
Secure Sharing of mHealth Data Streams through
Cryptographically-Enforced Access Control

Emily Greene, Patrick Proctor, David Kotz‡

6211 Sudikoff Lab, Dartmouth College, Hanover NH 03755-3510

Emily Greene: Emily.C.Greene.17@Dartmouth.edu; Patrick Proctor: Patrick.O.Proctor@Dartmouth.edu

Abstract

Owners of mobile-health apps and devices often want to share their mHealth data with others,

such as physicians, therapists, coaches, and caregivers. For privacy reasons, however, they

typically want to share a limited subset of their information with each recipient according to their

preferences. In this paper, we introduce ShareHealth, a scalable, usable, and practical system that

allows mHealth-data owners to specify access-control policies and to cryptographically enforce

those policies so that only parties with the proper corresponding permissions are able to decrypt

data. The design and prototype implementation of this system make three contributions: (1) they

apply cryptographically-enforced access-control measures to stream-based (specifically mHealth)

data, (2) they recognize the temporal nature of mHealth data streams and support revocation of

access to part or all of a data stream, and (3) they depart from the vendor- and device-specific silos

of mHealth data by implementing a secure end-to-end system that can be applied to data collected

from a variety of mHealth apps and devices.

Keywords

mobile health; mHealth; security; privacy; encryption; electronic health records

1 Introduction

Mobile health (mHealth) apps and devices like smartwatches, smart scales, and insulin

pumps generate a large amount of data. This data may be helpful for patient care, enabling

healthcare providers to monitor patients more effectively and tailor their treatments

accordingly. Unlike Electronic Medical Records (EMRs), where data collection only occurs

during in-person appointments, mHealth devices collect data continuously and throughout

normal life activities, giving providers a more complete picture of the patient’s health.

Because of the continuous nature of this data, securing mHealth data is more complex than

securing EMR data. Researchers can also use mHealth technologies to measure subjects’

‡Corresponding author: David.F.Kotz@Dartmouth.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflicts of interest: none

HHS Public Access
Author manuscript
Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

Published in final edited form as:
Smart Health (Amst). 2019 April ; 12: 49–65. doi:10.1016/j.smhl.2018.01.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

physiology, behavior, and activities in their regular free-living conditions, deepening

researchers’ understanding of how behavior and environment affect health or exploring the

efficacy of experimental health-related interventions. By combining data from multiple

devices into one easily accessible repository with strong controls in the hands of the health

subject, we can facilitate these data-sharing use cases and more.

Unfortunately, many systems deployed today incorporate security as an afterthought. With

security breaches and data leaks becoming more frequent, it is imperative that sensitive

medical data is securely stored and shared. Medical data systems are especially attractive to

cyber-criminals and those with criminal intent: a wealth of sensitive personal health

information can be exfiltrated to sell on the underground market or used to extort ransoms;

Guo et al. (2016). While many security solutions currently exist to encrypt and protect data,

none of these solutions deal with temporal granularity.

Studies have shown that some patients express the desire to restrict access to health data

depending on the time it was collected; Caine et al. (2015). Therefore, temporal access

control is an important option for these patients, including control of their mHealth data. An

mHealth-device owner may not want to share the entirety of her mHealth data history with

each of her providers, as some historical data may be sensitive and not applicable to current

conditions. Patients want granular privacy control over which health information their

doctors can access; Caine & Hanania (2013). There are data that are applicable and

necessary to be viewed by her cardiologist, but the data owner may not want her physical

therapist to see the same information. mHealth data owners need to not only protect their

data from outsiders, but also share only pertinent data with each of their specified data

consumers.

Therefore, device owners need a solution that is both secure and flexible. Owner-driven
access control allows owners to optionally share subsets of their mHealth-device data with

others, and these access-control policies may change over time; Benaloh et al. (2009);

Reeder et al. (2007). Patients may change providers and revoke access to the data, or they

may reevaluate which data they would like to share with which providers. This paper

describes a system that delivers a high level of data security and flexibility to the data owner

in determining who has access to which data from her apps and devices. Our system,

ShareHealth, will help healthcare professionals treat patients without sacrificing the security

of patient data.

With ShareHealth, we focus solely on individuals’ mHealth data. We envision that unlike

other forms of health data, such as the data contained in an EMR, each mHealth app or

device produces data on a continuous basis, resulting in an ongoing data stream of a specific

type of data. These data streams vary. Some streams produce new data points frequently

(e.g., step counts, measured from 100Hz accelerometer data) and others rarely (e.g., weight,

typically measured a few times a week). Some data are small (e.g., a single blood-pressure

measurement) and some are large (e.g., photos of changes in wound healing). Therefore, our

solution must support fine-grained access control regardless of the size, type, or frequency of

data. We assume that data flows from one or more mHealth apps or devices, through

ShareApp (the data owner’s smartphone app for ShareHealth), and into ShareBase (a cloud

Greene et al. Page 2

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

storage system). There it is stored, in encrypted form, until it is accessed by data consumers

according to policies set by the data owner.

One must consider two dimensions when controlling access to mHealth data streams: data

type and data time. That is, one must determine whether access has been granted to a given

data type (such as heart rate), and whether access has been granted for the time the data was

collected. ShareHealth cryptographically enforces access control by both type and time

period, using a combination of two cryptographic approaches: encryption to control access

by data attribute and hashing to control access by data time. ShareHealth enables both

temporal and attribute-based access control functionality, with fine-grained revocation

mechanisms, using a novel combination of two well-tested cryptographic primitives:

attribute-based encryption and hash chaining.

Our contributions

In this paper, we develop a system that seeks to accomplish three goals. First, we apply

cryptographically-enforced access-control measures to mHealth data. Much of the health-

data literature related to access control has concentrated on EMRs, where fine-grain access

control consists of restrictions on finite resources within individual patient records (e.g.,

images and appointment notes). Most mHealth data, on the other hand, are collected outside

the clinical context and are structured as ongoing data streams, collected and uploaded over

time. Therefore, access control of this data must address the temporal nature of data streams,

especially at the rate that mHealth data is produced.

Our second contribution is temporal access control, a means to temporally segment each

data stream using a pseudo-random indexing scheme. This feature enables owners to share

the entire data stream, or only time-specific subsets of the stream (e.g., data collected prior

to a specific date). The problem of controlling access to specific time periods of stream data

is an open question not addressed by previous literature, which we solve in this paper.

Finally, we seek to depart from the vendor- and device-specific silos of mHealth data by

implementing a scalable, usable, and secure end-to-end system that can be applied to data

collected from a variety of mHealth apps and devices. In the current mHealth space, each

app or device has its own vertical ecosystem, which can be inefficient for people with

multiple devices, and which misses opportunities for aggregation of data across devices to

provide a more-complete picture of an individual’s health. We are able to break down the

barriers between silos by having a system that compiles data from multiple devices on an

individual’s smartphone before sharing the data with others through a common cloud

database.

Organization

We begin with the foundation, giving necessary background information and pertinent

definitions in Section 2, and the security model in Section 3. We then present our solution,

focusing on access control and revocation support, in Section 4. We then detail our

implementation in Section 5, followed by an evaluation of the system in Section 6. We

explore several use cases in Section 7 and discuss related work in Section 8. We discuss

Greene et al. Page 3

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

limitations to our system and interesting extensions in Section 9, and draw final conclusions

in Section 10.

2 Background

Cryptography has long been used to protect sensitive data from adversaries. In ShareHealth,

we seek to not only use cryptography as a means to safeguard data confidentiality, but also

as a means to provide access control. There has been significant work on the use of

cryptography as an access-control mechanism, enforcing access to content by encrypting

that content and sharing keys only with permitted users; (Gudes, 1980, for example). Instead

of developing a new cryptography scheme, we leverage existing implementations of robust

cryptographic schemes and focus on system design and security.

For clarity we define the key terms we use in this paper. There are two types of human actors

that use our system: data owners and data consumers. A data owner is the person who

produces the mHealth data measured by the app or device. Even if the collection device

itself is owned by a third party, such as a doctor or employer, our focus here is on the data.

In some related literature, this person is referred to as a patient, but we envision a broader

range of use cases such as a subject in a research study sharing the data with the researcher,

a professional athlete with a trainer, or an elderly parent with an adult child.

A data consumer is an individual or entity with whom the data owner would like to share

information (e.g., doctor, physical therapist, coach, family, researcher, laboratory, insurance

company). We assume that the owner knows the consumer personally (and in the case that

the consumer is an organization, a personal knowledge of a representative of the

organization), and that there is an opportunity for secure key exchange between data owner

and data consumer (Section 4.3).

These two parties intend to share mHealth data. We consider a data point as one individual

measurement (e.g., one weight reading, one heart-rate measurement computed over a 15-

second interval, or the step-count for a 5-minute interval), and a data stream is a sequence of

data points measured on a periodic basis and uploaded as they occur or in batches.

Each data stream has one source – an mHealth app or mHealth device; thus, a source that

produces multiple types of data (e.g., heart rate and step count) would produce multiple data

streams. Each of these streams has only one data type, which is used for the most granular

level of access control within the system (e.g., heart-rate data collected by two different

devices or two different applications on the same device are all controlled under the “heart-

rate” data type).

For data owners to share data with various consumers, that data must be stored in a database,

an external, untrusted (honest but curious) server that hosts data from a variety of owners.

We refer to each entry in the database as a record. We assume each record corresponds to

one or more data points in the stream, and is encrypted separately.1 Records are immutable –

once produced, their contents are never changed or deleted. To retrieve a record from the

database, a data consumer must provide the index, or unique code, corresponding to that

record.

Greene et al. Page 4

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our goal is to give data owners control over access: to grant permission to a data consumer

to view the plaintext of specified record(s) (read-only). An access-control policy is a set of

permissions authored by the data owner that specifies which records each data consumer is

able to read, based on type and temporal restrictions. (We leverage attribute-based

encryption (ABE) as part of our approach; see the ABE background figure for more

information.) Revocation of access occurs when there is an access-policy change that

narrows or restricts a consumer’s access to a specific data stream (i.e., there exists at least

one record in the data stream (past or future) to which the consumer used to be allowed

access and now is denied access). Therefore, revocation can be as narrow as a change in the

access to one record, and can be as broad as the revocation to the entire data category. Our

system design and underlying implementation thus support tremendous flexibility and

granularity – recognizing that the design of an interface suitable for human data owners to

author these policies remains an important HCI challenge worthy of future work; Reeder et

al. (2007, 2008).

3 Security model

As a foundation for the presentation of our approach, and for later analysis of its security

properties, we next present our adversary model, threat model, and trust model. Our

system’s security and privacy goals are to maintain the confidentiality, integrity, and

authenticity of the data produced and consumed by the players in our system. This must be

achieved in the face of threats from adversaries with capabilities described below, building

on the trust assumptions described below.

3.1 Adversary model

We consider an adversary who is one of the following: (1) a curious family member, friend,

or colleague of either the data owner or a data consumer; (2) a malicious individual with

physical access to the data owner’s smartphone or the data consumer’s device; (3) an

attacker with access to the network communications among the parties; (4) an authorized

data consumer who desires access to more data than she is permitted; or (5) the honest-but-

curious database itself. When considering the adversary, we assume that the adversary has a

variety of capabilities that she can employ to compromise our system. We assume the

adversary can intercept all network traffic from the data owner’s smartphone to the cloud

database (for data upload), from the cloud database to the data consumer’s device (for data

download), and between the data owner’s smartphone and the data consumer’s device (for

key/seed sharing). Adversaries can capture, insert, modify, and remove messages between

the three entities.

If the adversary is a set of data consumers, we assume that those adversaries would attempt

to collude to access a wider set of data than they collectively have permission to access. For

example, if Alice and Bob collude, and Alice’s key policy allows her to view data tagged

with the heart-rate attribute and Bob’s key has the exercise attribute in his key policy,

1In the case of particularly small or frequent data points, one record may hold multiple data points, grouped into temporally
contiguous batches for efficiency. In the case of particularly large data points, they may either be fragmented into multiple records, or
stored with a layer of indirection (the record would be equivalent to a pointer to a larger encrypted blob), for efficiency.

Greene et al. Page 5

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

they may try to combine their keys in some way to decrypt a record with both the heart-

rate and exercise attributes. Additionally, if Alice has the temporal permissions to access

blood-pressure data from June and Bob has access to August blood-pressure data, they

might collude to discover July data.

Although the adversary may intercept all network messages between the system

components, we leave traffic-analysis attacks for future work. We also assume that the

adversary cannot compromise the data owner’s smartphone or the secure key and seed

storage location in the consumer’s device. Finally, we assume that all of the cryptographic

primitives (SHA-256, Pairing-Based Cryptography, Decisional BDH) are computationally

hard and the adversary cannot break those cryptosystems.

3.2 Threat model

Given the capabilities of the adversary, we focus on the following threats.

Threat to privacy—The adversary wants to learn sensitive information about the owner,

such as medical conditions (e.g., disease or treatment type), mHealth usage (e.g., types or

number of apps/devices), or other personal information deemed private (e.g., location or

activity). For this threat, the adversary tries to eavesdrop on the system, including all

communications between data owners, data consumers, and the database, to discover

sensitive information from the messages. The adversary may also try to compromise the

database to determine this sensitive information. Indeed, the database itself may be

adversarial regarding this threat.

Threat to data integrity and authenticity—The adversary wants to cause the database

or the data consumer to accept incorrect, invalid, or duplicate data by either forging an entry

that looks legitimate to the database, tampering with a legitimate entry from the smartphone,

or replaying a previously submitted entry. The adversary also wants to insert himself into the

process of sharing key material between the data owner and the data consumer, and either

cause the data consumer to accept the wrong material or cause the data owner to believe that

she is sharing these secrets with the data consumer but is really sharing them with the

adversary.

3.3 Trust model

We make certain trust assumptions about each system component.

Data owner’s smartphone—We assume that all players in the system can trust the

integrity of the smart-phone, its operating system, and our ShareApp smartphone

application. We assume the smartphone application is preconfigured with the public key of

the cloud database and they are able to use standard protocols (such as TLS) to establish a

secure channel. We further assume that the smartphone may connect to the database server

via an anonymizing network such as Tor, if IP-level anonymity is desired. Finally, we

assume the smartphone can effectively authenticate its user before use.

Greene et al. Page 6

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cloud database—We assume that the data server is “honest but curious”, meaning that

the server may seek to obtain plaintext mHealth data, or link data to the data owner or data

consumer, but will honestly execute its role as a data-storage server: to store a given data

record under a given index, and to return that record when later asked for the record

corresponding to that index. ShareBase (our cloud database) can be trusted to never delete

data, nor mis-index data, nor overwrite data at a given index if presented with an incoming

message providing new data for an existing index. Additionally, if ShareBase is

compromised, we trust that an adversary will be unable to dump all data from the database

in order to separate the records from their corresponding indices. The server need not

otherwise be trusted with the integrity or confidentiality of the data.

Data consumer’s computer—We assume that all data owners and data consumers can

trust the integrity of the computer used by the data consumer, its operating system, and our

ShareView consumer application. Specifically, we trust its filesystem to secure the

consumer’s keys and seeds, and to protect ShareView from inspection or tampering by other

applications. We assume that ShareApp and ShareView have previously completed a secure

key exchange, likely during an in-person meeting and leveraging one of many common

mechanisms for key exchange (Section 4.3). We assume ShareView can effectively

authenticate its user leveraging one of many common authentication mechanisms. We

assume ShareView is preconfigured with the public key of ShareBase and that they are able

to use standard protocols (such as TLS) to establish a secure channel. We further assume that

ShareView may connect to the database server via an anonymizing network such as Tor, if

IP-level anonymity is desired.

4 Our approach

ShareHealth consists of three components: ShareApp (the data owner’s smartphone app),

ShareBase (the cloud database), and ShareView (the data consumer’s desktop application).

All the owner’s data is encrypted on the owner’s smartphone and stored in ShareBase on an

untrusted cloud server.2

ShareHealth allows owners to specify access-control policies and cryptographically enforce

those policies, so that only parties with the corresponding attributes are able to decrypt

desired data. In this paper we focus on the underlying mechanisms to enable these policies,

deferring the equally challenging human-interface problem for future work; see Section 9.

To enforce access control with an untrusted (honest but curious) data server, we use

complementary methods: (1) content-based access control, enforced through the encryption

of the data, and (2) temporal access control, enforced through the database’s indexing

scheme. While we use well-established cryptography methods, it is the combination of these

2One might envision an alternative in which the data is encrypted at the mHealth device and merely passes through the smartphone as
ciphertext; we anticipate, however, that many people will want to view or otherwise make use of mHealth data within smartphone
apps, and thus the data should be available to the phone. Furthermore, the key-management challenges multiply if every mHealth
device must be provisioned with keys. For ShareHealth, therefore, we chose to focus the encryption role on the owner’s trusted
smartphone.

Greene et al. Page 7

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

two methods that makes our system unique: it allows for more granular access control based

not only on the attributes of the data, but also on the time that data was produced.

Encrypting the records serves three purposes: (1) to provide data confidentiality, both in

transit and while at rest; (2) to protect information about the contents, source, and

associations of the data from exposure to the untrusted database; and (3) to enforce the

access-control policies set by the data owner. Issues with traditional encryption schemes

arise when the data owner wants to specify more granularly who gets access to what pieces

of information. For example, if an athlete wants to share only a subset of her heart-rate data

with her coach (e.g., only those readings taken when she was exercising), she would have to

either manually sort through the heart-rate data and encrypt exercise readings separately or

just give her coach the decryption key for all heart-rate data and trust that her coach will

only look at the desired data.

In ShareHealth, we elected to use Attribute-Based Encryption (see Figure 1 for background

on ABE), and specifically Key-Policy Attribute-Based Encryption (KP-ABE) as opposed to

Ciphertext-Policy ABE (CP-ABE), for several reasons: (1) because the attributes are

content-based, different data consumers with similar roles could still have different access,

(2) we assume ShareHealth will store a large quantity of data, but share it with relatively few

data consumers (a data owner will probably have a short explicit list of people with whom he

would like to share his data), so it would be more efficient to have one policy per consumer,

instead of one policy per record, (3) KP-ABE supports temporary and limited access

requirements more efficiently than CP-ABE, and is generally more computationally efficient

than CP-ABE in key generation, encryption, and decryption (Zheng (2011)), and (4) KP-

ABE is more flexible than CP-ABE with regards to revocation and changes in access-control

policy, so re-encryption costs will be minimized; Akinyele et al. (2010).

Background on Attribute-Based Encryption (ABE)

To address the “all or nothing” problem of traditional encryption systems, attribute-based

encryption (ABE) was introduced by Sahai & Waters (2005). ABE allows ciphertexts and

keys to be created with specific attributes and policies attached. In an ABE system, any

string or numeric value can serve as an attribute. Attributes serve as tags or descriptors of the

underlying data. Policies are boolean formulas over these attributes that specify access to

data tagged with these attributes. Policies can be expressed with AND, OR, threshold gates

(e.g., m-of-n), and relational operators (less-than, greater-than, etc.); Akinyele et al. (2010).

There are two different types of ABE that depend on the access control desired: Key-Policy

ABE provides content-based access control, and Ciphertext-Policy ABE provides role-based

access control. In ShareHealth, we use Key-Policy ABE.

In Key-Policy ABE (KP-ABE), ciphertexts are labeled with sets of descriptive attributes, and

a user’s key can only decrypt a ciphertext if the key’s policy matches the attributes of the

ciphertext; Goyal et al. (2006). KP-ABE provides content-based access control, as the

attributes are tied to the content (the ciphertext) and the user’s private key is associated with

a policy over these attributes; Zeutro LLC (2016). For example, attributes on data obtained

while working out could include: type:heart-rate, location:gym,

intensity:high, and the data owner’s coach could be issued the following key:

Greene et al. Page 8

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(type:heart-rate

 AND (intensity:high

 OR (intensity:medium AND location:gym)))

With this key, the coach can only decrypt heart-rate data collected during exercise (any high-

intensity activity or medium-intensity activity that happened at the gym). (The specifics of

the syntax vary by implementation, but have similar capabilities.)

On the other hand, in Ciphertext-Policy ABE (CP-ABE), the ciphertext (for each individual

record) has an attached policy that dictates the attributes that a user must possess to decrypt

that document. CP-ABE provides role-based access control, as the policies reference a list of

attributes that describe the user (and his role) and are embedded into the user’s secret key. In

the example above, the attribute on the coach’s key would be role:coach and all

applicable heart-rate data would need to have an associated policy allowing the coach’s key

to decrypt the ciphertext.

Both CP-ABE and KP-ABE can be used for access control on data. CP-ABE is a more

favorable option when the number of data consumers is high, and the access-control policy

will rarely change. In our use case, we elected KP-ABE because the number of users that

will access the data is low in comparison to the quantity of data. As such, it is more efficient

to have one policy per consumer than it is to have one policy per data record.

Key-Policy Attribute-Based Encryption (KP-ABE) allows ShareHealth to support the

desired granularity. Because policy is tied to a data consumer’s key, each consumer receives

one key with the associated formula specifying which ciphertexts he will be able to decrypt.

It is easy for a data owner to add a new data consumer; the owner’s SmartApp simply

generates a new ABE key for that consumer, and shares it with that consumer as described in

Section 4.3. A consumer’s device uses this one key to decrypt all permitted records. Multiple

consumers can decrypt the same record with different keys as long as each key satisfies the

attributes tied to the record.

While we chose KP-ABE as the existing cryptographic scheme to leverage to provide

granular access control, one could use any cryptographic scheme with the following

properties: flexible policies, the ability for multiple consumers to have overlapping access

without encrypting multiple copies of the data, ease of re-encryption and revocation, and

computationally efficient. KP-ABE is only one example of a cryptographic scheme with

these desired properties, and this paper focuses not on improving existing cryptography, but

on the novel application of a content-based access-control system to mHealth data.

When considering a content-based access-control policy, we can conceptualize the policy in

two parts: the attribute-tagging scheme and the key-policy generation. The attribute-tagging

scheme encompasses the definition of the attribute universe (the selection of which attributes

will be used to describe the data) and the tagging of each record with attributes. The key-

policy generation encompasses the construction of ABE private keys for each consumer,

defined as a boolean expression applied to attributes.

Greene et al. Page 9

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Each record is tagged with pertinent attributes, defined by an attribute-tagging scheme and

dependent on the data in the record. ShareHealth can support a variety of attribute

assignment schemes, such as tagging each data type with a different attribute (e.g., data

collected by a heart-rate application has heart-rate as an attribute), including additional

attributes to differentiate records within a stream (e.g., heart-rate data collected while

exercising would have heart-rate and exercise as attributes), or tagging similar data

with the same encompassing attribute (e.g., heart-rate, blood pressure, and ECG readings all

have the cardiology attribute). Regardless of attribute-tagging scheme, data consumers

can only decrypt a record if their key policy matches the record’s attributes. (Specifically,

the key policy must match a sufficient subset (k of n) of the record’s attributes, which are

expressed as a boolean predicate; readers are referred to Figure 1 for more about ABE.)

While data encryption using KP-ABE protects the confidentiality of the data and enforces

access control, a message authentication code (MAC) ensures data integrity. By applying a

keyed MAC to the plaintext and then encrypting the concatenation of the plaintext and MAC

with ABE, all parties are able to verify the message after decryption to ensure there have not

been modifications to the record.3 Although each data consumer has a different ABE

decryption key but can decrypt the same ciphertext record, only one MAC key is necessary

for each data owner; it is created by ShareApp and shared with all ShareViews.

4.1 Hash-chain indexing scheme

ShareHealth also enforces access control through a specialized database indexing scheme

that allows for temporal access control. This temporal access control is what makes

ShareHealth the only existing solution that can adequately support access control on data

streams. We use hashes as indices into the database to granularly express the beginning and

end times of a specific subsequence of the data stream that the data owner wishes to share.

The data owner can share overlapping temporal segments with different data consumers, can

share multiple sequences of time ranges to which a consumer has access, and can change

their access retroactively.

To access a record in the database, the data consumer must query the database using a

specific index that corresponds with that record. ShareBase uses pseudo-random hashes,

produced by randomly-seeded hash-chains as the sequence of indices for logging sequential

records, and each data type has its own hash chain. These hash chains are built from a

cryptographically secure one-way hash function like SHA-256. With large hash values, the

resulting index space is very sparse and indices into the database are effectively secret and

collision-free. Furthermore, each owner salts each iteration of the hash function with a

unique key, so an adversary with access to one hash value (e.g., the untrusted database)

3We chose MAC-then-Encrypt as recommended in Ferguson et al. (2010), because in the alternative Encrypt-then-MAC approach, the
MAC input and MAC value are both visible to an attacker. In the MAC-then-Encrypt configuration, the attacker only gets the
ciphertext and the encrypted MAC value; the MAC input (i.e., the plaintext) and actual MAC value are hidden. This makes it much
harder to attack the MAC than in the encrypt-first situation. Overall, the decision of whether to MAC first or encrypt first depends on
whether authentication or confidentiality is more valued and whether to expose the MAC function or encryption function to the
attacker. We value authentication in this system and prefer to expose the encryption function to direct attacks and protect the MAC as
much as possible; Ferguson et al. (2010).

Greene et al. Page 10

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

cannot generate the next hash value without knowledge of this key. All consumers with

some temporal access to a data stream also have access to its unique hash key.

A consumer can only gain access to a specific temporal segment of the data stream if her

ShareView received the key from that owner and the seed for that time period. Once a data

consumer’s device stores one hash in the chain, it can easily generate future hashes using the

keyed hash function until a new random seed is generated. New seeds are generated by the

owner’s ShareApp regularly, over a system-defined seed refresh interval (SRI), in order to

preserve freshness and allow for narrow temporal restrictions. For each data owner, every

data type has a unique set of seeds.

For example, if seeds refresh weekly, the heart-rate data type has one seed per week,

initialized on a Sunday. In this case, the first record (the first data point collected after the

midnight when Sunday begins) uses this seed as the index into the database. The seed is then

shared with all consumers that have been granted access to the stream during this time

period. The owner’s ShareApp uses a hash function to generate the next hash in the chain,

which will be the index for the subsequent record. The consumer’s ShareView uses the same

hash function to generate hashes in the chain to query future records. When the new week

begins, ShareApp generates a new seed and shares it with those consumers that continue to

have access to ongoing records in that data stream.

Access can be granted beginning at any time (by sharing the current hash in the chain) and

can expire at any time by updating the seed for the hash chain without affecting others’

access to the chain (see Figure 1). The temporal controls have three purposes: (1) to allow

data owners to grant access to specific temporal segments of the data stream, (2) to provide a

form of key freshness by requiring explicit sharing of each new seed, and (3) to limit

damage from loss (or unauthorized sharing) of the seed or any of the hashes of the sequence

(indices), since knowledge of any such hash is useless without the corresponding hash key.

While hash chains are a well-known technology, hash chains have not been used previously

to provide this sort of temporal access control.

New seeds can also be generated at any time by the data owner to support revocation. If the

data owner decides in the middle of a temporal period to change the access-control policies,

a new random seed is generated for each affected data type. ShareApp then distributes the

new random seeds to those who now have access to the corresponding streams. Hash chains

have security properties useful for stream access control (one-way, difficult to guess,

collision resistant, easy to compute, etc.). Therefore, changing the seed for the hash indices

of a data stream is equivalent to any traditional content revocation.

We also use hash chains as an indexing scheme to ensure no information is leaked to the

untrusted database. Hashes as indices allow a consumer to access encrypted records of a

specific data type for a specific individual without ShareBase knowing the person or data

type to which the hash corresponds. Because we use a keyed hash function to generate each

hash in the chain, and the key is not shared with the database, the database is unable to

generate the chain. Although ShareBase has access to multiple hashes in each chain, it

cannot determine which hashes are related nor associate hashes with their owner. We assume

Greene et al. Page 11

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the hash-chain indexing scheme is collision-resistant, so if the database ever receives a

request to add another record with the same index, it assumes that the message may be a

replay attack and ignores the message.

4.2 Access control and revocation model

In this paper, we use a default-deny system (i.e., explicit permission must be given to allow

access to the record, and if permission has not been specified in the access policy, a “deny”

is assumed). To access plaintext for a record, the consumer must possess both the hash that

corresponds to that record (to query the database and receive the proper encrypted record)

and a cryptographic key with attribute tags allowing it to successfully decrypt that record.

Therefore, each consumer must possess two different secrets to access any singular record. It

is the combination of these secrets that makes our system unique.

For example, to access a patient’s heart-rate data from September 1, 2016, the doctor must

have the random seed for the SRI of September 1st, and the patient’s hash key. For each

desired record, the doctor’s ShareView computes the corresponding hash-chain index to

query ShareBase for the encrypted version of that record. His ShareView then uses his KP-

ABE key to decrypt the record.

Because all access-control policies are set in ShareApp, it is responsible for all key and seed

generation. When an access-control policy is first defined by the owner, the determined

attribute set is used to generate the master key that will be used by the owner to encrypt all

records. Private keys for each of the data consumers are then generated based on the access

granted to them by the policy.

For each data type and each data consumer, a policy can begin at any record (by sharing the

current hash value), and can end at the end of any SRI. Generally, access policies can be

divided into two groups: those that provide restrictions on future data (data that has yet to be

generated and/or inserted into the database) and those that provide restrictions on past data

(data that has already been inserted into the database).

Access to future data can be granted to begin immediately, or at a specific future time, and

ends on a defined expiration date. In all cases, this access is determined by the sharing of

seeds. From the beginning of the period where access to future records is permitted, the

consumer receives the ABE key with the new policy attached, the hash key, and the seed for

the next temporal segment (e.g., next week) only. Every time the seeds are refreshed, the

owner’s ShareApp sends the consumer’s ShareView the new seed for that data type if and

only if the consumer has access for some or all of the next period. Once the explicit future

segment has ended or once a consumer’s access has expired or been revoked, she will no

longer receive fresh seeds (and will no longer receive fresh keys if her access is revoked

across all of the owner’s records). For policies specifying ongoing future access, the data

owner will be asked to review and renew the consumer’s access after the policy’s expiration

date, so that the appropriate data consumers can continue to receive new seeds.

Access to past data can either be granted for a range of time or for specific existing records.

For a continuous range of time, data consumers are granted the temporal seeds that

Greene et al. Page 12

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

correspond to that period of time, as well as a key that satisfies the attributes of the

encrypted records. The data consumer will initially be granted a subset (e.g., four seeds for

one month of past data), and the consumer can request more seeds if access to older data is

required. This enhancement is for both security and performance reasons. If fewer seeds are

shared with the data consumer, less data may be at risk for exposure in the result of a

revocation, and less strain is placed on the system for sending a large number of seeds at one

time. For specific past records, data consumers are granted individual hashes without their

corresponding hash keys, so they can only access the records to which those hashes

correspond and no other hashes in the chain.

Revocation—Individuals should be able to change their minds about data sharing and

express those new changes in policy. An owner may decide to add new data consumers,

expand a consumer’s access to his data, or narrow the scope of a consumer’s access.

ShareHealth supports several forms of revocation, all by narrowing the scope of access:

changing an access policy to a narrower set of attributes, reducing the temporal range

accessible, or removing all access by a given consumer. The effect is to prevent the affected

consumer(s) from retrieving and decrypting data from the database.4 As our system hinges

on temporal access control of continuous data streams, we can break all revocation down

into two categories: revocation of past data (data that was added to the database prior to the

owner’s decision to change the access policy) and revocation of future data (data that has not

yet been added to the database). Revocation to an entire data stream can be considered a

union of these two categories.

To revoke data that has already been added to the database, the data owner can leverage the

database indexing scheme to remove access to records. By starting at the first affected record

and generating a new seed, the data owner can re-index each of the records with the freshly-

seeded hash chain. The new seed for the hash chain is then shared with those consumers

who, according to the new policy, should still have access to the record(s). (As above, the

owner may take a “lazy” approach by sharing only a subset of the seeds, depending on the

consumers to request seeds as-needed if/when they desire to download the old data.) When

the revoked consumer attempts to query the database for the revoked record(s), using the old

hash chain, she will not be able to find records at those indices. Attribute-based encryption is

expensive, so re-indexing the records is more efficient than re-encrypting the data; Garrison

et al. (2016). It also obviates the need for the owner to cache (or download) all the data for

re-encryption; the owner need only archive the sequence of prior seeds for each data type.

Consider a data owner who wants to revoke access to some or all previously granted future

records; e.g., Bob gave month-long access to the data to Alice, and partway through the

month decides that he no longer wants Alice to have access to the remainder of the month. If

the stream is currently in the middle of an SRI (e.g., mid-week), he generates a new seed and

starts a new hash chain to use for indexing future records (and shares that new seed with all

consumers that still deserve access). Alice would be able to generate future hashes from the

4Of course, if a data consumer had cached the plaintext of data downloaded and decrypted earlier, or cached both the ciphertext and
the associated key, we cannot prevent that consumer from continued local access the cached data.

Greene et al. Page 13

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

old hash chain, but the database would not return anything to her when queried with those

hashes.

4.3 Key management

To meet our security goals, key management is paramount. By key management we mean

the storing and sharing of attribute-based encryption keys, MAC keys, hash-chain seeds, and

hash-chain keys. As keys and hash-chain seeds are generated on the data owner’s

smartphone, the data owner must have a mechanism to securely store and send these keys

and seeds to the permitted consumers. Due to the structure of ABE, each data consumer

possesses one key that expresses a boolean policy over the attributes of the data. Regardless

of the number and variety of data records that the consumer can access, she only receives

one ABE key from each owner, with the entire access-control policy incorporated into the

key. If the data owner changes the policy, that key may be replaced with a new policy across

old or new attributes. Similarly, each consumer receives one MAC key from each data

owner; this key is the same for all consumers of a given owner’s data, but is unknown to the

database and other possible adversaries. Even if data consumers collude, they cannot see

more than the union of what they could see individually; collusion does not enable them to

access data that none of them deserve, nor discover what (or how much) data they are unable

to retrieve.

In addition to the KP-ABE policies, each data type has its own set of temporal seeds and its

own hash-chain key. ShareApp must share a new seed at the beginning of each SRI to each

data consumer for each data type she can access. While the seed for the hash chain changes

at the beginning of each SRI, the hash-chain key remains unchanged. Therefore, any data

consumer that has access to some temporal segment(s) of that data type will be granted the

hash-chain key for that data type in order to generate future hashes. If the data owner

changes the policy and a data consumer gains access to a new data type, the respective hash-

chain key is shared with that consumer.

To share all of the keys and seeds with each consumer, initially and for these periodic

updates, ShareApp must send a secure message to each data consumer (e.g., an encrypted

and signed email message). To establish the cryptographic keys to send this secure message,

an initial secure key exchange between the data owner and consumer is necessary. In our

approach we expect that the owner (a patient or research subject) has a personal relationship

with the consumer (a doctor, coach, family member, researcher, etc.). Ultimately, the root of

trust between the data owner and consumer is this interpersonal relationship. The owner can

visually verify the identity of the consumer during an in-person meeting, then exchange

secret(s) as the foundation for future secure messaging.

Many approaches are possible for key exchange; here is one example inspired by McCune et

al. (2005). The owner specifies the consumer by email address or phone number through the

smartphone application. The ShareApp uses this address to contact the consumer’s

ShareView, which, with her assent, displays a QR code containing a one-time symmetric

key. The consumer can then show the code to the owner, who scans it with ShareApp on his

own smartphone. The owner’s ShareApp is then able to use this shared secret to establish an

Greene et al. Page 14

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

immediate (but short-lived) secure network connection to the consumer’s ShareView for the

exchange of other address and key material needed for future secure messaging.

Once the key exchange is complete, the data owner’s ShareApp and the consumer’s

ShareView can use this shared key material to securely send messages. Key and seed sharing

can happen via push or pull, depending on the context: the ShareApp will push new ABE

private keys due to access policy changes and new seeds at the beginning of each SRI; the

ShareView may pull any missing hash-chain seeds necessary to obtain historical records; the

latter sends a request to the owner’s ShareApp, which may check with the owner if the

access-control policy does not already allow that consumer access to the requested data. If

the owner approves the request, the consumer will get a notification on her ShareView

detailing her new access. For a high-level overview of the communication protocols between

ShareApp, ShareBase, and ShareView, refer to Figure 2, which details both the sharing of

cryptographic secrets and encrypted data.

It’s worth noting that the protocols for key and seed distribution may be asynchronous; thus,

the data consumers’ computing devices need not be online and reachable whenever the data

owner’s ShareApp chooses to push new keys or seeds. The updated information could be

carried over asynchronous secure channels (such as encrypted email messages), or could be

held by the server for later retrieval by the data consumer when it comes back online. All

communications are over secure channels, and are encrypted using standard protocols, such

as TLS. Therefore, no data consumer or adversary could spy on the channel and determine

the new hash-chain seeds or ABE keys. Similarly, the data owner’s ShareApp can receive

data from mHealth devices periodically (whenever a connection is established), queue data

received, and send data to ShareBase in batches depending on Internet connectivity.

4.4 End-to-end system summary

Our approach applies a unique combination of cryptographic techniques to address the yet-

unsolved problem of securely sharing mHealth data while allowing the device owner to

decide what is shared with whom, and when. Figure 3 provides an overview of our system

components and their interaction; each component is described more thoroughly in the

following section. When Bob, a data owner, shares his mHealth data with Alice, a data

consumer, he relies on his personal relationship with Alice to complete the secure

introduction (as described in Section 4.3). Once the introduction is complete, Bob specifies

what subset of mHealth data he would like to share with Alice. By defining the desired data

to share, Bob creates an access-control policy enforced by KP-ABE and a collection of

keyed hash chains, one per data type, per week.

If, for example, Bob decided to share all heart-rate data from December with Alice, he

would send Alice a KP-ABE key that included the heart-rate attribute in its associated

policy, and the hash-chain key and seed for the first week of December. As the month of

December continues, Bob will send Alice new hash-chain seeds every week, so that she can

continue to query Bob’s heart-rate data. Bob’s ShareApp seamlessly uploads data through a

secure connection to ShareBase, so Alice’s ShareView can securely query ShareBase for the

data – using the hashes generated from the provided hash-chain key and seed. At any time,

Bob can choose to revoke access, and his ShareApp will send a re-index request to

Greene et al. Page 15

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ShareBase, changing the hashes that correspond to the heart-rate data records. When Alice

queries ShareBase with the old hashes associated with the revoked data, she will receive no

results. Additionally, if Bob wants to provide Alice access to different data types, he can

generate a new KP-ABE key for Alice and share that key and the related hash-chain seeds.

5 Implementation

To create a working prototype, we implemented all three major components of ShareHealth:

ShareApp, the data owner’s smartphone app; ShareBase, the cloud database; and ShareView,

the data consumer’s desktop app. For our proof-of-concept implementation we used Android

and Linux platforms, but the ShareHealth architecture could be implemented for any

common smartphone and desktop platform.

5.1 ShareApp: data owner’s smartphone app

We implemented ShareApp by writing an application for Android 5.0 (Lollipop).5 This

smartphone application is the main driver of our system, as it enables the data owner to set

policy preferences and applies those preferences to cryptographically-enforce access to data.

Through our app’s interface the data owner is able to add, modify, and delete data consumers

with whom the owner wants to share her data.

ShareApp plays the role of the intermediary between the mHealth apps/devices and the

back-end database, by receiving data from those apps and devices, encrypting that data

based on the access policy set by the owner, and uploading the encrypted records to the

database. By combining data from various mHealth apps/devices to forward to ShareBase,

ShareApp makes the mHealth data upload process more streamlined and allows for

aggregation of data across data sources. The smartphone is responsible for all seed and key

management, and is the data owner’s means of contact with data consumers.

In our current implementation, we connected ShareApp to the Amulet, a wearable healthcare

device that collects a variety of data about physical activity, stress, and use of exercise

equipment; Hester et al. (2016). We envision other devices being connected to ShareApp in a

similar way. The Amulet interfaces with its own Android application, the Amulet companion
app, which receives data from the Amulet device and forwards it to ShareApp through

secure intents. Intents are the preferred mechanism for asynchronous inter-process

communication in Android, and explicit intents between the two applications guarantees that

no other application can eavesdrop on the communication, because only the specified

application has the permission to receive the intent; Google (2017). (We rest here on our

assumption that the smartphone and its operating system have not been compromised, as

noted in the security model. Securing Android or other smartphone operating systems is

outside the scope of this paper.)

In addition to forwarding data through intents, the only other requirement that we ask of

mHealth developers is to format the data in JSON with a data type tag that can be cross-

referenced with a data configuration file that includes all data types supported by ShareApp.

5We wrote and tested the app on a Nexus 9 tablet and Nexus 6 smartphones.

Greene et al. Page 16

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Once ShareApp receives data, it encrypts the data with Key-Policy Attribute-Based

Encryption under the current access-control policy, which specifies an attribute-tagging

scheme that matches the data with its respective attribute(s) for encryption. Once the data is

encrypted, it computes an index for this new record using the appropriate hash chain and

uploads the (index, ciphertext) pair to the cloud database as a new entry. If the device is not

currently connected to Internet service, the entries are queued for later upload.

ABE incorporation—We did not need to develop our own implementation of ABE. While

there are many ABE libraries written in C, Java, and Python, there are few KP-ABE libraries

supported on Android; Zickau et al. (2016). Because CP-ABE has been explored more

thoroughly in the literature, many of the available libraries only support CP-ABE. We found

two previous implementations of KP-ABE for an Android platform. One, AndrABEn, is a

C-based library that is not supported on recent versions of Android. We used the other, a

Java-based library by Zhang et al.6 with corrections so it would properly generate keys,

encrypt data, and decrypt data. We leveraged this library to generate the KP-ABE master key

for the data owner, to generate the KP-ABE private keys for each consumer, and to encrypt

each record with attributes based on the owner-defined access-control policy. These keys are

stored in Android’s internal storage, in a directory hierarchy that can only be accessed by the

application (according to Linux file permissions). As noted in our security model, we

assume that no entity has root access on the device and thus no entity has access to these

keys.

Defining policies—For the purposes of this prototype, ShareApp provides a simple

graphical interface to allow the data owner to define an access-control policy (Figure 4).

(The development of a rich interface for defining such policies – and a proper study of that

interface’s usability – is an important HCI challenge worthy of future work and a paper in its

own right; Reeder et al. (2007, 2008).) After the data owner has added consumers with

which she wishes to share some subset of her data, she can define an access-control policy

for those consumers. There are two complementary components to creating an access-

control policy.

First, the owner must define which types of data she would like to share and which attributes

she would like to use to describe this data. This preliminary step will define the attribute

universe that can be used for ABE key-policy generation.

Second, the data owner must define the temporal range of access for each data type (this

range determines which data types’ hash-chain seeds are shared with which consumers). Our

implementation provides a preset SRI of one week, and each SRI is numbered according to

the number of the week in the year in which the data was produced. Once a data owner has

decided to share a type of data with a specific consumer, she must define a fixed range to

share. The selection range defaults to only share the current week’s seed, but the data owner

can widen the range to any week in the past or in the future, with policies expiring at the end

of each calendar year. If, during the definition of this policy, a data consumer has been

granted access to data at the end of the year, ShareApp will automatically prompt the data

6https://sites.google.com/a/ualr.edu/reu-project-by-liang-zhang/home

Greene et al. Page 17

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://sites.google.com/a/ualr.edu/reu-project-by-liang-zhang/home

consumer during week 52 to define access for the following year (thereby refreshing the

access-control policy as the old one expires and ensuring that the data owner continues to

permit access).

Local persistent and secure storage—To generate the seed of each hash chain, we

used Java’s built-in KeyGenerator to generate an HmacSHA-256 key, which functions as the

seed. We then used SHA-256 to generate each subsequent hash in the hash chain. Although

our system design uses a keyed hash function, so the database cannot determine which

hashes are related, for simplicity of the prototype we used an unkeyed approach. We chose a

weekly SRI, leveraging Java’s Calendar class with the built-in WEEK OF YEAR property.7

We similarly used the KeyGenerator HmacSHA–256 to generate the HMAC for the plaintext

prior to encrypting.

To send the right seeds to the right consumer ShareViews and to support policies that allow

the sharing of past data, seed storage on the data owner’s smartphone is especially

important. We used SharedPreferences, a built-in Android tool that allows for saving state

variables between runs of an application. We store seeds in the SharedPreferences map,

indexed by data type, SRI number (in our case, the week of the year), and year. The result is

an efficient way to store all seeds from all hash-chain periods for each data type. The map

also stores the most recently generated hash, to enable fast generation of the subsequent hash

in the chain.

SharedPreferences are stored as a file in the filesystem on the Android device, and are

secured by filesystem permissions. The permissions state that only applications with the

UID of the creating application can access the file; Six (2011). ShareApp also needs to store

the attribute-tagging scheme, the access-control policy, and the private keys of each of the

data consumers (for distribution). These secrets are stored in a different section of

SharedPreferences. While anyone with root access to the phone would be able to access

SharedPreferences, as stated in the trust model, we assume that the smartphone has not been

compromised.

5.2 ShareBase: cloud database

The purpose of the database is to store data from multiple owners without revealing the

contents of the data, the owner of the data, or even which records belong to the same owner.

This database is not trusted with the confidentiality or integrity of the data, but the database

is trusted with the integrity of indices; that is, the data owner can insert a record at a given

index and trust the database to later return that record (albeit with the contents possibly

modified) when queried with the same index.

In our prototype implementation, the server runs on the Express Node.js web framework to

connect with ShareApp and ShareView, and the data storage is a Linux filesystem. The

database supports three operations: Add (add a new record at a specific index), Query (given

an index, return the corresponding record), and Re-index (given a current index and a new

index, re-index the corresponding record at the current index to be at the new index). To add

7The WEEK_OF_YEAR variable is initialized to 1 on January 1st, and increments every Sunday at midnight.

Greene et al. Page 18

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a new record to ShareBase, the data owner provides the hash for that record and the

encrypted record itself. The hash is used as the name of the file, and the encrypted record is

the body of the file. Querying the database requires providing the database with the hash

associated with the desired data record; that hash is used to find the filename in the

filesystem, and the body of the file is returned. To re-index the record, ShareApp generates a

new random hash seed and hash key. For each hash in the current chain (generated using the

old hash seed and hash key), ShareApp provides ShareBase the current hash and the new

hash (generated by the same number of chaining iterations as the current hash), and the file

with the name of the current hash is renamed to the new hash. Because ShareBase does not

have access to the old hash key (to recreate the old hash chain), ShareBase is unable to

arbitrarily re-index hash chains, ensuring the re-index operation cannot be leveraged as a

denial-of-service attack. While in our prototype all files live in the same directory, this

organization could be optimized into a directory tree, or the content could be stored in a

database. All communications between the database and the client applications (both

ShareApp and ShareView) occur over secure HTTPS connections, and the clients can verify

the identity of the database server.

5.3 ShareView: data consumer application

There are two major functions of ShareView, which we implemented as a command-line

application for laptop or desktop computers.8 First, ShareView can send and receive secure

messages (after the initial key exchange to establish the secure channel – see Section 4.3)

from each data owner’s ShareApp to obtain the respective seeds and keys from that data

owner. Second, ShareView provides an interface by which the data consumer is able to query

the database. Because one data consumer could have many patients or subjects who use

ShareHealth, ShareView maintains in a secure location a separate data-configuration file and

seed-storage file for each data owner sharing with this consumer.

When Bob, a data owner, first decides to share his mHealth data with Alice, a data

consumer, his ShareApp sends her ShareView his data-configuration file. This file includes

all of the data types provided by his mobile apps and devices, and the attributes that are

linked to those data types. Alice’s computer then caches this file locally. Every time Bob’s

ShareApp sends Alice’s ShareView new hash-chain seeds to access his data, Alice’s

ShareView saves them in Bob’s seed-storage file. Alice’s ShareView maintains a user
configuration file mapping each owner’s name/identity to the names of the data-

configuration and seed-storage files.

To query the database, Alice selects the data owner then selects the type and time period of

the desired data. ShareView examines its cached copy of that owner’s data-configuration file

to obtain the list of available attributes and data types, and the seed-storage file to retrieve

the seeds for the relevant time period. Share-View computes the necessary hash indices,

connects to the database, and asks the database for the records corresponding to the given

indices. It decrypts the response, and displays the plaintext to Alice.

8Although one could also imagine ShareView as a mobile or web-based app (as long as the keys are stored securely), we selected a
stand-alone application as a typical use case for providers and researchers.

Greene et al. Page 19

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Although our prototype implementation has a simple command-line user interface where the

data consumer must explicitly type in the names and values that she desires (Listing 1), we

envision future iterations of the portal with a robust graphical user interface.

6 Evaluation

In this section we analyze the security properties of our approach, then describe the results

of some performance experiments.

6.1 Security analysis

Given the assumptions of the security model outlined in Section 3, and the design of our

system, we address how we mitigate the threats of a capable adversary.

Scenario 1: Cloud database compromise—We assume that the cloud database is not

trusted with respect to the confidentiality, integrity, or correctness of the data. A passive

attacker (i.e., with read-only access to all database data and inbound messages) would be

unable to view the data for two reasons: (1) at no time does the cloud database have access

to any plaintext or to any key/seed material, and (2) during the addition of content and query

processing the data (and metadata) remains encrypted. By observing a deposit to (or query

of) the database, the attacker cannot discern the ownership of the corresponding data record

(because no owner-identifying information is shared with the database, even in encrypted

form), cannot link records deposited by the same owner (because record indices are hashes

produced by a keyed hash function for which neither the adversary nor the server has the

key), and cannot view the data or which attributes the data possess (because the records are

encrypted).9

An active attacker that has read and write access to the database server would be able to

modify the indices as well as the records themselves. If the attacker modifies the index of a

record, it is akin to deleting that record, because the data consumers would no longer be able

to retrieve the record. The data consumers would quickly become aware of this change as the

hash-chain would have gaps or end prematurely. The adversary cannot insert false data,

because (without access to the hash-chain seed and key) the adversary has no way to

generate an index value any consumer would likely query. If an attacker modifies an existing

record’s ciphertext, the MAC on the plaintext would fail to be verified and the consumer

would discover the tampering.

Although an active attacker cannot modify the ciphertext in a way that will decrypt to valid

plaintext, the attacker might instead attempt to replay previous entries or entries from

another data owner. The database server would reject a replay attack in which the adversary

attempts to add a fresh record with a previously-seen index value, because it never allows a

record to be deposited over an existing record at a given index. If the adversary has the

ability to write into the underlying database, it could replace the contents of the entry at a

specific index with another entry (from either the same or a different data owner). Upon

9As noted above, we assume that owners and consumers concerned about IP-level anonymity can contact the server through an
anonymizing network such as Tor.

Greene et al. Page 20

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

decryption, the data consumers would discover one of two outcomes. If the record is from

another owner, or from the same owner but not a record the consumer deserves (according to

the policy), the decryption would fail (the MAC verification will fail). If the decryption and

MAC happen to succeed, because this record is indeed one deserved by this consumer, the

JSON fields (timestamp, data type) would not align with the other entries in the hash-chain.

Because indices are created by a randomly-seeded keyed-hash chain, the attacker could not

modify multiple entries in the data stream to fool data consumers. Therefore, data

confidentiality and integrity at the database are maintained.

Scenario 2: Data consumer computer compromise—ShareView (a desktop app) is

responsible for the request and decryption of the data that the consumer has been granted

access to view. Because of this role, the consumer has secret keys and seeds stored on the

computer. Attacks on this device, its operating system, or the ShareView software itself,

could result in data exposure or data integrity concerns. In our security model we trust these

components to behave correctly and to remain un-compromised (securing the underlying

platform is outside the scope of this work and, indeed, a compromised OS or device would

expose any and all data viewed in the desktop app regardless of our system). If an adversary

gains physical access to the consumer’s device, after the data consumer had authenticated

(logged in) to ShareView, the attacker would be able to expose the sensitive data to which

the data consumer has access. Physical security, user authentication, and defenses like

screensaver locks are standard practice and outside the scope of this paper. The data

consumer can also notify the data owner that her ShareView was compromised, and he can

re-index all records that the consumer had been able to access.

Scenario 3: Consumer(s) as attacker(s)—If the data consumer misuses the decrypted

data – saving the plaintext on an insecure medium or sharing the plaintext with an

unauthorized party, the data is no longer protected by our system and is thus disclosed or

vulnerable to disclosure. As in any such system, we have to trust the data consumer not to be

malicious or careless, and should engineer ShareView to make it difficult to export the

plaintext.

If data consumers decide to collude, none of them would be able to discover the random

seeds for the hash chains for data types to which they do not collectively have access.

Suppose one of them has the seeds and hash keys to enable him to retrieve some records, but

does not have an ABE key with the policy to allow him to decrypt those records. Even if

they all share their secret keys, they will not be able to successfully decrypt entries to which

none of the consumers individually have access. ABE systems are collusion resistant

(individuals cannot combine attributes on their secret keys to satisfy a given policy); because

each secret key is generated with a random seed, combining keys cannot create a new

meaningful key; Akinyele et al. (2010).

Scenario 4: Data-owner smartphone theft—If the attacker physically obtains the data

owner’s smartphone, he is unable to gather information if the device is locked. If the device

is unlocked, the attacker would be able to open ShareApp. We anticipate that strong

implementations of our app would require the entry of a password, fingerprint, or other

second-factor authentication before allowing the user to modify the access-control policies

Greene et al. Page 21

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

or consumer list, and to view recent data points. The attacker would never be able to access

the stored keys and seeds, because those are not exposed to the phone user (and as we

assume a secure smartphone platform, he cannot access them through other means).

6.2 Performance analysis

Regarding the performance of the system, the data owner’s smartphone is the most resource-

constrained device in the system, so we focus on the execution time of the data encryption

and upload. It is reasonable to presume that the computation on the consumer’s computer

will take equal or less time than the comparable operations on the owner’s smartphone. We

tested the SHA-256 indexing scheme relative to a simple counter indexing scheme and the

KP-ABE encryption relative to plaintext (for different text lengths and attribute quantities)

for both the upload and query processes. Each SHA-256 hash generation in the chain took

approximately 0.103 milliseconds (0.0001 seconds). Re-indexing records is similarly

efficient, as the process comprises hash generation and a trivial call to mv on the server.

KP-ABE uses ABE to encrypt an AES symmetric key and AES to encrypt the plaintext

message. Overall encryption time is effectively independent of plaintext length; as AES runs

approximately 1000 times faster than ABE, the ABE encryption of the AES key is the

limiting factor of the encryption algorithm’s runtime. Therefore, KP-ABE runtime only

depends on the number of attributes. Figure 5 demonstrates the average time per run (in

seconds) of KP-ABE encryption (solid blue) and overall data upload (dashed red) relative to

number of attributes. Plaintext data upload takes approximately 0.05 seconds, with no

significant correlation to message length. KP-ABE runtime is linearly related to the number

of attributes.

It is important to note that no data encryption occurs while the smartphone is in interactive

mode. All encryption happens in the background, and is done without impacting the user

experience on the smartphone. If need be, ShareApp’s background task could also run as a

low-priority task so as to minimize the impact on foreground apps.

Energy consumption is also a concern on smartphone devices. We measured the average

energy consumption for uploading data from the data owner’s smartphone. After charging

two identical smartphones fully, we measured the battery life of the phone running

ShareApp continuously (continuously uploading data) in comparison to the battery life of a

control phone without our app. The control’s battery died after 7 days 12 hrs and 45 mins,

whereas the smartphone running our app lasted for 33 hrs and 57 mins. While the difference

in battery life was substantial, it is not surprising; constant data upload to a remote server

has a high energy cost. To extend the battery life, the app could be programmed to upload

data in periodic batches, as opposed to continuous upload.

7 Use cases and applications

We present four use cases to illustrate the value of a system that allows data owners to share

specific subsets of mHealth data with various parties. These examples demonstrate

applications of a secure remote-monitoring system, and the importance and desire for

Greene et al. Page 22

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

flexible and fine-grained access control by data owners. In each case, our system could

balance patients’ privacy with providers’ ability to deliver effective healthcare.

Case 1: Remote patient monitoring

Individuals living in rural areas may have difficulty accessing a provider in person, due to

the time or expense required to travel to visit a doctor or clinic. Telemedicine systems allow

for remote consultation, including bidirectional audio/video conversations, but are not

themselves sufficient for management of chronic conditions like high blood pressure. These

visits may be complemented by ongoing monitoring of patient activity (such as sleep

patterns and medication compliance) and vital signs (such as weight and blood pressure).

When a patient is introduced to a new doctor or clinic, she may be hesitant to share all of her

past medical data with the provider. Using ShareHealth’s temporal access control, the

patient can solely share the current data relevant to the treatment for her current health issue.

Although remote patient-monitoring systems are emerging, they are often disease-specific or

hospital-specific, and rarely give patients control over the collection and sharing of data.

Through ShareHealth, data collected by mHealth apps and devices can be shared with the

clinical team.

Case 2: Research

ShareHealth also allows for the remote monitoring of volunteer subjects by researchers.

Because many health conditions are related to behavior, it is valuable to collect data about

behavior and physiological parameters from subjects, over weeks or months, in free-living

conditions. Examples include studies of smoking-cessation interventions, eating behavior, or

student stress and its links to depression. A larger example is the US Precision Medicine

Initiative, which aims to recruit one million subjects to participate in a comprehensive, long-

term mHealth-based study of health, health behavior, and health environments; Intille

(2016). Our system allows research subjects to selectively contribute data from their existing

apps and devices, and any others given to them by the researchers, without granting

researchers full or permanent access and without necessitating the construction of a separate

data-collection pipeline. Confidence in their privacy and control over their data would

encourage more potential subjects to agree to participate. Additionally, our system lessens

the interference of the study on the subjects’ lives, as they would have to carry less extra

equipment and interact with the researchers less frequently.

Case 3: Preventative medicine

One increasingly common application of mHealth devices is data collection for preventative

care. Individuals are investing in apps and devices that monitor everything from physical

activity to sleep, weight, and blood pressure. mHealth apps and devices not only help

individuals self-regulate through immediate data-driven feedback, but also allow doctors to

participate in monitoring their patients and detect issues earlier. Doctors, therapists, and

coaches desire to monitor patients for different health issues, but they all care about temporal

trends in the data. By allowing patients to provide access to mHealth data on a temporal

basis, patients are able to retroactively grant access to a temporal segment of the data stream

from the past. For example, if a patient wants to give a new doctor insight about her asthma

flares, she can share her respiratory and allergen exposure data for only those times in the

Greene et al. Page 23

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

past that she had breathing difficulties (e.g., the last two spring seasons). The new doctor can

then compare data from the past to the ongoing data stream to monitor the patient’s response

to a new treatment regimen.

Case 4: Relevant medical history

While some medical conditions involve full body systems, other issues solely affect one part

of the body. In these cases, patients may not want to share their entire medical history with a

provider, but instead only share the data associated with that condition. For example, if a

professional skier has a history of leg injuries, she will want to share her training and

rehabilitation data from previous injuries to give her new physical therapist and coach

context about her current injury. She would share mHealth data collected over her previous

injured periods (e.g., the recovery from her last ACL tear) to show what treatments were

effective, and what approaches should be modified to treat her current knee injury. She may

also want to share mHealth data from her peak health to show the physical therapist her

post-rehab goal abilities and vitals. While the athlete may trust her support team to help

rehabilitate an injury, she may not want to share remaining mHealth data because this data

may give insight into her proprietary elite training techniques that give her a competitive

advantage. By empowering the skier to select only data from specific time periods to share

with her physical therapist, ShareHealth gives her more control over her treatment.

8 Related work

Other approaches have sought to provide access control for medical record systems. Rizvi et

al. developed an open-source library that uses relationship-based access control, where the

policy grants access based on how the access requestor is related to the resource owner; Zain

et al. (2015). This method of access control works best in defined networks, such as social

networks, where the relationship between two individuals or entities adheres to one of a set

of identifiers. For example, in Facebook there are four built-in relationship types: ‘me’,

‘friend’, ‘friend-of-friend’, and ‘everyone’. In our case, access policies may not fit well

within this paradigm of different levels of access for different relationships. For example, if

an athlete wanted to share all of her training data with her coach, but only a subset of her

vitals, and all of her vitals with her doctor, but only a subset of her training data, this

relationship-based model would not support the granular control of the content restrictions.

Furthermore, relationship-based schemes require an owner to explicitly manage those

relationships, adding, renaming, and deleting edges in the graph as policies change. Content-

based access control gives the data owner more flexibility in defining which content is seen

by which requesters and lessens the administrative burden.

Benaloh et al. provide content-based access control through hierarchical identity-based

encryption (HIBE). Their system leverages HIBE by using a data category hierarchy to

define different access levels. Therefore, they must assume that a patient’s record is

organized into a hierarchical data structure, allowing patients to grant access to a category

without knowing all of the types of data that might eventually be included in that category.

This system also allows doctors to define subcategories within the categories that they have

been given permission to access; Benaloh et al. (2009). Our system seeks to provide content-

Greene et al. Page 24

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

based access control regardless of the relational structure of the different types of mHealth

data collected from the patient. We want to allow data owners to have the flexibility to define

their access-control structure in different ways and not be restricted to a default hierarchy

structure. For this reason, we decided to use a close relative to identity-based encryption –

attribute-based encryption – to provide flexible content-based access control.

Akinyele et al. propose a core scheme for applying ABE to EMRs; Akinyele et al. (2010).

Their approach does not support the revocation of long-term keys when a provider leaves,

nor changes in access-control policies or decisions. Their system uses a rigid pre-determined

policy engine that does not allow for patient discretion. Akinyele et al. focus on hospital

systems that struggle to manage many different patient records, whereas ShareHealth allows

patients to manage providers across different networks and outside the hospital ecosystem.

Li et al. leverage attribute-based encryption in combination with a security domain scheme

to ensure scalability in multi-owner personal health record (PHR) systems; Li et al. (2010).

Their scheme fragments the system into multiple security domains, with each responsible for

a subset of the users. The framework proposed relies on auxiliary attribute authorities to

govern a disjoint subset of attributes. While dividing the responsibilities within the system

increases scalability, it also depends on third-party authorities to manage users and

attributes. In our system, we seek to decentralize further, by moving the attribute and user

management to the data owner’s smartphone device.

Ambrosin et al. demonstrated the feasibility of ABE on smartphone devices by creating the

AndrABEn library, a C-based library that uses the Java Native Interface, and evaluating its

performance on Android devices. While they concluded that using ABE on Android

smartphones and similar devices is feasible, they did not apply this finding to any data-

management or secure-sharing problems; Ambrosin et al. (2015).

Although ShareHealth uses the well-known (and well-tested) ABE cryptographic

techniques, this paper contributes to the body of knowledge by recognizing the value of KP-

ABE for the sharing of large data streams with a relatively small set of data consumers,

whereas most of the prior literature has focused on CP-ABE; and furthermore, by extending

ABE to support fine-grained temporal access control by combining KP-ABE with a novel

use of hash chains.

In some ways, our temporal access-control scheme is reminiscent of the challenges posed by

Digital Rights Management (DRM). Existing DRM techniques focus on per-object access

control (such as a consumer’s purchase of a given movie or music album), or a per-

subscription access control (such as a consumer’s subscription to a given radio or television

channel), both of which can be accomplished with certificates and revocation lists.

ShareHealth tackles a much finer-grained challenge, in which the data owner can give each

consumer access to specific temporal ranges of a data stream, including historical data.

Our scheme could be extended with additional functionality like that proposed by Haber &

Stornetta (1991), in which records published through ShareHealth are given irrefutable

timestamps. Using their method (with our terminology), a data source would send a hash of

each new data record to a trusted time server, which would sign a statement binding together

Greene et al. Page 25

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the record hash, the current time, and some bits carried forward from earlier statements it

has signed. This approach allows later consumers to verify the signature (and thus the

timestamp) on each record, and furthermore to ensure that the data source and time server

have not colluded to fake the timestamp. We could easily incorporate this approach into

ShareHealth at several possible points: the timestamp could be requested by the data source

(the mHealth device or app) itself, by ShareApp, or by ShareBase, with increasing

generality. Their methods (and other methods that seek to provide a secure timestamp

function) are complementary and orthogonal to the contributions of this paper, which

leverage hash chains to add efficient temporal access-control features to the traditional ABE-

based access control methods.

9 Discussion and future work

Our current approach pushes all mHealth data into data streams that flow through the

ShareApp, into Share-Base, and then to the ShareView consumers. In some applications,

owners may wish to delete data points; although owners could easily delete data records

before they leave their device, or the ShareApp could provide owners an interface to

selectively delete records before they are pushed to ShareBase, it is a policy decision as to

whether records should be removed from ShareBase. (In most electronic health record

systems, for example, data is never deleted; instead, it is marked as obsolete or incorrect; a

similar approach could be taken for ShareHealth.) The details are left for exploration in

future work.

Although our performance evaluation has established that the execution time of KP-ABE is

not restrictive, pairing-based cryptography (the cryptographic root of KP-ABE) is an order

of magnitude slower than traditional public-key encryption; Garrison et al. (2016). Because

ShareHealth currently uses KP-ABE, the computationally intensive nature of pairing-based

cryptography will remain a limitation (although newer smartphones continue to be more

powerful). Additionally, the size of ciphertext produced by KP-ABE scales linearly with the

number of attributes tied to the record. We expect that the number of attributes on each

ciphertext will remain low, and tested policies with 1–15 attributes. Therefore, the linear

scaling of ciphertext produced by KP-ABE should not be an issue. We also do not anticipate

an issue with to the size of KP-ABE keys, as they are only used to encrypt an AES key after

it has been used to encrypt the data. We anticipate that ShareHealth’s encryption time (about

0.1–1.5 seconds per record, for policies with 1–15 attributes) would be acceptable for data

streams that produce new data points less frequently than once per minute – which we

expect is true for most interesting mHealth data streams. Data streams with higher data rates

can batch data points – for example, by batching a minute’s worth of data into every record

– and easily maintain acceptable throughput.

Our security model excludes traffic-analysis and denial-of-service attacks, and it would be

worth exploring extensions to ShareHealth that could allow relaxation of those assumptions.

Furthermore, our security model assumes that the data owner’s smartphone and data

consumer’s computer are not compromised, emphasizing the importance of continued

efforts to design secure smartphone operating systems.

Greene et al. Page 26

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

It would be worth exploring mechanisms to secure sensitive key material even in the event of

operating-system compromise. For example, emerging trusted hardware mechanisms

establish a secure containers for computation and storage, as in Peters (2017); our system

could use these mechanisms to store and manipulate the secret keys and seeds, and the

mHealth data itself. Such hardware exists and is becoming more common; modern

smartphones have trusted-hardware capabilities and currently use these containers to secure

sensitive information such as credit-card information for Apple Pay or Google Pay.

Similarly, computers with Intel SGX technology could protect keys and data in the

ShareView; Costan & Devadas (2016).

Finally, the development and evaluation of rich (yet usable) interfaces for ShareApp and

ShareView are important areas of future work. One idea is to push some of the complexity

onto the data consumer, e.g., for the data consumer to request access to a certain type of

data, over a certain temporal range, through some interface designed for data consumers; the

formatted request would be presented to the data owner in an understandable representation,

and if the owner agrees, the request would be translated into directives for sharing data with

the consumer.

10 Conclusion

The development and use of mHealth apps and devices are a growing trend that promises

great opportunities to improve health and wellness, increase access to healthcare, and reduce

the cost of health services. We need systems to leverage mHealth data without

compromising the privacy of the data owners or the integrity of the data. The design of a

secure and privacy-preserving system that is practical for deployment remains a research

challenge.

In this paper, we propose ShareHealth, a novel framework that supports owner-driven

cryptographically-enforced access control of mHealth data. This system leverages the

combination of established cryptographic schemes, hash chains and attribute-based

encryption, to cryptographically-enforce access to an owner’s data by a variety of data

consumers, with little trust required on a shared database server. By creating an end-to-end

system from a data owner’s smartphone to a data consumer’s device, we are able to support

a wide variety of applications from preventative medicine to remote monitoring of research

subjects. Our system allows data owners to define flexible access-control policies, and is

unique in the combination of content-based and temporal controls. By using hash chains as

indices into the database, we support revocation without the need for expensive re-

encryption of the data. Our evaluation of a preliminary prototype shows that this approach

can be implemented efficiently on current common hardware platforms.

Acknowledgments

We appreciate the feedback of colleagues and anonymous reviewers. This research results from a research program
at the Institute for Security, Technology, and Society, supported by the National Science Foundation under award
numbers CNS-1314281 and CNS-1619970. Emily Greene’s research has also benefited from the following
Dartmouth awards and programs: Women in Science Project, Sophomore Science Scholars, Presidential Scholars,
and the James O. Freedman Research Assistant grant for full-time work during Winter 2016. The sponsors had no
role in study design; in the collection, analysis and interpretation of data; in the writing of the report; nor in the

Greene et al. Page 27

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

decision to submit the article for publication. The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of
the sponsors.

References

Akinyele, JA, Lehmann, CU, Green, MD, Pagano, MW, Peterson, ZNJ, Rubin, AD. Tech Rep
2010/565. Cryptology ePrint Archive; 2010. Self-protecting electronic medical records using
attribute-based encryption. URL http://eprint.iacr.org/2010/565

Ambrosin, M, Conti, M, Dargahi, T. Proceedings of the Workshop on IoT Challenges in Mobile and
Industrial Systems (IoT-Sys). ACM; 2015. On the feasibility of attribute-based encryption on smart-
phone devices; 49–54. URL

Benaloh, J, Chase, M, Horvitz, E, Lauter, K. Proceedings of the ACM Workshop on Cloud Computing
Security (CCSW). ACM; 2009. Patient controlled encryption: ensuring privacy of electronic
medical records; 103–114. URL

Caine K, Hanania R. 2013; Patients want granular privacy control over health information in electronic
medical records. Journal of the American Medical Informatics Association. 20(1):7–15. DOI:
10.1136/amiajnl-2012-001023 [PubMed: 23184192]

Caine K, Kohn S, Lawrence C, Hanania R, Meslin E, Tierney W. 2015; Designing a patient-centered
user interface for access decisions about ehr data: Implications from patient interviews. 30(1):7–16.
DOI: 10.1007/s11606-014-3049-9

Costan, V, Devadas, S. Intel SGX Explained. Cryptology ePrint Archive; 2016. Report 2016/086. URL
http://eprint.iacr.org/2016/086

Ferguson, N, Schneier, B, Kohno, T. Cryptography Engineering: Design Principles and Practical
Applications. 1st. Wiley; 2010. URL http://www.worldcat.org/isbn/0470474246

Garrison, WC; Shull, A; Myers, S; Lee, AJ. On the practicality of cryptographically enforcing
dynamic access control policies in the cloud (extended version). 2016. URL http://arxiv.org/abs/
1602.09069

Google. Security tips. Android Developers URL. 2017. https://developer.android.com/training/articles/
security-tips.html

Goyal, V, Pandey, O, Sahai, A, Waters, B. Proceedings of the ACM Conference on Computer and
Communications Security (CCS). ACM; 2006. Attribute-based encryption for fine-grained access
control of encrypted data; 89–98. URL

Gudes E. 1980; The design of a cryptography based secure file system. IEEE Transactions on Software
Engineering. SE-6(5):411–420. DOI: 10.1109/tse.1980.230489

Guo C, Zhuang R, Jie Y, Ren Y, Wu T, Choo KKR. 2016; Fine-grained database field search using
attribute-based encryption for e-healthcare clouds. Journal of Medical Systems. 40(11):1–8. DOI:
10.1007/s10916-016-0588-0 [PubMed: 26573639]

Haber S, Stornetta WS. 1991; How to time-stamp a digital document. Journal of Cryptology. 3(2):99–
111. DOI: 10.1007/bf00196791

Hester, J, Peters, T, Yun, T, Peterson, R, Skinner, J, Golla, B, Storer, K, Hearndon, S, Freeman, K,
Lord, S, Halter, R, Kotz, D, Sorber, J. Proceedings of the ACM Conference on Embedded
Networked Sensor Systems (SenSys). ACM Press; 2016. Amulet: An energy-efficient, multi-
application wearable platform; 216–229. URL http://www.cs.dartmouth.edu/~dfk/papers/hester-
amulet.pdf

Intille S. 2016; The precision medicine initiative and pervasive health research. IEEE Pervasive
Computing. 15(1):88–91. DOI: 10.1109/mprv.2016.2

Li, M, Yu, S, Ren, K, Lou, W. Securing personal health records in cloud computing: Patient-centric
and fine-grained data access control in multi-owner settings. In: Akan, O, Bellavista, P, Cao, J,
Dressler, F, Ferrari, D, Gerla, M, Kobayashi, H, Palazzo, S, Sahni, S, Shen, XS, Stan, M, Xiaohua,
J, Zomaya, A, Coulson, G, Jajodia, S, Zhou, J, editors. Security and Privacy in Communication
Networks. Vol. 50. Springer; Berlin Heidelberg: 2010. 89–106. chap. 6URL

McCune, JM, Perrig, A, Reiter, MK. Proceedings of the IEEE Symposium on Security and Privacy.
IEEE Computer Society; 2005. Seeing-is-believing: using camera phones for human-verifiable
authentication; 110–124. URL

Greene et al. Page 28

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://eprint.iacr.org/2010/565
http://eprint.iacr.org/2016/086
http://www.worldcat.org/isbn/0470474246
http://arxiv.org/abs/1602.09069
http://arxiv.org/abs/1602.09069
https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/training/articles/security-tips.html
http://www.cs.dartmouth.edu/~dfk/papers/hester-amulet.pdf
http://www.cs.dartmouth.edu/~dfk/papers/hester-amulet.pdf

Peters, T. Tech Rep. Dartmouth College; 2017. A survey of trustworthy computing on mobile &
wearable systems. TR2017-823URL http://www.cs.dartmouth.edu/reports/abstracts/TR2017-823/

Reeder, R, Karat, CM, Karat, J, Brodie, C. Usability challenges in security and privacy policy-
authoring interfaces. In: Baranauskas, C, Palanque, P, Abascal, J, Barbosa, S, editors. Human-
Computer Interaction (INTERACT). Vol. 4663. Springer/Heidelberg; 2007. 141–155. URL

Reeder, RW, Bauer, L, Cranor, LF, Reiter, MK, Bacon, K, How, K, Strong, H. Proceedings of the
Conference on Human Factors in Computing Systems (CHI). ACM; 2008. Expandable grids for
visualizing and authoring computer security policies; 1473–1482. URL http://www.robreeder.com/
pubs/xGridsCHI2008.pdf

Sahai, A, Waters, B. Proceedings of Advances in Cryptology (EUROCRYPT). Vol. 3494. Springer-
Verlag; 2005. Fuzzy identity-based encryption; 457–473. URL

Six, J. Application Security for the Android Platform. O’Reilly Media; 2011. URL http://
shop.oreilly.com/product/0636920022596.do

Zain, S, Fong, PWL, Crampton, J, Sellwood, J. Proceedings of the ACM Symposium on Access
Control Models and Technologies (SACMAT). ACM; 2015. Relationship-based access control for
an open-source medical records system; 113–124. URL

Zeutro, LLC. An introduction to attribute-based encryption. White paper. 2016. URL http://
www.zeutro.com/docs/zeutro_abe_whitepaper.pdf

Zheng, Y. Master’s thesis. Worcester Polytechnic Institute; 2011. Privacy-Preserving Personal Health
Record System Using Attribute-Based Encryption. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.469.3312

Zickau, S, Thatmann, D, Butyrtschik, A, Denisow, I, Küpper, A. Proceedings of the International
Conference on Innovations in Clouds, Internet and Networks (ICIN). IFIP Open Digital Library;
2016. Applied attribute-based encryption schemes; 88–95. URL http://dl.ifip.org/db/conf/icin/
icin2016/1570228068.pdf

Greene et al. Page 29

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.dartmouth.edu/reports/abstracts/TR2017-823/
http://www.robreeder.com/pubs/xGridsCHI2008.pdf
http://www.robreeder.com/pubs/xGridsCHI2008.pdf
http://shop.oreilly.com/product/0636920022596.do
http://shop.oreilly.com/product/0636920022596.do
http://www.zeutro.com/docs/zeutro_abe_whitepaper.pdf
http://www.zeutro.com/docs/zeutro_abe_whitepaper.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.3312
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.3312
http://dl.ifip.org/db/conf/icin/icin2016/1570228068.pdf
http://dl.ifip.org/db/conf/icin/icin2016/1570228068.pdf

Listing 1: Example Data Query

Welcome to ShareHealth. Connecting to the database now.

You are now connected to ShareBase. Please enter the person whose

data you want to query:

Bob Smith

Now enter what type of data you want to query.

Heartrate

Do you want current or past data? Type “c” for current and “p” for

past

c

Bob Smith, Heartrate data for May 17, 2017 at 4:30pm: 68

Do you want to continue querying current Heartrate data? Type “y”

for yes and “n” for no

y

Bob Smith, Heartrate data for May 17, 2017 at 4:33pm: 72

Do you want to continue querying current Heartrate data? Type “y”

for yes and “n” for no

y

There are no further entries in this data stream. If this is a

current stream, there may be more later.

Greene et al. Page 30

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Example of temporal granularity supported by ShareHealth. S0 represents the first random

seed generated for this data stream. Each black tick represents the beginning of a new SRI,

with Sx being the random seed generated for the xth SRI. Data currently generated by Alice,

the data owner, is hashed using the 7th hash chain. Bob (top thick dark gray) and Charlie

(bottom thin light gray) are two data consumers with whom Alice would like to share

different temporal subsets of this data stream. To grant Bob access, Alice shares the hash

within the 4th hash chain (seeded by S4) that corresponds to the first record she would like

Bob to access in addition to the hash key for that chain. Bob will continue to receive the new

hash chain seeds until Alice terminates his access in the future by generating seed S10A in

the middle of the 10th SRI and sharing the new seed with all data consumers except Bob.

Alice desires to grant Charlie access to two different subsets of temporal data. She

retroactively shares seeds S2 through S5 with Charlie in addition to the hash key for the hash

chain, but does not share seed S6 (thereby restricting his access to only the time period

contained by SRI 2–5). She will also share seeds S8 through S11 (including S10A) as they are

generated to share future stream data with him.

Greene et al. Page 31

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
An overview of the protocol between ShareHealth components. Seed and key sharing

between ShareApp and ShareView occurs periodically after the initial key exchange.

ShareView uses seeds to generate hashes (where the xth value in a hash chain is denoted hx)

and requests the corresponding data for that hash (denoted dx) from ShareBase. ShareBase

returns the encrypted data (denoted E(dx)) for ShareView to decrypt (D(E(dx))). All

communications between ShareApp, ShareBase, and ShareView are encrypted using

standard protocols, such as TLS.

Greene et al. Page 32

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
The components of ShareHealth

Greene et al. Page 33

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Defining the attribute universe and attribute-tagging scheme (left) and the temporal range of

access for each consumer (right).

Greene et al. Page 34

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Execution time of encryption and upload

Greene et al. Page 35

Smart Health (Amst). Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	1 Introduction
	Our contributions
	Organization

	2 Background
	3 Security model
	3.1 Adversary model
	3.2 Threat model
	Threat to privacy
	Threat to data integrity and authenticity

	3.3 Trust model
	Data owner’s smartphone
	Cloud database
	Data consumer’s computer

	4 Our approach
	Background on Attribute-Based Encryption (ABE)
	4.1 Hash-chain indexing scheme
	4.2 Access control and revocation model
	Revocation

	4.3 Key management
	4.4 End-to-end system summary

	5 Implementation
	5.1 ShareApp: data owner’s smartphone app
	ABE incorporation
	Defining policies
	Local persistent and secure storage

	5.2 ShareBase: cloud database
	5.3 ShareView: data consumer application

	6 Evaluation
	6.1 Security analysis
	Scenario 1: Cloud database compromise
	Scenario 2: Data consumer computer compromise
	Scenario 3: Consumer(s) as attacker(s)
	Scenario 4: Data-owner smartphone theft

	6.2 Performance analysis

	7 Use cases and applications
	Case 1: Remote patient monitoring
	Case 2: Research
	Case 3: Preventative medicine
	Case 4: Relevant medical history

	8 Related work
	9 Discussion and future work
	10 Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

