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Purpose: Total variation (TV) regularization is efficient in suppressing noise, but is known to suffer
from staircase artifacts. The goal of this work was to develop a regularization method using the infi-
mal convolution of the first- and the second-order derivatives to reduce or even prevent staircase arti-
facts in the reconstructed images, and to investigate if the advantage in noise suppression by this TV-
type regularization can be translated into dose reduction.
Methods: In the present work, we introduce the infimal convolution of the first- and the second-
order total variation (ICTV) as the regularization term in penalized maximum likelihood reconstruc-
tion. The preconditioned alternating projection algorithm (PAPA), previously developed by the
authors of this article, was employed to produce the reconstruction. Using Monte Carlo-simulated
data, we evaluate noise properties and lesion detectability in the reconstructed images and compare
the results with conventional total variation (TV) and clinical EM-based methods with Gaussian post
filter (GPF-EM). We also evaluate the quality of ICTV regularized images obtained for lower photon
number data, compared with clinically used photon number, to verify the feasibility of radiation-dose
reduction to patients by use of the ICTV reconstruction method.
Results: By comparison with GPF-EM reconstructed images, we have found that the ICTV-PAPA
method can achieve a lower background variability level while maintaining the same level of contrast.
Images reconstructed by the ICTV-PAPA method with 80,000 counts per view exhibit even higher
channelized Hotelling observer (CHO) signal-to-noise ratio (SNR), as compared to images recon-
structed by the GPF-EM method with 120,000 counts per view.
Conclusions: In contrast to the TV-PAPA method, the ICTV-PAPA reconstruction method avoids
substantial staircase artifacts, while producing reconstructed images with higher CHO SNR and com-
parable local spatial resolution. Simulation studies indicate that a 33% dose reduction is feasible by
switching to the ICTV-PAPA method, compared with the GPF-EM clinical standard. © 2018 Ameri-
can Association of Physicists in Medicine [https://doi.org/10.1002/mp.13226]

Key words: fixed-point proximity methods, infimal convolution, noise suppression, penalized maxi-
mum likelihood optimization total variation regularization, SPECT reconstruction, staircase artifact

1. INTRODUCTION

Tomographic reconstruction of medical images in emission
computed tomography (ECT), typically performed in a dis-
crete domain, can be characterized as an ill-posed inverse
problem.1 Solutions for such problems have been

successfully implemented by creation of approximate mathe-
matical models of ECT imaging systems (system matrices),
and by application of variational methods combined with
efficacious minimization algorithms. Of special interest is the
Bayesian approach based on statistical considerations. It
relies on the maximization of a posteriori probability (MAP)
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of a solution using the negative log likelihood of the objective
function and a priori knowledge about the solution. Using
the concept of Gibbs a priori distribution,2 the reconstruction
problem can thus be approached as a convex optimization
problem consisting of three terms.3 The first two terms, col-
lectively known as the fidelity term, evaluate and penalize the
mismatch between expected and observed data (i.e., assess
goodness-of-fit), while the last term, known as the regulariza-
tion term, penalizes low a priori probability solutions. The
balance between these two terms is determined by a regular-
ization parameter.

The regularization term needs to reflect statistical proper-
ties of a priori distribution of the unobserved radiotracer
activity f and should allow preservation of image details
including sharp edges while suppressing image noise. One of
the most popular candidates is total variation (TV), intro-
duced by Rudin, Osher, and Fatemi in 1992.4

The TV regularization was introduced to SPECT recon-
struction by Panin et al.5 and became increasingly popular
because of its capability of preserving the original objects.
However, since it considers only the first derivatives, it tends to
create artificial piecewise constant blocky regions with spuri-
ous sharp edges called staircase artifacts even if the original
image contains only smooth gradients of gray values represent-
ing ECT activity distribution. In order to reduce staircase arti-
facts while retaining the edge-preservation property of TV,
modifications of TV using l1 norm of high-order gradients have
been proposed in the context of image denoising and restora-
tion, including direct addition of a higher order derivative term
(HOTV),6 infimal convolution of the first- and second-order
TV terms (ICTV),7,8 and total generalized variation (TGV).9

We have introduced a proximity operator-based fixed-point
algorithm — the preconditioned alternating projection algo-
rithm (PAPA)10 — that rigorously treats non-differentiable
TV regularization; and we have implemented this algorithm
for SPECT reconstruction with high-order TV (HOTV) regu-
larization aiming at reduction or elimination of staircase arti-
facts.11 Even though this attempt was successful, we have
continued seeking better TV-based regularization and, accord-
ingly, have implemented infimal convolution of the first- and
second-order TV (ICTV) as a penalty term for PAPA. Here we
investigate the quality of SPECT images reconstructed using
the ICTV-PAPA method and compare it with the quality of
images reconstructed with TV-PAPA method and the conven-
tional EM algorithm with Gaussian post filter (GPF). In our
previous publications,12,13 we developed a new blockwise
explicit fixed-point proximity algorithm, instead of PAPA, to
solve a class of three-termed convex optimization problems.
The SPECT reconstruction problem with ICTV penalty term
can be categorized into this class of problems. In particular,
our previous work directly replaced the TV term in the
SPECT reconstruction model proposed in Ref. [10] with the
ICTV penalty term, and thus imposed a non-negativity con-
straint on the sum of the involved image components. More-
over, in the aspects of image quality assessment, our previous
study solely investigated the ability of the ICTV regularization
in curing the staircase artifacts. In the current work, we require

both image components to be non-negative, for the two com-
ponents represent image regions of different smoothness and
the radioactivity distribution is non-negative in the whole
image domain. This yields a more reasonable SPECT recon-
struction model than that in our previous work. In addition,
we perform simulation studies to compare all aspects of the
reconstructed images and investigate the feasibility of radia-
tion-dose reduction to patients by use of the ICTV-PAPA
method.

2. PENALIZED LIKELIHOOD RECONSTRUCTION
WITH THE PRECONDITIONED ALTERNATING
PROJECTION ALGORITHM

2.A. Penalized likelihood optimization model

In a SPECT system, the detection of gamma photons by a
detector element is a random process following Poisson dis-
tribution (assuming detector dead time can be neglected) with
its expected value determined by the radioactivity distribution
inside the patient body, the photon attenuation along the
propagation path, and the sensitivity of the detector. There-
fore, the detected counts at m detector elements, denoted by a
vector g 2 Rm, and the expected activity distribution in d vol-
ume elements (voxels) of the reconstruction space, denoted
by a vector f 2 Rd, can be modeled as:

g ¼ Poisson Af þ cð Þ; (1)

where A 2 Rm�d is the system matrix and c 2 Rm is the vec-
tor of background counts originating from the background
activity (e.g., scattered photons coming from outside the field
of view of the gamma camera or from room radioactive back-
ground). We assume that f and c are both vectors of expecta-
tion values of independent Poisson distributed random
variables and that c can be experimentally estimated in the
absence of patient in the scanner field of view.

Each entry on the nth column of matrix A represents the
expected number of photon counts detected by the corre-
sponding detector element when a point source with unit
activity is placed within voxel n, assuming fixed exposure
time. The system matrix is determined by the gamma camera
system geometry, the patient anatomy and physiology and the
involved radioisotope. Specifically, attenuation coefficients
depend on the patient’s tissue composition and the energy of
the gamma and/or x-ray photons used for imaging. The sensi-
tivity of detector elements to a certain voxel depends on the
radiological depth, which is directly correlated with patient
anatomy. Applying the notation used in our previous work,10

the penalized likelihood optimization model for SPECT
reconstruction (1) can be written as:

f� ¼ argmin
f � 0

Af ; 1h i � ln Af þ cð Þ; gh i þ kUðf Þf g: (2)

In Eq. (2), notation h�; �i denotes the inner product in the
Euclidean space, and 1 is an m-dimensional vector with all its
elements equal to 1. The Kullback-Leibler (KL) data diver-
gence A�; 1h i � lnðA � þ cÞ; gh i, denoted by F in subsequent
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sections, measures the discrepancy between the estimated
and the observed data. It is derived from the negative loga-
rithm of the Poisson probability density function. Please refer
to Ref. [10] for its detailed derivation. The penalty term (reg-
ularization term) kU is introduced to enforce desired smooth-
ness on the estimate. Here, k is a positive penalty weight, and
its practical selection is often based on qualitative evaluation
of reconstructed images.

2.B. Total variation-based penalty term

In SPECT reconstruction, we frequently use the isotropic
definition of TV regularization. For a 3D image f of size
p 9 p 9 q, we have the following discretized representation
of isotropic total variation (ITV):

UITVðf Þ :¼
Xq
k¼1

Xp
j¼1

Xp
i¼1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfi;j;k� fi�1;j;kÞ2þðfi;j;k� fi;j�1;kÞ2þðfi;j;k� fi;j;k�1Þ2
q

:

(3)

In the above definition, we apply the symmetric boundary
condition to extend the voxels, meaning that the extended
voxels are equal to their symmetric voxels along the image
boundaries. For example, we set, f0;j;k :¼ f1;j;k; f i;0;k :¼ f i;1;k,
and f i;j;0 :¼ f i;j;1. For simplified presentation of the algo-
rithm, we next introduce a first-order derivative matrix acting
on the 3D image and formulate the ITV penalty term as a
composition u � B with u being a convex non-negative func-
tion and B being a matrix. In particular, the a� a difference
matrix Da that calculates the discrete first-order derivative of
a 1D signal is defined as:

Da : ¼

0
�1 1

.. . .. .

�1 1

2
6664

3
7775: (4)

Using the Kronecker tensor product (represented by sym-
bol ⊗), we define the first-order derivative matrix acting on a
column-wise vectorized 3D image as:

B1 : ¼
Iq � Ip � Dp

Iq � Dp � Ip
Dq � Ip � Ip

2
4

3
5; (5)

where In is the n 9 n identity matrix. The ITV penalty term
(3) can then be rewritten as:

UITVðf Þ 	 u1ðB1f Þ

¼
Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB1f Þ2i þ ðB1f Þ2iþd þ ðB1f Þ2iþ2d

q
; (6)

where d = p 9 p 9 q is the number of voxels in the recon-

struction space, and u1ðzÞ :¼
Pd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
j¼0

z2iþjd

s
is the d-sum of iso-

tropic vector norms, which is a convex function defined on
R3d.

Further, the second-order partial derivative matrices can
be similarly defined as

Dxx : ¼ Iq � Ip � �DT
p

� �
Dp;

Dxy : ¼ Iq � �DT
p

� �
� Dp;

Dxz : ¼ �DT
q

� �
� Ip � Dp;

Dyx : ¼ Iq � Dp � �DT
p

� �
;

Dyy : ¼ Iq � �DT
p

� �
Dp � Ip;

Dyz : ¼ �DT
q

� �
� Dp � Ip;

Dzx : ¼ Dq � Ip � �DT
p

� �
;

Dzy : ¼ Dq � �DT
p

� �
� Ip;

Dzz : ¼ �DT
q

� �
Dq � Ip � Ip:

(7)

We then stack the above matrices together and propose the
following complete second-order derivative matrix:

B2 :¼ DT
xx D

T
xy D

T
xz D

T
yx D

T
yy D

T
yz D

T
zx D

T
zy D

T
zz

h iT
: (8)

Here DT
xx denotes the transpose of the matrix Dxx. By defining

a convex function u2 : R
9d ! R as u2ðzÞ :¼

Pd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP8
j¼0

z2iþjd

s
,

we can calculate the second-order TV penalty term as com-
position u2 � B2.

Next, we present the definition of infimal convolution. For
proper, convex functions wi : R

n ! R [ þ1f g; i ¼ 1;
2; . . .;N;N � 2, their infimal convolution is the function w
defined by

w fð Þ ¼ w1� . . . �wNð Þðf Þ :¼ inf f¼f 1þ���þf N

XN
i¼1

wi f ið Þ:

If (a) the wi; i ¼ 1; 2; . . .;N are also lower semicontinuous;
(b) one of the wi is coercive and the others are all bounded
below, then w is proper, convex and lower semicontinuous,
and the infimum in the definition of w fð Þ is attained for any
f 2 Rn. In this case, the infimum operation can be replaced
by the minimization operation. We remark that the first- and
second-order TV are both proper, convex, continuous func-
tions that are coercive and bounded below by 0. Hence, with
the above definition and properties of infimal convolution,
the ICTV function is also proper, convex and lower semicon-
tinuous, which is well-defined by

UICTV fð Þ ¼ min
f¼f1þf2

k1u1 B1f1ð Þ þ k2u2 B2f2ð Þf g: (9)

In Eq. (9), the first term has a small value if component f1
is piecewise constant, while the second term favors a piece-
wise linearly varying component f2. Thus, f1 has the appear-
ance of TV-regularized reconstructed images, with sharp
edges and piecewise constant regions, while f2 resembles
HOTV reconstructed features, with smoother radioactivity
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distribution. Accordingly, the infimal convolution-regularized
SPECT reconstruction problem amounts to a two-variable
optimization problem. Moreover, the two variables f1 and f2
represent image regions of different smoothness, and thus
should both be non-negative.

The main justification for ICTV functional as a penalty term
used in SPECT reconstruction is its adaptiveness. Instead of
enforcing a single penalty criterion, e.g., ITV penalty, on the
whole image f, only part of f that has piecewise constant
regions with sharp edges is penalized by the ITV penalty term.
Part of the image with smooth distribution is more likely to be
penalized by the second-order TV. The decomposition of
radioactivity distribution estimate f into components f1 and f2 is
determined adaptively. ICTV can preserve both smooth and
piecewise constant features of an image. On the other hand, the
ITV penalty term tends to reconstruct smooth regions as a col-
lection of piecewise constant regions. This phenomenon,
known as staircase artifacts, may limit clinical use of the ITV
regularization. In sum, the ICTV regularization is more suitable
for images consisting of regions with very different characteris-
tics, e.g., some parts of the image are very smooth while some
other parts have piecewise constant features, as compared to
the ITV regularization only. Moreover, as per discussed above,
the ICTV function is convex, so the existence of solutions of
the model (2) is guaranteed. In the present study, for the pur-
pose of simplifying the evaluation process, we fixed the ratio of
k1 to k2 to be 1, i.e., k1/k2 = 1, in the ICTV penalty term (9).
We leave the rigorous discussion of parameter variation
between k1 and k2 to future study.

2.C. Preconditioned alternating projection
algorithm

The TV regularization was first introduced to the field of
SPECT reconstruction by Panin et al.5 in the framework of
the one-step-late algorithm.14 In their approach, the non-dif-
ferentiability of TV was dealt with by using its smooth
approximation via the introduction of an ad hoc parameter.5

However, such an approximation of TV by differentiable
function may lead to a loss of image resolution and contrast,
as well as the instability in solutions.10 In contrast, our pro-
posed preconditioned alternating projection algorithm
(PAPA)10 rigorously tackles the issue of non-differentiability,
avoids any ad hoc smoothing parameters, and provides a
robust efficient iterative scheme for solving model (2) with
penalty term in the form of u � B. Here, u is a convex non-
negative function, and B is a matrix.

Preconditioned alternating projection algorithm has been
successfully applied to TV10 and HOTV11 regularization
problems. Since ICTV can be formulated as a composition
/ � B (Table I), the proposed algorithm can also be used to
efficiently solve the ICTV regularization problem. In particu-

lar, we set u :¼ f1
f2

� �
2 R2d, and define a differentiable func-

tion ~F : R2d ! R as ~FðuÞ :¼ Fðf1 þ f2Þ. Recalling the
definition of F, we have ~FðuÞ ¼ Aðf1 þ f2Þ; 1h i

� lnðAðf1 þ f2Þ þ cÞ; gh i. With the above preparation, we pro-
pose an iterative scheme for penalized likelihood SPECT
reconstruction with ICTV penalty term:

hðkÞ ¼ Pþ uðkÞ � Sr~FðuðkÞÞ � SBTTbðkÞ
� �

;

bðkþ1Þ ¼ I � proxT
�1

u

� �
bðkÞ þ BhðkÞ
� �

;

uðkþ1Þ ¼ Pþ uðkÞ � Sr~FðuðkÞÞ � SBTTbðkþ1Þ� �
:

8><
>: (10)

In scheme (10), b 2 R12d is the dual variable; S is a
2d 9 2d diagonal positive-definite preconditioning matrix
that accelerates the resultant algorithm and
T :¼ diag l1I3d; l2I9dð Þ is a 12d 9 12d diagonal matrix with
positive parameters l1; l2. Motivated by the original PAPA,
we choose the preconditioning matrix as the diagonal matrix

S kð Þ :¼ diag S kð Þ
1 ; S kð Þ

2

� �
at the kth iteration, where SðkÞ1 :¼

diag f ðkÞ1 =AT1
� �

and SðkÞ2 :¼ diag f ðkÞ2 =AT1
� �

. The recon-

structed image at each iteration is then given by

f ðkÞ :¼ f ðkÞ1 þ f ðkÞ2 .
Implementation of (10) also requires the closed forms of Pþ

and proxT
�1

u . The operator Pþ is a projection operator onto the
closed set y 2 R2d : yi � 0; i ¼ 1; 2; � � �; 2d	 


. Indeed, for
x 2 R2d, we have Pþ xð Þð Þi ¼ max xi; 0f g. Furthermore, recall-
ing the definition of convex function u in Table I, we know that
for ICTV regularization, u zð Þ ¼ k1u1 z1ð Þþ k2u2 z2ð Þ, where
z1 2 R3d and z2 2 R9d denote, respectively, the 1/4 upper and
3/4 lower elements of the vector z 2 R12d. We can see that the
function u is separable with respect to its two variables z1 and
z2. Hence, according to our previous work,12 the proximity
operator of u has the following block form:

proxT
�1

u ðzÞ ¼ proxðk1=l1Þu1
ðz1Þ

proxðk2=l2Þu2
ðz2Þ

� �
: (11)

In this case, the calculation of the proximity operator of u
amounts to the calculation of proxðk1=l1Þu1

ðz1Þ and
proxðk2=l2Þu2

ðz2Þ. Recalling Example 2.5 in Micchelli et al.,15

we can compute the elements of a vector
y1: ¼ proxðk1=l1Þu1

ðz1Þ by

y1i ¼ max Z1ik k � k1
l1

; 0

� �
Z1i

Z1ik k ; i ¼ 1; 2; � � � ; d: (12)

Here y1i ¼ y1i ; y1iþd
; y1iþ2d

 �T
and Z1i ¼ z1i ; z1iþd ; z1iþ2d

 �T
are

two 3D vectors. For the calculation of the elements
of the vector y2: ¼ proxðk2=l2Þu2

ðz2Þ, we only need to
replace y1i and Z1i in Eq. (12) by two 9D vectors

y2i ¼ y2i ; y2iþd ; . . . ; y2iþ8d

 �T
and z2i ¼ z2i ; z2iþd ; . . . ; z2iþ8d

 �T
,

respectively, as well as k1=l1 by k2=l2. The Appendix shows

TABLE I. Representation of TV and ICTV penalty terms as the composition
of a convex function φ and a matrix B.

Penalty term Convex function u Matrix B Expected image f

TV u1 B1 f

ICTV k1u1 þ k2u2
B1 0
0 B2

� �
f1
f2

� �
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detailed pseudo-code of PAPA designated for the ICTV regu-
larization problem.

The most time-consuming parts of iterative SPECT recon-
struction are the forward and backward projections (i.e., mul-
tiplying system matrices A and AT). All other calculations
involved are inexpensive in comparison. For all reconstruc-
tion methods considered in the current work, their conver-
gence rates are comparable, so the numbers of forward and
backward projections needed are similar. Hence, the compu-
tational times for all the competing methods are very similar.

We remark that the popular alternating direction method
of multipliers (ADMM) can also solve the underlying opti-
mization problem, which has a compact form of
min
f

FðAf Þ þ uðBf Þ þ wðf Þ with a Lipschitz differentiable
function F. When applying standard ADMM to this problem,
it requires an evaluation of the proximity operators of F � A
and / � B, which is complicated by the presence of matrices
A and B, especially when these matrices are high dimensional
and without simple structure.

On the other hand, PAPA is developed based on a fixed-
point characterization of the solution of the underlying con-
vex optimization problem. Because of this, PAPA provides
four interesting and useful features. First, it allows us to deal
with the functions involved in the optimization problem
either through their proximity operators or through their gra-
dients. In fact, for non-differentiable functions, the proximity
operator can be a very powerful tool, however, for smooth
functions, the gradient may be easier to implement. Second,
PAPA does not require matrix inversion, which is an advan-
tage when solving large-scale reconstruction problems where
matrix inversion can be quite expensive. Third, PAPA intro-
duces only one dual variable (12 times the image size), which
is the minimum storage necessary for solving the above non-
differentiable problem. Finally, through the preconditioning
technique, PAPA suggests the search for the solution to fol-
low the direction of the search in the classical EM algorithm
and thus speeds up the original convergence.

3. METHODS

3.A. Experimental Design

3.A.1. Phantom simulations

To quantify the performance of the reconstruction meth-
ods, we conducted numerical experiments with Monte Carlo-
simulated data. Two numerical voxelized phantoms were cre-
ated: a reference cylinder with lumpy background [warm
Gaussian blobs, Fig. 1(d)–1(f)] and targets absent; and a
cylinder with identical background with targets present: a set
of hot Gaussian blobs [Fig. 1(c)], a set of point sources
[Fig. 1(b)], and a set of piecewise constant cold spheres
[Fig. 1(a)], respectively. Both phantoms were of the size
128 9 128 9 128 voxels, with voxel size set to
2.2 9 2.2 9 2.2 mm3. The six Gaussian blobs had the same
maximum-activity-to-mean-background ratio of 3:1 with
radii (FWHM) of 4, 5, 6, 7, 8, and 9 mm.

Projection data were simulated using the SIMIND Monte
Carlo simulation package.16 Up to fourth-order scatter pho-
tons were considered in the simulation. A Siemens e.cam
gamma camera with low-energy parallel-hole (LEHR) paral-
lel-beam collimators was simulated. We set the detector ele-
ment size to 2.2 9 2.2 mm2 and the active detector size
28.2 9 28.2 cm2. The radius of rotation was set at 13 cm,
and 120 projections were simulated for each phantom. The
isotope simulated was Tc-99 m. The main energy window
and scatter energy window were set at 127–155 keV and
123–127 keV, respectively. A total of 3.9 9 109 photon his-
tories per view were simulated to create approximately
“noise-free” data.

Poisson noise was added to the simulated projection data.
Three different scenarios corresponding to 40,000, 80,000,
and 120,000 counts per view, respectively, were considered.
A hundred noise realizations at each noise level were created
for each phantom. Poisson noise was added to photopeak-
window data and scatter-window data according to count
level. Scatter correction was implemented by adding esti-
mated scatter counts in forward projection during each itera-
tion. Scatter counts were estimated using scatter-window
data.17

A wide range of penalty weights have been tested (Sec-
tion 3). Smoothing parameters were chosen by four radiolo-
gists based on lesion detectability by their judgment. The
penalty weights chosen in this fashion for the TV-PAPA and
ICTV-PAPA methods were k = 0.15, and k1 = 0.2, k2 = 0.2,
respectively. The Gaussian post-filter size was selected by
radiologists to be FWHM = 7.3 mm.

3.A.2. Patient data

To test the performance of the reconstruction methods in
real clinical applications, we reconstructed anonymized
patient data. The projection data consisted of 128 projection
views in a 128 9 100-dimensional detector matrix with
3.9 9 3.9 mm2 detector element. The imaging was per-
formed on a Siemens e.cam SPECT gamma camera with
LEHR collimators. Imaging time was set at 20 s per view. A
total number of 2.2 9 108 photons were recorded within the
selected (20%) energy window. Reconstruction space voxel
size was 3.9 9 3.9 9 3.9 mm3.

3.B. Image quality metrics

3.B.1. Contrast recovery coefficient, spatial
variability, and Bias

The contrast recovery coefficient (CRC) is defined as

CRC ¼ Crecon

Cgroundtruth
;C ¼

�L� �B
�B

; (13)

where �L and �B represent ensemble averaged values of
selected “lesion” and background region, respectively. The
ideal CRC value is 1 for both hot and cold lesions. Spatial
variability (SV) is defined as the standard deviation of
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reconstructed activity in the selected background regions
averaged over the whole ensemble reconstructions. For cold
spheres, spatial variabilities are measured in relative activity
units; for hot spheres, spatial variabilities are quantified as
the percentages of the mean value (similar to the definition of
coefficient of variation). For the phantoms investigated, the
lowest values for spatial variabilities were 0.0110 (22.7%) and
0.0087 (17.6%) for cold (hot) lesion and background, respec-
tively. The non-zero lowest values of spatial variability were
due to background lumpiness. The CRC vs. background vari-
ability curves provide insight into the tradeoff between con-
trast recovery and image noise for various penalty
parameters. Bias is defined as the difference between the
reconstructed activity and the true value. Bias describes the
reconstruction accuracy in terms of activity estimation.

3.B.2. Local noise power spectrum

The noise power spectrum is an effective method for eval-
uation of image noise properties. However, noise in SPECT
reconstructed images is nonstationary.18 Therefore, we used a
relatively small local region-of-interest (ROI) to obtain data
on local noise power spectrum (LNPS). It was estimated
using the method described in ICRU Report 54.19 We used
100 reconstructed noise realizations to obtain each LNPS.

3.B.3. Local point spread function

Due to nonstationary properties of reconstructed images,
we evaluated local point spread function (LPSF) using the
approach proposed in Ref. [20]. Point sources were intro-
duced as background perturbations at different radial dis-
tances from the phantom’s central axis [Fig. 1(b)]. We

reconstructed images for 100 noise realizations for each phan-
tom and obtained average images of the phantom with point
sources and of the reference phantom. We then obtained a
difference image by subtraction of the latter image from the
former. The local PSF vs. radial location was then evaluated
using the difference image.

3.B.4. Channelized hotelling observer

The channelized Hotelling observer (CHO) technique21–23

is a well-established method of measuring the task-based per-
formance of imaging systems. By simulating the response of
the human visual system at various spatial frequencies, CHO
has been shown to correlate well with human observer perfor-
mance in numerous studies.24–27 CHO with internal observer
noise was used to evaluate the performance of our regulariza-
tion methods. The sparse difference of Gaussian (S-DOG)
channels was implemented following Abbey et al28 and
applied to our data.

4. RESULTS AND DISCUSSION

4.A. Reconstructed Images

Figure 2 shows images reconstructed for Monte Carlo-
simulated SPECT projection data described in Section 3.A.
All three algorithms were used to reconstruct the simulated
120,000 counts/view (120 kc/view) SPECT projection data.
Additionally, the ICTV-PAPA method was used to recon-
struct the simulated 40 and 80 kc/view SPECT projection
sets. Figure 3 showcases the flexibility of the proposed meth-
ods: Fig. 3(a) shows the f1 component of the reconstruction
that has piecewise constant features; Fig. 3(b) shows the f2

FIG. 1. Transaxial cross-sections of a phantom with: (a) six cold (no activity) piecewise constant spheres with radii of 4, 5, 6, 7, 8, and 9 mm, (b) eight point
sources with maximum-activity-to-mean-background ratio of 100:1 at different radial distances from the central axis of the phantom, (c) six hot Gaussian blobs
with radii (FWHM) of 4, 5, 6, 7, 8, and 9 mm with maximum-activity-to-mean-background ratio of 3:1 and (d–f) reference phantom containing warm Gaussian
blobs only. Both phantoms were of the size 128 9 128 9 128 voxels, with voxel size set to 2.2 9 2.2 9 2.2 mm3.
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component that is smooth; Fig. 3(c) shows the combined
final image that has low noise and reduced staircase artifact,
compared with TV reconstructed images shown in Fig. 2(d).

4.B. Contrast recovery coefficient (CRC),
background variability and bias

Reconstructions of ten noise realizations for 120 kc/view
simulated SPECT data were performed. Six hot-sphere ROIs
and four largest cold spheres ROIs were used to estimate
mean values of CRC, background variability, and bias
(Fig. 4). Each point on the curves was calculated for penalty
parameters selected in the 0.01–200 range for TV-based algo-
rithms and Gaussian post-filter radii in the 1.1–7.1 mm range
for GPF-EM. Only parameters that resulted in images with
more than four visible spheres (hot spheres and cold spheres
combined) were selected.

Analysis of Fig. 4 shows that both TV-based methods out-
perform the GPF-EM method in terms of (a) preserving con-
trast recovery coefficient while reducing the background
spatial variability [Fig. 4a and 4(b)], and (b) bias-background
variability tradeoff [Fig. 4c and 4(d)]. In Fig. 4(a) and
Fig. 4(b), we notice that the TV-PAPA method produces
smaller background variability than both ICTV-PAPA and
GPF-EM methods for lower contract recovery coefficient
reconstructions. However, low background variability no
longer correlates with high-quality image reconstructions in
that parameter range, because the ground truth background
variability is actually higher than the TV-PAPA reconstructed
results, and TV-PAPA generates images with substantial
piecewise constant artifacts. Figure 4(d) shows that all recon-
struction methods produce identical bias-CRC tradeoff, due
to the fact that for cold lesions the definitions of these two
metrics are the same. When penalty parameters or post-filter

FIG. 2. Transaxial cross-sections of images for Monte Carlo-simulated SPECT data for phantom shown in Fig. 1, reconstructed by: (a) the ICTV-PAPA method
for 40 kc/view data, k1 = 0.4, k2 = 0.4; (b) the ICTV-PAPA method for 80 kc/view data, k1 = 0.3, k2 = 0.3; (c) the ICTV-PAPA method for 120 kc/view data,
k1 = 0.2, k2 = 0.2; (d) the TV-PAPA method for 120 kc/view data, k = 0.2; and (e) the GPF-MLEM method using 120 kc/view data, FWHM = 7.3 mm. For all
images, reconstructions were stopped at 100 iterations. Left column: hot spheres with Gaussian activity distribution (see text). Right column: cold spheres with
zero activity.
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sizes are reduced to zero, all methods are equivalent to the
MLEM algorithm. Therefore, all curves converge to the same
points in the plots.

Note that the images reconstructed by the ICTV-PAPA
method exhibit somewhat anomalous behavior for larger

penalty parameters. They never reach the background spatial
variability below a particular threshold (17% for hot and 21%
for cold spheres, respectively), even when a large smoothing
parameter is used and the CRC is decreasing. Further, they
never cross certain maximum levels of bias (0.027 for hot and

FIG. 3. Components of the ICTV-PAPA-reconstructed images obtained at 100 iterations for simulated SPECT data with 120 kc/view, k1 = 0.2, and k2 = 0.2: (a)
f1 component, (b) f2 component, and (c) final combined image (f = f1 + f2). Top row: cold spheres with zero activity. Bottom row: hot spheres with Gaussian
activity distribution (see Fig. 1 and text).

FIG. 4. (a) Mean CRC vs. background variability for hot spheres; (b) Mean CRC vs. background variability for cold spheres; (c) Mean CRC vs. bias for hot
spheres; (d) Mean CRC vs. bias for cold spheres; (e) Bias vs. background variability for hot spheres; (f) Bias vs. background variability for cold spheres. Each
point on the curves was calculated for penalty parameters selected in the 0.01–200 range for TV-based algorithms and Gaussian post-filter radii in the 1.1–
7.1 mm range for GPF-EM. Only the four largest spheres were considered among cold spheres. The true background spatial variability for selected ROIs is 17.6%
for the background in the cross-section with hot spheres and 22.7% for the cross-section with cold spheres due to the lumpy background. [Color figure can be
viewed at wileyonlinelibrary.com]
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0.048 for cold spheres, respectively). In contrast, CRC (bias)
of TV-PAPA and GPF-EM decreases (increases) when the
background spatial variability decreases.

4.C. Local noise power spectra

We analyzed LNPS using a small ROI located at the
isocenter for simulated SPECT data with 120 kc/view. Exam-
ples of Local noise power spectra (LNPS) are shown in
Fig. 5. We observe similar “donut” shapes of LNPS for all
investigated methods. The donut shape of NPS is typical for
reconstructed images in CT and SPECT. Essentially, the
donut shape is due to the lack of noise in low spatial fre-
quency and high spatial frequency. NPS was acquired with
zero-mean noise images, which are reconstructed images sub-
tracted by the ground truth. Therefore, the zero-frequency
component is exactly 0. The high spatial frequency compo-
nent is also small due to the fact that the reconstructed images
are relatively smooth. We observe that the corresponding
mean and maximum noise power amplitudes are an order of
magnitude higher for GPF-MLEM, compared to the TV-
based methods (Table II). Furthermore, the ICTV-PAPA
method produces lower mean noise power amplitude than
TV-PAPA. The full width at half maximum (FWHM) of
LNPS for GPF-EM is larger than that for the TV-based meth-
ods and does not depend on radial location. Examples of
average radial profiles through LNPS are shown in Fig. 6.

4.D. Channelized Hotelling observer

CHO detectability indices, shown in Figs. 7 and 8, indi-
cate that the ICTV-PAPA method is capable of providing
images with higher conspicuity of hot and cold “lesions,”
compared to the GPF-EM method. The CHO signal-to-noise
ratio (SNR) obtained for simulated “lesions” at 80 kc/view
using the ICTV-PAPA method is higher than CHO SNR
obtained for 120 kc/view data using the GPF-EM method.

4.E. Local point spread function

Plots of local PSF components vs. radial distance are
shown in Fig 9. The transaxial local spatial resolution
improves approximately monotonically with increasing radial
distance from the center of the cylindrical phantom toward
the edges. The GPF-EM-reconstructed images have lower

FIG. 5. Local noise power spectra (LNPS) obtained for the central location of small ROI: (a) the GPF-EM method; (b) the TV-PAPA method; and (c) the ICTV-
PAPA method all obtained for simulated SPECT data with 120 kc/view. Noise variance values of the selected ROI and penalty parameters are displayed at the
bottom of each image.

TABLE II. Mean and maximum amplitudes of LNPS obtained for the simu-
lated SPECT data with 120 kc/view.

Mean values
of LNPS

Maximum values
of LNPS FWHM

GPF-EM 1.90 9 10�3 0.0557 at 0.28 cm�1 0.48 cm�1

TV-PAPA 3.75 9 10�4 0.0182 at 0.27 cm�1 0.37 cm�1

ICTV-PAPA 3.07 9 10�4 0.0192 at 0.27 cm�1 0.32 cm�1

FIG. 6. Average radial profiles for local noise power spectra shown in Fig. 5.
The profiles were obtained by averaging the data every 10°. [Color figure can
be viewed at wileyonlinelibrary.com]
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FWHM near the center of the phantom, while TV-based
methods reconstructed images have lower FWHM near the
edge of the phantom. GPF-EM-reconstructed images have
more uniform (less steep slope) local FWHM throughout the
reconstruction space, compared with TV-based methods. The
tangential FWHM is lower than radial FWHM. The actual
local FWHM strongly depends on selected penalty parame-
ters.

4.F. Reconstruction of clinical data

To evaluate the performance of the reconstruction methods
in a realistic setting, a projection set for a SPECT Tc-99 m

clinical parathyroid study29 was reconstructed using all of the
methods. Analysis of Figs. 10–12 shows that images recon-
structed using the TV-PAPA and ICTV-PAPA methods with
physician determined penalty parameters both have higher
spatial resolution and lower background variability, compared
with the GPF-EM and clinical OSEM methods (HOSEM, by
Hermes30,31). In addition, the ICTV penalty term effectively
reduces staircase artifacts.

Considering the clinical workflow, penalty parameters
should be decided based on a template once a scan is sched-
uled. For given tasks, the optimal parameter should be
roughly the same. Alternatively, an unsupervised method that
utilizes the discrepancy principle has been proposed to

FIG. 7. CHO detectability indices of (a) hot; and (b) cold spheres vs. cross-sectional area of the spheres and vs. the number of counts per view in the simulated
SPECT data. The ICTV-PAPA method for 40 kc/view data, k1 = 0.4, k2 = 0.4; the ICTV-PAPA method for 80 kc/view data, k1 = 0.3, k2 = 0.3; the ICTV-
PAPA method for 120 kc/view data, k1 = 0.2, k2 = 0.2; the TV-PAPA method for 120 kc/view data, k = 0.2; and the GPF-MLEM method using 120 kc/view
data, FWHM = 7.3 mm. The reconstructions were stopped at 100 iterations. The solid lines connecting the data points are provided as a visual guide only. [Color
figure can be viewed at wileyonlinelibrary.com]

FIG. 8. CHO detectability indices estimated (solid circles) for the fourth largest sphere (1.4 cm2 cross-sectional area) for images reconstructed with three photon
levels (40, 80, and 120 kc/view) using the ICTV-PAPA method and the GPF-EM method (solid squares) at 120 kc/view level. The solid lines connecting the data
points are provided as a visual guide. [Color figure can be viewed at wileyonlinelibrary.com]
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customize the penalty parameters to each scan.32 However, if
computational time is not a concern (e.g., if GPUs are in use
for image reconstruction tasks), the better approach may be to
reconstruct multiple images with multiple penalty weights
and provide radiologists several reconstructed images instead
of one image.

5. CONCLUSIONS

In our pursuit for superior regularization for ECT image
reconstruction, we implemented infimal convolution of the first-
and second-order gradient TV (ICTV) regularization, using our
PAPA algorithm. We investigated the quality of SPECT images

FIG. 9. (a) Radial full width at half maximum (FWHM) and (b) tangential FWHM of transaxial local point spread function (LPSF) as a function of radial posi-
tions of point sources. The SPECT data were simulated for 120 kc/view. Reconstructions were performed with the following penalty parameters: the ICTV-PAPA
method for 40 kc/view data, k1 = 0.4, k2 = 0.4; the ICTV-PAPA method for 80 kc/view data, k1 = 0.3, k2 = 0.3; the ICTV-PAPA method for 120 kc/view data,
k1 = 0.2, k2 = 0.2; the TV-PAPA method for 120 kc/view data, k = 0.2; and the GPF-EM method using 120 kc/view data, FWHM = 7.3 mm. Reconstructions
were stopped at 100 iterations. The solid lines are linear regression fits. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. Transaxial views of reconstructed images obtained for clinical Tc-99 m Sestamibi SPECT parathyroid, late-phase study: the clinical Hermes HOSEM
method (a); the GPF-EM method (b); the TV (c, d); and ICTV-PAPA (e, f) methods, each with two sets of penalty parameters. [Color figure can be viewed at
wileyonlinelibrary.com]
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reconstructed using the ICTV-PAPA method and compared it
with the quality of images reconstructed with the TV-PAPA
method and the conventional EM algorithm with GPF.

Numerical experiments and initial clinical data reconstruc-
tions and analyses indicate that our proposed ICTV-PAPA
reconstruction method outperforms the TV-PAPA and GPF-
EM methods. The local noise power spectra (LNPS) compar-
ison shows that the ICTV-PAPA method efficiently sup-
presses the noise while preserving edges without creating
staircase artifacts. The maximum and mean amplitudes of
LNPS for the TV-based methods for 120 kc/view SPECT
data are 5–8 times lower than that for the GPF-EM method.
The ICTV-PAPA method permits a better tradeoff of contrast
recovery vs. background variability. Thus, with properly
selected parameters, the ICTV-PAPA-reconstructed images
can simultaneously achieve higher contrast and lower noise
(without creating staircase artifacts), compared with the GPF-
EM and clinical HOSEM methods. We also found that the
TV-based methods exhibit higher CHO SNR for hot and cold
simulated “lesions” of various sizes, compared with the GPF-

EM method. These findings are also confirmed by quantita-
tive analysis of the reconstructed clinical images.

Imaging performance of simulated lower count (higher
noise) SPECT data reconstruction using the ICTV-PAPA
method was also investigated. Even with only 67% of the num-
ber of photons used in the GPF-EM reconstruction, the hot and
cold “lesions” CHO SNR in ICTV-PAPA-reconstructed images
still surpassed GPF-EM CHO SNR, indicating that a 33% radi-
ation-dose reduction per patient might be possible.

We conclude that the ICTV-PAPA method exhibits better
noise suppression, lower local FWHM, higher contrast recovery
and higher lesion detectability than that of the GPF-EM and
clinical HOSEM methods. Consequently, it could allow reduc-
tion of the radiation dose to patients in clinical SPECT studies.
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APPENDIX
PSEUDO-CODE FOR SOLVING THE ICTV-PAPA
REGULARIZATION PROBLEMS

The ICTV penalty term can be formularized as:

UðzÞ :¼ min k1u1 B1f1ð Þ þ k2u2 B2f2ð Þð Þ (A1)

where B1 and B2 denote first-order TV, and second-order dis-
crete derivative, respectively. Following the notation used in Sec-
tion 2.B, the objective function of the ICTV-PAPA method is:

(a) (b) (c)

(d) (e) (f)

FIG. 11. Coronal views of reconstructed images obtained for clinical Tc-99 m Sestamibi SPECT parathyroid late-phase study: the clinical Hermes HOSEM
method (a); the GPF-EM method (b); the TV (c, d); and ICTV-PAPA (e, f) methods, each with two sets of penalty parameters. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 12. One-channel-wide line profiles through reconstructed transaxial
images of clinical Tc-99 m Sestamibi parathyroid scan image shown in
Fig. 10. The location of the profile is shown in the inset. Penalty weights
were set as: the TV-PAPA method: k = 2, the ICTV-PAPA method: k1 = 2,
k2 = 2. [Color figure can be viewed at wileyonlinelibrary.com]
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f̂ ¼ argminf � 0 hAf ; 1i � hln Af þ cð Þ; gif
þmin k1u1 B1f 1ð Þ þ k2u2 B2f 2ð Þð Þg: (A2)

Assuming both f1 and f2 are non-negative components of
f, (17) becomes:

f̂1; f̂2
 � ¼ argminf 1 � 0;f 2 � 0 hA f 1 þ f 2ð Þ; 1if

� hln A f 1 þ f 2ð Þ þ cð Þ; gi
þ k1u1 B1f 1ð Þ þ k2u2 B2f 2ð Þg:

(A3)

With element-wise division and multiplication respec-
tively represented by “./” and “.*”, the pseudo-code for
ICTV-PAPA is as follows:

1. Set maximum iteration number N and regularization hyperparameter k;

2. Allocate memory for six vectors: f1
(0), f2

(0) h1
(0), h2

(0), b1
(0), and b2

(0).
Initialize f (0) = 1, b1

(0) = 0, b2
(0) = 0 (Note that b1 has 3 times the size of f,

and b2 has 9 times the size of f), and set c = 0.000001, K = 10;

3. Backproject 1 to reconstruction space, get AT1;

4. for n = 0 to N�1, do
EM step:

5. calculate preconditioner S1 = f1
(n)./(AT1), S2 = f2

(n)./(AT1);
6. backproject g./(Af (n) + c) and get updateU = AT[g./(A(f1

(n) + f2
(n)) + c)];

7. f1
(n+1/2) = S1.*U, f2

(n+1/2) = S2.*U;
TV step:

8. update reconstruction parameters: b1 = 16* k1*max(S1), b2 = 64*
k2*max(S2)

9. for k = 1 toK, do
10. h1 = f1

(n+1/2) – k1/b1||B
Tb1||1.* S1;

h2 = f2
(n+1/2) – k2/b2||B

Tb1||1.* S2;

11. update b1, b2: b1 = b1 + Bh, b2 = b2� BTBh;
b1 = b1 –max{b1 – k1b1, 0}*b1/||b1||,
b2 = b2 –max{b2 – k2b2, 0}*b2/||b2||;

12. f1
(n+1) = h1 – k1/b1||B

Tb1||1.* S1,
f2
(n+1) = h2 – k2/b2||B

TBb2||1.* S2;

13. Return image estimate f(N) = f1
(N) + f2

(N).

*The first two authors contributed equally to this work.
a)Author to whom correspondence should be addressed. Electronic mail:
reesiloveu@163.com.
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