion rat models of HD, NSCs
have been shown to survive up to 8 weeks following transplantation, differentiate into
mature neurons and astrocytes and show behavioral recovery, specifically in apomorphine-
induced rotational tests [121,127-130], beam walking [126] and in the amount of time on
the rotarod [120]. However, Johann et al., found that NSCs were rapidly rejected after 28
days in the R6/2 and after 14 days in a quinolinic acid (QA) mouse model of HD [131]. A
large inflammatory immune response was observed following NSCs transplantation in a
transgenic rat model of HD 40 weeks following transplantation [36], suggesting that these
cells elicit an extended immune response. While it is possible to globally suppress the
immune system with cyclosporine or other immune-suppressors to enhance the graft
survival, there are several side effects associated with long-term immunosuppressive
treatments [132]. For pluripotent or adult NSCs to be a viable therapeutic option for HD,
local immune suppression or genetically engineering the cells to avoid rejection from the
host is necessary along with the ability to direct the cells into the correct lineage following
transplantation (Table 3).

While transplantation of embryonic, neural and mesenchymal stem cells have shown to be
effective both clinically and experimentally, they are not effective cures for the natural
progression of HD due to the gene mutation and the ability of the mutant protein to
propagate into the transplanted cells, specifically neuronal linages and are thought to only
delay the onset or change the trajectory of the disease.

Ongoing challenges

An ongoing challenge to the clinical development of stem cell therapies for HD and JHD is
navigating the immune response to the transplant. Although the brain has often been
considered an ‘immune privileged’ organ, there are several reported cases suggesting a
strong immune response with the brain that can lead to the rejection of the graft and the
subsequent halting of beneficial effects [138] While it has been suggested in previous work
that MSC provide immune modulation in the area around the transplant, many of these
studies use an allotransplantation paradigm, thus reducing the extent of neuroinflammation
[139]. While this can be addressed by using species-specific cells to avoid rejection of the
xenograft, this strategy includes several caveats that impede the clinical relevancy of these
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studies. It is known that mouse stem cells express many different surface expression markers
than human cells [140], and behave differently following /n7 vitro expansion protocols [141—
143].

The challenge of the immune response following transplantation into the brain raises an
interesting dichotomy when developing stem cell therapies for clinical trials. While the ideal
candidate for preclinical studies would be the type of cell planned to be used in a theoretical
trial, the immune response following xenotransplantation may potentially mask some of the
beneficial effects. On the contrary, conducting studies using an allotransplantation paradigm
to avoid the immune response to the xenograft may lead to false discovery as cells isolated
from mice or rats may be inherently different than human cells.

A second challenge that exists with translating successful stem cell therapies for HD or any
other neurodegenerative disease is the accuracy of the animal model in recapitulating the
human disease phenotypes. HD is a unique disease in that it is caused by a single gene
mutation that can be mimicked in transgenic animals (Table 4). Transgenic mouse models
can be useful tools for the study of biochemical, morphological and functional changes
associated with the mutant A#£[16]. The R6/2, with the N-terminal portion of human htt,
containing a highly expanded glutamine repeat (145—155; [144], the yeast artificial
chromosome (YAC) with the full-length human mutant /#¢ gene carrying 128 CAG repeats
[16,25] and knock-in (KI) mice, typically with 92-140 CAG repeats generated by the
insertion in the endogenous Aff gene, mimic the disease manifestation and show several
phenotypical alterations, resembling those observed in HD patients [16]. While these mouse
models capture some of the phenotypes of HD, none of the mouse models recapitulates the
substantial striatal neuronal cell loss that is characteristic in HD patients, thereby limiting
the effectiveness of translational research [145]. Specifically in the human disease,
approximately 50% atrophy of the caudate and putamen is observed prior to the onset of
clinically classified motor dysfunction [146,147]. 3-NP crosses the blood-brain—barrier and
can be administered systematically to induce cell death in the brain, through excitatory
mechanisms closely correlated with HD [148] and create the neuropathology and behavioral
abnormalities of HD [149]. QA administration recapitulates many histopathological and
neurochemical features of HD neuropathy and also causes memory deficits, leading many
researchers to use QA models to explore striatal neurodegeneration as well as to evaluate
neuroprotective strategies against HD [48,150-152]. The 3-NP and QA models of HD are
useful tools for studying the motor dysfunction associated with clinical or late stage HD, but
may not be appropriate to study the early cognitive deficits and presymptomatic pathology
associated with HD patients. The number of transgenic rat models recapitulating key
pathological hallmarks of HD is still limited [153—-156] and these models have many of the
same limitations of the transgenic mice.

While these models can provide a great deal of information on the behavioral-, histological-
and molecular-level abnormalities associated with HD, no singular model can fully capture
the diverse phenotypes associated with the disease. Many of the transgenic models currently
available are unable to recapitulate both behavioral deficits and the associated
neuropathology. While it is possible to study the progressive behavioral deficits in several of
the transgenic mouse models, typically these models do not display neuronal loss that
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correlates to the human condition. Alternatively, the animal models that provide
reproducible neuronal cell loss and striatal atrophy are either toxic lesion models not
carrying the mutant gene or transgenic animals that have late disease onset (greater than 12
months) and display subtle motor deficits. The usefulness of rodent models is also limited by
other translational constraints. Namely, the brains of rodents differ significantly from
humans in both their small size and their neuroanatomical organization [167]. The second
major concern using a transgenic animal model to study a prodromal disease that extends
over a long period of time is that the animals have a significantly shorter lifespan [167]. Due
to these specific shortfalls, large animal models of HD have been created and are now being
studied. A transgenic minipig carrying 105 CAG repeats displays some neuropathology
associated with HD, specifically apoptotic neurons in the striatum [164]. However,
behavioral testing for minipigs has not been well established. Transgenic sheep have also
been created carrying 73 CAG repeats. These animals showed reduction of GABA A
receptors and expression of medium spiny neuron marker DARPP-32 in the striatum but
behavior deficits have not been reported and are not well established in ovine models [165].
The use of large animals raises housing issues and a limited number of labs are capable of
performing studies on sheep or minipigs, but they do present relevant large animal models
for studying distribution and pharmacokinetics of therapeutic modalities.

Transgenic nonhuman primates have also been created by microinjection of a lentivirus
carrying the human exon 1 fragment with 84 CAG repeats [166]. These nonhuman primates
have shown behavioral deficits similar to the human condition such as chorea and dystonia
and evidence of widespread mutant htt inclusions upon histological analysis. Furthermore,
nonhuman primates have established cognitive and motor tests, albeit these have not been
optimized for HD. However, the availability of these animals is at a premium and would
prove to be cost prohibitive for most studies.

While HD is advanced in terms of creating rodent and large-scale models that recapitulate
the genetic mutation known to cause the disease, the models need to be refined to better
mimic the cognitive, motor and emotional phenotypes along with the associated
neuropathology. As more therapies near clinical trials for HD, the need for animal models
that more accurately predict clinical efficacy in humans is needed. While the initial costs of
nonhuman primate studies may be prohibitive, they may prove more valuable for predicting
promising therapeutics to take forward to clinical trials.

Unmet needs

Translational research for HD could benefit by having standardized tests and endpoints,
agreed upon by the HD research community, for the different animal models on what would
constitute a promising therapeutic study. While several behavioral tests, such as the rotarod,
are generally accepted as a reliable measure of motor dysfunction in HD, other tests such as
the limb clasping response are vague in their external validity to HD. Other histological and
molecular analyses also differ between various animal models and the relative effect size
observed is often difficult to extrapolate to the human condition. The rate of disease
progression also plays a large role to the extent in which the respective animal model can be
used to test therapeutic products. For example, many studies utilize the R6/2 mouse model to
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characterize behavioral deficits and the ability of a target therapy or compound to extend the
lifespan of these animals; however it is widely accepted that this mouse recapitulates JHD
and as such, therapies aimed at preventing neuronal loss would be unsuccessful due to the
lack of neuropathology in this model. Conversely, therapies aimed at the metabolic
dysfunction or at extending the lifespan of the mice might be unsuccessful in either the
YAC128 or bacteria artificial chromosome HD mouse models as they exhibit weight gain
uncharacteristic of the human condition and have a normal lifespan when compared with
nongene carrying littermates.

As mentioned above, many genetic large animal models of HD are being developed. These
new animal models should create an avenue for large animal safety and toxicology studies.
The rodent brain lacks some of the major neuroanatomical characteristics relevant to the
human HD brain; specifically mice and rats do not have separate caudate and putamen or the
dark pigment, neuromelanin, in the substantia nigra [167]. Mice also have smooth
(lisencephalic) cortices whereas the human cortex has convoluted (gyrencephalic) anatomy
[167], which contributes to targeting difficulties if the planned therapeutic involving
intracranial transplantation. These issues indicate a need to conduct large animal safety
studies to accurately assess the delivery of the stem cells and to perform long-term
toxicology studies.

Conclusion

In conclusion, stem cell therapies, particularly engineered MSC transplantation, holds great

promise to slow the progression of HD. While many advances are being made in the field of
stem cell research, the strong clinical safety profile of MSC make them a strong candidate to
move forward with clinical trials for this devastating disease.

Future perspective

With the initiation of several clinical trials for the use of MSC in the CNS, the future of this
therapy will focus on the clinical follow-up of these patients to demonstrate the safety and
feasibility of such a trial. If these cells follow the same safety profile that they have
demonstrated preclinically, the initiation of Phase Il and 111 trials will hopefully be underway
with larger cohorts of patients to test the efficacy of these treatments. It is likely that
following the initial trials of MSC treatments that the preclinical focus will be on the
development and optimization to improve the efficacy of these cells. The ease in which MSC
can be engineered will likely shape the transplantation field in the next 5-10 years. The
ability for MSCs to act as a biological delivery system will enable researchers to test
different therapeutic targets for gene delivery using a reliable delivery platform. Several
clinical trials have initiated testing the potential safety of adult stem cells in the CNS.

Conversely, the sustained engraftment of MSCs may be a potential obstacle in development
of longterm cellular therapy. Allogeneic MSC engraftments in macaque monkeys have been
shown to have varying success as a result of immunogenicity. Special care must be taken
into account for future MSC engraftment studies in this regard. Transient engraftment of
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MSCs may prove to be a potential boon rather than a limitation insofar as a potential
safeguard from a prolonged immune response [168-170].

As adult and juvenile HD have subtle but significant differences in disease progression and
symptoms, it is important to consider these when developing a stem cell therapy. This review
has focused mainly on the concept of neuroprotection in adult HD with the use of
genetically engineered MSC, but in specific cases of juvenile HD, where the disease
progression is too rapid; there may be too widespread neuronal loss for neuroprotection to
be effective. It is likely that a polytherapy or multiple types of cell transplantation would be
needed to address the multifaceted nature of the disease.

The company Brain-Storm Cell Therapeutics, Inc., based at the Hadassah University
Medical Center in Jerusalem, reported in early 2015 that it treated the first patients with
amyotrophic lateral sclerosis with a modified stem cell (NurOwn) isolated from the bone
marrow and enhanced to resemble glial-derived neurotrophic factor astrocyte-like cells by
exposure to specific growth factors [171].

In December 2014, Athersys concluded patient enrolment of a Phase Ila clinical study for
ischemic stroke patients treated with an MSC-like stem cell therapy referred to as
MultiStem. This stem cell trial has the potential to substantially improve neurological and
functional recovery following ischemic stroke by providing neuroprotection to the damaged
host neurons, immune-modulation, releasing factors that support neuronal recovery and
regrowth and restoring immune system homeostasis [172].

Asterias Biotherapeutics, Inc. received approval by the US FDA in 2014 to begin a Phase
I/11a clinical trial to test the safety and efficacy of oligodendrocyte progenitor cells (AST-
OPC1) for patients who have suffered spinal cord injuries. This study is an extension of a
trial started by Geron in 2010, in which five patients treated showed no serious side effects
[173].
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Executive summary
Significant advances in stem cell therapies

. Stem cell therapies for diseases of the CNS are underway and hold significant
clinical benefit.

Huntington’s disease

. Stem cell therapies hold great potential for adult and juvenile Huntington’s
disease (HD).

Mesenchymal stem cells for HD

. Mesenchymal stem cells (MSCs) have a long, robust history in animal models
of HD for providing behavioral and histological benefits.

Ongoing challenges

. A major hurdle in developing stem cell therapies is addressing/managing the
immune response following transplantation.

Unmet needs

. Transgenic animal models need to be improved to help facilitate translational
research to get to clinical trials.

. MSCs have long displayed promising therapeutic effects and strong safety
profiles in preclinical studies and are now gaining US FDA approval to
clinically test for diseases and disorders of the CNS. Intrastriatal
transplantation of MSCs in rodent models of HD has led to improvements of
behavioral function and has proven capable of slowing the rate of
neurodegeneration by creating a neuroprotective environment, likely through
the release of trophic factors. These positive results have led to the proposed
clinical use of MSCs engineered to release BDNF. However, more work is
needed to optimize the safety and delivery of these cells in large animal
models that more closely resemble the human brain.
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