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Abstract

A number of studies carried out since the early ‘70s has investigated the effects of isolation

on genetic variation within and among human populations in diverse geographical contexts.

However, no extensive analysis has been carried out on the heterogeneity among genomes

within isolated populations. This issue is worth exploring since events of recent admixture

and/or subdivision could potentially disrupt the genetic homogeneity which is to be expected

when isolation is prolonged and constant over time. Here, we analyze literature data relative

to 87,815 autosomal single-nucleotide polymorphisms, which were obtained from a total of

28 European populations. Our results challenge the traditional paradigm of population iso-

lates as structured as genetically (and genomically) uniform entities. In fact, focusing on the

distribution of variance of intra-population diversity measures across individuals, we show

that the inter-individual heterogeneity of isolated populations is at least comparable to the

open ones. More in particular, three small and highly inbred isolates (Sappada, Sauris and

Timau in Northeastern Italy) were found to be characterized by levels of inter-individual het-

erogeneity largely exceeding that of all other populations, possibly due to relatively recent

events of genetic introgression. Finally, we propose a way to monitor the effects of inter-indi-

vidual heterogeneity in disease-gene association studies.

Introduction

Studying groups subject to barriers to gene flow provides a unique opportunity to understand

how inbreeding and drift have shaped the structure of human genetic diversity. A very large

number of investigations carried out since early ‘70s has examined the effects of isolation on

intra- and inter-population variation in diverse geographical contexts, using genetic
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polymorphisms varying in mode of inheritance and evolutionary rate [1–5]. Currently, the

consequences of isolation may be better studied using genome wide approaches (GWAs), such

as those based on single-nucleotide polymorphism (SNP) microarrays, which enable the

simultaneous analysis of markers distributed across the human chromosomes. Compared to

unilinearly transmitted polymorphisms of mitochondrial DNA and the Y chromosome or to

small panels of autosomal loci, GWA approaches make it possible to detect the imprints of iso-

lation left on genomic makeup not only by mutation, but also by recombination [6–14].

In a previous paper, we have compared intra and inter-population measures of genomic

variation in a large sampling of European populations in order to understand to what extent

the discrete open and isolated dichotomous categories correspond to the way in which their

genomic diversity is structured [15]. In this new study, we move our focus to the heterogeneity

among genomes within populations. Our results highlight the existence of different and partly

unexpected patterns, which shed new light on the genetic structure of population isolates and

have implications for disease-gene association studies.

Materials and methods

Dataset

Our dataset includes 610 healthy unrelated adult individuals from 28 European populations

(Table 1), nine of which with clear signatures of genetic isolation [15–17]. The remaining pop-

ulations were chosen using the following three criteria: (i) geographic proximity with the iso-

lated populations; (ii) geographic coverage of the European continent; (iii) sample size of at

least 10 individuals. Compared to the dataset used by Anagnostou et al. [15], we included five

open populations (Belarus, Hungary, Lithuania, Romania and Ukraine) and removed the Cim-

brians since it lacked consistent signatures of genetic isolation. Despite its limits [15], we main-

tain here the dichotomy between open and isolated population for practical reasons (see also

the Discussion section).

Data analyses

The samples genotyped with the GenoChip 2.0 array were merged with literature data and

then filtered according to the standard genotype quality control metrics using PLINK [23]:

(i) SNP genotyping success rate> 90%; (ii) individuals with a genotyping success rate> 92%;

(iii) absence of relatedness to the 3rd generation (Identity by Descent, IBD > 0.185). Concern-

ing the latter analysis, when a related pair of individuals was detected, only one sample was

randomly chosen and used for the subsequent analysis. We also excluded three SNPs which

showed a statistically significant departure from Hardy-Weinberg equilibrium (p-value thresh-

old of 1x10-6).

Principal components Analysis was performed using PLINK package (v. 1.9). The position

of the centroid for each population was identified by averaging the values for the two axes,

while the distance of each point from the centroid was calculated using the formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � xÞ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � yÞ2

q
.

The following statistics were also calculated using PLINK package (version 1.9): (i) the pro-

portion of homozygous loci (HOM) for each individual; (ii) the proportion of identical geno-

types between pairs of individuals within each population (IBS); (iii) the number and total

length of stretches of contiguous homozygous genotypes, RoH-KB and RoH-NSEG, respec-

tively. For the HOM, RoH-KB and RoH-NSEG statistics, the median was taken as a population

value, while individual IBS values were then calculated as the mean of each distribution. The

RoHs were identified using default settings (sliding window of 5 Mb, minimum of 50 SNPs,
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one heterozygous genotype and five missing calls allowed), with a minimum-length cut-off of

500 kb and 14 homozygous SNPs [11]. To measure the spread between individual values

within each population, the standard sample variance formula was used for all the above

parameters.

We used SHAPEIT v2.r790 [24] to phase the data, using the 1000 Genomes dataset as a ref-

erence panel. We split our dataset by chromosome and phased all individuals simultaneously

Table 1. Demographic information about the populations under study.

POPULATION LABEL N CURRENT CENSUS TIME SINCE ISOLATION

(years before present)

ISOLATION FACTOR REFERENCE

North Eastern Italian isolates

Sappada SAP 24 1,307� ~1000 G/L [15]

Sauris SAU 10 429� ~800 G/L [15]

Timau TIM 24 500� 800–1000 G/L [15]

Sardinians isolates

Benetutti BEN 25 1,971� ~5000 G/L [15]

Carloforte CFT 25 6,301� 268 G/L [15]

North Sardinia NSA 25 96,448� 3900–2900 G/L [15]

Sulcis Iglesiente SGL 23 128,540� 2800 G/L [[15]

European isolates

Orkney ORK 15 21,349� ~1300 G [18]

French Basques BAS 24 ~650,000�� 5500–3500 G/L [18]

South Europe

Albania (Gheg) ALB 24 2,831,741� - - [19]

Croatia CRO 20 4,284,889� - - [20]

Greece GRE 20 10,815,197� - - [21]

Spain SPA 34 46,815,916� - - [21]

East Europe

Belorussia BEL 17 9,498,700� - - [20]

Bulgaria BUL 31 7,202,198� - - [21]

Hungary HUN 19 9,830,485� [20]

Lithuania LIT 10 2,842,412� - - [20]

Poland POL 32 38,511,824� - - [21]

Romania ROM 16 19,511,000� - - [20]

Russia RUS 25 144,192,450� - - [18]

Ukraine UKR 20 42,539,010� - - [22]

North Europe

Norway NOR 18 5,214,890� - - [21]

British Isles GBR 16 63,181,775� - - [21]

West Europe

France FRA 28 67,264,000� - - [18]

Italy

North Italy (Aosta) NIT 22 34,619� - - [15]

Central Italy (Piana di Lucca) CIT 25 394,318� - - Tofanelli S., personal communication

South Italy SIT 18 14,184,916� - - [21]

Sicily SIC 20 5,077,487� - - [21]

� National population and housing census—2011 (ALB, BEN, CIT, CFT, CRO, CVV, GBR, GRE, NIT, NSA, ORK, POL, SAP, SAU, SGL, SIC, SIT, SPA, TIM)—2014

(BUL)– 2015 (ROM, RUS, NOR)—2016 (BEL, FRA, HUN, UKR)—2017 (LIT)

�� EuskoJaurlaritza 2008

https://doi.org/10.1371/journal.pone.0214564.t001
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and used the most likely pairs of haplotypes (using the—output-max option) for each individ-

ual for downstream applications. For the phasing and conversion, we used genetic map build

37 downloaded with SHAPEIT. We painted each individual using every other individuals of

the same population as a donor [25]. We first inferred the global mutation probability and the

switch rate for chromosomes 1, 5, 8, 12, 17 and 22 in 10 iterations of the EM (expectation max-

imization) algorithm. We fixed the parameters estimated from this analysis (Ne, -n flag, and θ,

-M flag) to infer the ChromoPainter coancestry matrix for each chromosome. Using Chromo-

Combine, we combined the data into a single final coancestry matrix. The haplotype chunks

and their total length were estimated using as recipients and donors the individuals of the

same population (CHR_P).

The comparison of inter-individual heterogeneity for measures of intra-population varia-

tion as well as CHR_P was estimated through the equality of variances (Brown-Forsythe

Levene type procedure), after the application of Bonferroni correction (R package lawstat).

Maximum likelihood estimates of individual ancestries were obtained using ADMIXTURE

v1.23 under default values. Its algorithm is relatively robust to SNP ascertainment bias [26]

since it assigns individual ancestry to a finite number of population clusters, and uses a large

multilocus dataset, while the most informative SNPs for ancestry inference are variants with

large frequency differences across populations [27]. We applied unsupervised clustering analy-

sis to the whole sample set, exploring the hypothesis of K = 2 to 15 clusters. Five independent

replicates were run and aligned with CLUMPP. Best K was estimated by the cross-error esti-

mation implemented in ADMIXTURE. We calculated individual heterogeneity (ADX_HET)

as the squared difference between each ancestry proportion and its population mean, averaged

over all possible ancestries. Population heterogeneity was obtained as the median of individual

values.

Admixture dates were inferred using the number of ancestry switches and ancestry propor-

tions following Johnson et al [28]. Phased chromosomes were used to run the RFMix algo-

rithm [29] with the PopPhased option and default parameters. This modelling approach

identifies the ancestry of discrete genomic segments of arbitrary size using a conditional ran-

dom field parameterized by random forests trained on a reference population panel. Finally,

the output of RFmix was employed to calculate both the number of ancestry switches and

ancestry proportions for each target individual.

Results

As a first sight to the results of inter-individual genomic heterogeneity, we plotted a PCA and

evaluated the level of scattering within each population (Fig 1). The resulting patterns suggest

a non-uniform distribution of inter-individual heterogeneity values. A substantial departure

from the common background was observed for seven out of nine isolates: Benetutti, North

Sardinia and Sulcis Iglesiente (first component), Sappada and Sauris (second component),

Basques (third component) and Timau (fourth component). More importantly for our

research question, combining data from the two plots Timau, Sauris and Sappada were the

populations showing the highest median distance of individual data from the centroid, fol-

lowed by Romania and North Sardinia (see S1 Table).

Thereafter, In order to explore more exhaustively the genomic heterogeneity occurring

among individuals within populations, we used four intra-population measures of genomic

diversity, based either on single nucleotide (HOM, IBS) or haplotype variation (RoH-KB,

RoH-NSEG), for which intra-population variance can be calculated. In contrast with the tradi-

tional paradigm of population isolates as genetically uniform entities, taken as a whole isolated

populations showed heterogeneity values comparable (HOM, IBS) or higher (RoH-KB and

Genomic heterogeneity within European population isolates
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Fig 1. Principal components analysis of the isolated and open populations. (A) Plot of the first and second

components and (B) Plot of the third and fourth components. Black dots represent the centroid for each population.

Labels as in Table 1.

https://doi.org/10.1371/journal.pone.0214564.g001
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RoH-NSEG; Mann-Whitney test p-value < 0.05) than the open ones (Fig 2). These results

were robust to the exclusion of small-sized population sample of Sauris from the dataset

(N = 10). Furthermore, given the contribution of Sappada and Timau to the patterns described

above, we performed again the comparisons removing also these other two isolated popula-

tions. The distribution of values for the open and isolated population groups turned out to be

comparable (Mann-Whitney test p-value > 0.05) for all parameters reconfirming that inter-

individual comparisons do not support the idea that isolates are structured as genetically uni-

form entities (S2 Table).

Fig 2. Distribution of inter-individual heterogeneity values across populations and Mann-Whitney U test. Comparison between isolated (red) and open (blue)

populations for homozygosity (A), median values of intra-population IBS (B), number of RoHs (C) and total length of RoHs (D).

https://doi.org/10.1371/journal.pone.0214564.g002
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Looking at single populations, the most inbred ones—Sauris, Sappada and Timau—were

found to be among the most diverse for all measures along with North Sardinians.

Then, we compared heterogeneity for ancestry proportions (ADX_HET). Also, in this case,

isolates, as a whole, were found to be more heterogeneous than open populations (1.38E-03 vs

6.44E-04), but the difference was statistically insignificant (Mann-U-Whitney p-value > 0.05).

The greatest values were again obtained in the three population isolates from the eastern Ital-

ian Alps, followed by North Sardinians (Fig 3A and 3B), with a noticeable difference: the het-

erogeneity was more evenly distributed across individuals of the former populations, as

indicated by their ratios between average and median values for the best supported K value

(K = 4; S1 Fig and S3 Table). Interestingly, we detected a highly prevalent village-specific com-

ponent in 50% of the genomes from Sappada (12 out of 24, at K = 4) and in 54% of those from

Timau (13 out of 24 at K = 5, S2 Fig). The remaining genomes were clearly more heteroge-

neous, a likely signature of recent admixture.

Finally, we took into account the heterogeneity of the total length of haplotype chunks

shared between individuals (CHR_P). The distribution of this parameter reconfirmed the pat-

terns observed for groups (higher values in isolates than open; Mann-Whitney U test based on

median variance values, p-value = 0.0029) and single populations (higher values in Sauris, Sap-

pada and Timau). As the only peculiarity, a noticeable signal was provided also from the Ork-

ney islanders (Fig 3C).

In order to understand if the results obtained for the three north eastern Italian isolates

might be due to introgression of exogenous genetic components, Sappada and Timau samples

were splitted into two sub-groups on the basis of ADMIXTURE ancestry proportions (at K = 4

and K = 5 for Sappada and Timau, respectively). In the case of Sauris, sub-groups would had

been too small to be separately analyzed. Individuals with a highly prevalent village-specific

ancestry (threshold 99%; sub-groups SAP_VSA and TIM_VSA) were taken separate from

those with more heterogeneous ancestry, who were termed as SAP_HTA and TIM_HTA.

Thereafter, we performed the Levene’s tests for equality of variances between all populations

(27 comparisons for all combinations population/measure). Only comparisons with a ratio

between standard deviations >1 and significant after Bonferroni correction are shown in Fig

4. The highest number of overall significant comparisons was found for Sauris, which was also

the only population with hits in all measures, while the high values of inter-individual hetero-

geneity for the other north-eastern Italian isolates were not captured by HOM. A relatively

high number of significant comparisons still persisted in the HTA groups of both Sappada and

Timau, mainly due to KB and CHR_P, respectively. Signatures of inter-individual heterogene-

ity were recorded also in VSA sub-groups, more evidently in Timau where significant compar-

isons were observed not only for CHR_P (like in Sappada) but also for KB.

Given the support received by genetic introgression in generating the observed pattern

from the analyses described above, we went to infer the time frames of the admixture which

likely occurred between SAP_HTA and TIM_HTA sub-groups and geographically-close Ital-

ian speaking populations. We preliminarily tested the reliability of our estimates panel using

genomic profiles of African-Americans obtained with a much denser SNP set. To this purpose,

we retrieved data from the 1000 genomes project phase 3 and used a simple three population

model with 30 randomly chosen individuals from the African-American population (ASW) as

targets and an equal number of individuals of European (CEU) and African (YRI) origin as

sources. Estimates obtained by using our SNP panel and another including 8,142,382 markers

(with MAF<0.05) were close each other and consistent with previous results based on molecu-

lar data [30]: the admixture event dated at around six generations ago, with an average value

across individuals of 6.9+/-3.7 and 6.2+/-2.8 for the high- and low-density SNP sets, respec-

tively (see S4 Table for individual estimates). Then, we applied the same procedure to the
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admixed sub-groups (SAP_HTA and TIM_HTA) as targets, while the un-admixed ones

(SAP_VSA and TIM_VSA) and the northern Italians (NIT) served as sources. The resulting

admixture dates were relatively recent, but consistent with the grandfather rule: from 3.8 to 5.5

generations (average = 4.6) in Sappada and from 3.8 to 4.8 in Timau (average = 4.4) (see S5

and S6 Tables for individual results). As a matter of fact, our sample selection criteria proved

effective in avoiding sampling of recently admixed individuals, thereby allowing us to draw a

picture of the genomic structure preceding the isolation breakdown, an event occurred in the

eastern Alps region between the two world wars [30,31].

Interpretive caveats

The results described above should be interpreted in the light of a number of potential biases

and confounding factors. A first issue concerns the adequacy of our SNP panel to represent

Fig 3. Inter-individual heterogeneity of ancestry components and intra-population haplotype sharing. (A) Maximum likelihood estimates of individual

ancestries (K = 4) for the 28 populations under study; (B) intra-population distribution of the admixture heterogeneity measure (y axis log scale); (C) Inter-

individual heterogeneities of the total length of chunks among individuals in each population (y axis log scale; see Materials and methods for more detail).

https://doi.org/10.1371/journal.pone.0214564.g003
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Fig 4. Pairwise comparisons of inter-individual heterogeneity. Number of statistically significant pairwise comparisons with a ratio between standard

deviations>1 after Bonferroni correction. For the measures based on pairwise comparisons (IBS and CHR_P), population variance was calculated using the

individual median values. Comparisons between Sappada and Timau and their sub-groups (SAP_VSA, SAP_HTA, TIM_VSA and TIM_HTA) were not

included.

https://doi.org/10.1371/journal.pone.0214564.g004
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the genetic variation of the populations under analysis. Although it contains a relatively small

number of SNPs compared to those used in other surveys of genomic variation, the GenoChip

array should provide an adequate coverage of diversity across European populations due to

their large number (92) in the reference panel [19,32]. Furthermore, by implementing the cri-

terion of geographical proximity in our experimental design (see above), we expect to further

reduce confounders that could potentially originate from ascertainment bias [33,34].

A second potential issue is related to the likely under-representation of rare alleles in our

panel, since they have been shown to retain signals of between and within population differen-

tiation stronger than common alleles [14]. Obviously, increasing the number and type of loci

(according to their MAF) and making them proportionate to those occurring in the entire

genome (or, better, scanning entire DNAs) leads to more precise evaluations of individual and

population genomic structure. However, the estimates of inter-individual genomic heteroge-

neity in each population should not be significantly influenced by the proportion between

common and rare alleles unless it is inconsistently distributed across individuals, as could be

the case with stratified populations where sub-populations differ substantially in effective size,

gene flow and assortative mating [35].

Third, only one of the parameters used here (intra-population haplotype sharing rate,

CHR_P) was estimated using phased data. Despite its relatively low density, the Geno chip has

been proved useful to reconstruct informative haplotype chunks after phasing procedure [19].

In order to assess the accuracy of our results, especially for isolated populations, we performed

five independent phasing runs and calculated the average individual switch error rate (SER).

The average SER was even lower in isolated than open populations (7.51% vs 9.11%), which

suggests that the distortion introduced in the estimated length of haplotypes was comparable

for the two groups.

Taking into account all these aspects, we believe that our approach is suitable for a prelimi-

nary assessment of inter-individual genomic heterogeneity in European populations.

Discussion

Inter-individual genomic heterogeneity within European population

isolates

Previous GWA studies, which analyzed genetic variation of isolated human populations,

focused on measures which summarize single nucleotide and haplotype variation within or

among groups (e.g. [11,36,37]). A previous study provided evidence of structure within an iso-

lated population (Cardile, southern Italy [38]), but no comparison with other isolates and

open populations was carried out. The possible presence of structure within population iso-

lates is worth exploring in depth since it could be a signature of events of recent admixture

and/or subdivision; both could potentially disrupt the homogeneity due to the founder effect

and persistence of inbreeding over generations.

To gain new insights into the genomic structure of isolated populations, we decided to

focus on the distribution of variance (heterogeneity) of intra-population diversity measures

across individuals within populations, rather than relying on their average values. In contrast

with their common view as groups of genetically homogeneous individuals, we observed that

the inter-individual genomic heterogeneity of isolated populations is at least comparable to

that of the open ones. It is worth reminding that applying standard measures of intra-popula-

tion diversity to our dataset produced the expected pattern, with isolates characterized by

higher homozygosity, longer and more numerous ROHs and higher IBS values than open pop-

ulations, although a clear discontinuity of values between the two groups is not noticeable (see

[15]).
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Interestingly, three small and highly inbred isolates (Sappada, Sauris and Timau) were char-

acterized by particularly high heterogeneity values, which largely exceeded those calculated in

all other populations. Given that there is no evidence to support the presence of sub-groups

with distinct matrimonial behaviours for any of them, this finding could hardly be put down

to population subdivision. However, the observed patterns could be explained, at least in part,

by relatively recent events of genetic introgression, such as those suggested by our admixture

dates based on ancestry switches. In fact, after removing the individuals with higher percent-

ages of mixed ancestries from the Sappada and Timau samplings, their number of statistically

significant pairwise comparisons for inter-individual heterogeneity diminished substantially

(Fig 4). We reason that exogenous components might have survived more easily in the three

isolates from northeastern Italy than in other populations for two reasons. Firstly, when most,

if not all, matrimonial unions occur within small and highly inbred isolates, as is the case for

the three populations cited above, carriers of new genetic components may have a greater

chance of contributing to the gene pool. In line with this idea, in our global dataset, a high

and significant positive correlation was observed between inbreeding rates (S7 Table) and

Admixture inter-individual heterogeneity values (Pearson correlation coefficient: 0.768;

p-value<0.001). Secondly, the ratio between sample and census size for Sauris, Sappada and

Timau (from 1.8% to 4.8%) is greater than in other isolates (from 1.3% to< 0.1%), which

increases the probability of sampling individuals bearing genetic components occurring at low

or moderate frequencies.

A retrospective look at previous studies shows that other small-sized European isolates with

a very high ratio between sample and census size, namely Clauzetto, Erto, Illeggio, Resia and

(another sampling from) Sauris, show a similar pattern to what we observed [36]. A high level

of heterogeneity among individuals was in fact evidenced by their ancestry proportions and by

the results of different types of principal component analyses (basic, spatial and discriminant).

The results obtained were explained by Esko et al. [36] as a signature of population sub-struc-

ture. Unfortunately, the data this research work was based on were not released by the authors

and, therefore, it was not possible to re-analyze and compare them with our results.

Implications for association studies

Whatever the cause of this high genomic inter-individual heterogeneity we observed in Sap-

pada, Sauris and Timau, we cannot ignore the question: “what do our results imply for the way

in which bio-medical studies are carried out in population isolates?”. Although, the most

robust evidence was noticed in some young and small-sized population isolates—which are

less used in association studies than the older and larger ones [39]—our results are worthy of

attention since they highlight a confounding factor which has not been yet adequately taken

into account. In fact, to the best of our knowledge, the effect of increased allelic and haplotypic

heterogeneity has been investigated only in relation to the issue of undetected population

structure in large scale association studies [40], whereas we argue that it may represent a draw-

back also for genetic investigations of population isolates.

We suggest that genetic clustering algorithms may be used to test for the presence of indi-

viduals with different ancestry proportions within isolated populations, similarly to what has

been previously done by Esko et al. [36] (see also [41]). Whenever genomes with substantially

more heterogeneous ancestry are detected, it would be worth removing them, re-estimating

the parameters of gene-disease association and comparing the new results with those obtained

using the whole sample. This could help evaluate whether the genomes with mixed ancestry—

in which the reduction of the haplotypic and allelic diversity produced by the effects of the

Genomic heterogeneity within European population isolates

PLOS ONE | https://doi.org/10.1371/journal.pone.0214564 October 9, 2019 11 / 15

https://doi.org/10.1371/journal.pone.0214564


founders and inbreeding should be less detectable—may have acted as confounding factors.

For each dataset, different ancestry proportions could be tried as thresholds, and the one able

to reduce inter-individual heterogeneity without leading to a significant loss of power should

be used.

Conclusions

In this study we have shed light on the occurrence of relatively high levels of inter-individual

heterogeneity in population isolates and proposed a way to monitor their effects on the infer-

ences of association between genes and diseases. This research work challenges the traditional

paradigm which considers population isolates as genetically uniform entities, providing fur-

ther evidence that dichotomizing human populations into open and isolated groups fails to

capture the actual relations among their genomic features [15]. We hope that our study can

stimulate further investigations based on a wider variety of samples and denser SNP panels or,

better, whole genome sequencing, through which a better understanding of the fine-grained

genomic structure of human population isolates will finally be reached.
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