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Abstract

In the last few decades, hyaluronic acid (HA) has become increasingly employed as a biomaterial 

in both clinical and research applications. The abundance of HA in many tissues, together with its 

amenability to chemical modification, has made HA an attractive material platform for a wide 

range of applications including regenerative medicine, drug delivery, and scaffolds for cell culture. 

HA has traditionally been appreciated to modulate tissue mechanics and remodeling through its 

distinctive biophysical properties and ability to organize other matrix proteins. However, HA can 

influence cell behavior in much more direct and specific ways by engaging cellular HA receptors, 

which can trigger signals that influence cell survival, proliferation, adhesion, and migration. In 

turn, cells modify HA by regulating synthesis and degradation through a dedicated arsenal of 

enzymes. Optimal design of HA-based biomaterials demands full consideration of these diverse 

modes of regulation. This review summarizes how HA-based signaling regulates cell behavior and 

discusses how these signals can be leveraged to create cell-instructive biomaterials.
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Introduction:

Hyaluronic acid (HA, also called hyaluronan) is a linear polysaccharide expressed in almost 

all bodily tissues and fluids at a concentration and molecular weight (MW) that varies by 

tissue type.1 The nearly ubiquitous expression of HA is suggestive of both its biological 

importance as well as its potential for clinical application. HA is amenable to a variety of 

chemical modifications through three orthogonal functional moieties (hydroxyl, carboxyl, 

and amide), facilitating its use for numerous applications requiring conjugation or 

crosslinking.2,3 While often incorrectly portrayed as an inert or non-adhesive scaffold, HA 

actually provides a rich abundance of mechanical and biological signals to surrounding cells 

and tissues.4,5 Cell surface receptors specific for HA enable cells to respond to the 

biophysical properties of HA, which can be modulated in vivo by controlling HA 

abundance, MW, and other factors.6,7 Cues from HA within the extracellular matrix (ECM) 

influence cell adhesion, migration, and downstream cell signaling (Fig. 1). In turn, cells 

modify and regulate the HA in the ECM through synthesis, degradation, and organization.8,9 

HA-based signaling is especially important in development, wound healing, and metastatic 

disease.10–13 Resultant biological signals are critically dependent on the biophysical 

properties of HA, and thus require consideration in biomaterial design.

Cells bind to HA directly through membrane receptors resulting in transduction of 

biochemical signals and reinforcement of mechanical linkages that directly mediate 

adhesion and motility.6,14 The most studied of these HA cell receptors are CD44 and the 

Receptor for HA-Mediated Motility (RHAMM) (Fig. 1). CD44 is a transmembrane receptor 

that binds to extracellular HA through a single binding domain and links indirectly to the 

actin cytoskeleton by way of ezrin, moesin, or radixin (ERM) family proteins or to the 

spectrin cytoskeleton through ankyrin proteins.14 RHAMM contains two HA-binding 

domains in which HA is bound less tightly than in the HA-binding domain of CD44.15,16 

RHAMM is not a transmembrane receptor, and can exist intracellularly or on the 

extracellular cell surface in complex with other receptors such as CD44.16 The reported 

relationship between RHAMM and CD44 in mediating cell adhesion to HA has been 

somewhat contradictory and may be context dependent. For example, Lokeshwar and 

colleagues found RHAMM to be the main mediator of HA binding in primary human 

endothelial cells.17 In contrast, Savani and colleagues found that anti-CD44 but not anti-

RHAMM antibodies inhibited adhesion of endothelial cells to HA.18 Similarly conflicting 

observations have been reported in glioblastomas (GBMs).19,20 These findings may 

potentially be reconciled by the fact that RHAMM modifies signaling through CD44, with 

the degree of modification depending strongly on context. For example, studies of invasive 

breast cancer cells demonstrate that CD44 and RHAMM coordinate to regulate ERK1/2 

signaling and cell motility.21 Overall, the role of RHAMM and CD44 interactions in cell 

motility and dependence on the microenvironment remains an open question.

Independent of its relationship with RHAMM, CD44 plays a critical role in cell motility.14 

For example, CD44 protein expression is increased in highly invasive and/or metastatic cells.
22,23 In GBMs, high CD44 protein levels correlate with the most rapidly invading cell 

populations,24 and neutralization or knockdown of CD44 significantly impairs GBM 

invasion in animal models.25 CD44 can directly support adhesion and migration, likely 

Wolf and Kumar Page 2

ACS Biomater Sci Eng. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



through its intracellular cytoskeletal linkages. For example, human prostate cancer cells 

expressing CD44 mutants lacking the ankyrin binding domain do not adhere to HA.26 

However, the relative contributions of ERM and ankyrin binding to CD44-dependent 

signaling remains poorly understood and are likely to be context-dependent. CD44 can also 

complement and potentiate signaling from other surface receptors; for example, Chopra and 

colleagues found that HA-CD44 binding can increase integrin signaling resulting in cell 

spreading.27

Growing evidence demonstrates that CD44, like integrins, is involved in sensing mechanical 

signals from the HA matrix. Our laboratory demonstrated that CD44-mediated adhesion and 

migration depend on the storage modulus of crosslinked HA hydrogels.20 One possible 

mechanism governing CD44-mediated mechanosensitivity is that CD44 can undergo force-

dependent switching between low affinity and high affinity HA-binding states. The crystal 

structure of the CD44-HA complex supports this idea, revealing that there are at least two 

binding conformations.28 Similarly, molecular dynamics simulations suggest that HA can 

bind to CD44 in three different conformations, two of which are metastable states that 

enable low affinity binding.29 DeGrendele et al. demonstrated that leukocytes adopt a high-

affinity state for HA binding during rolling, when adhesive tethers are stressed.30 Suzuki et 

al. showed that force experienced by leukocytes during rolling could convert HA-CD44 

binding from a low affinity to high affinity state.31 While these studies differ on the number 

of proposed binding states, they together strongly suggest that CD44 exhibits force-

dependent changes in HA-binding affinity and therefore mechanosensitivity. Shedding of 

CD44 is also important for CD44-mediated functions, but the role in mechanosensitivity is 

poorly understood.32 While there are still numerous open questions regarding CD44-

mediated mechanosensitivity and motility, these findings underscore the biological 

importance of HA mechanics within the ECM.

Several other cell receptors have been reported to bind to HA, although the relative affinities 

for HA, mechanical roles, and resulting downstream signaling are incompletely understood. 

Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) is a lymphatic-specific HA 

receptor that may play an important immunological function.33,34 Layilin is a 

transmembrane protein reported to bind to HA extracellularly and to radixin and merlin 

proteins intracellularly, but the function is poorly understood.35,36 HA signaling can also be 

mediated by Toll like receptors 2 and 4 (TLR2/4),37–39 but more recent evidence suggests 

that the signaling effects may not act through a direct ligand-receptor interaction.40 Finally, 

tumor necrosis factor-stimulated gene 6 (TSG-6), is a signaling factor that can bind with HA 

and may enhance CD44-based signaling.41,42 Elevated levels of TSG-6 have been observed 

in the central nervous system following injury.43

The biophysical properties of HA can greatly impact the nature of HA-induced cell signaling 

such that optimized biomaterial design is necessary for appropriate downstream effects. In 

this review, we begin by discussing key biophysical properties of HA most pertinent to 

biomaterial design, broadly defined as mechanics, adhesivity, and degradability. We focus on 

how HA mechanics vary by tissue type and state, and how adhesivity and degradability 

relate to mechanics. These properties can profoundly influence cell and tissue homeostasis 

and disease, and we present selected examples from development, wound healing, and tumor 
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progression. Within a biomaterial, the biophysical properties of HA are critically dependent 

on fabrication methods. Thus, in the second part we discuss how these biophysical 

properties can be incorporated in biomaterial design, along with the benefits and limitations 

of various strategies for doing so. As a whole, this review should provide guidance in 

selecting and achieving optimal biophysical design criteria for a given application.

PART I: HA Biophysical Regulation of Cell Behavior within Tissue

HA is a critical driver of a variety of normal and disease processes, including development, 

wound healing, tissue maintenance, inflammation, and metastasis.4,9–13,44 HA properties, 

particularly MW and abundance, undergo characteristic changes that support and drive tissue 

remodeling and homeostasis.1,8,45 For example, HA levels in tissue tend to be higher during 

development and play a particularly prominent role in the hematopoietic stem cell niche and 

central nervous system.11,46,47 HA is dynamically activated in the early stages of wound 

healing during which it may promote matrix organization, fibroblast migration, or tissue 

hydration.12,44 HA and associated regulatory enzymes are abnormally overexpressed in a 

variety of tumor types.10,13 This section will cover the biophysical properties of HA 

pertaining to adhesivity, organization, and mechanics with a discussion of their 

interdependency and select examples of biological impact.

HA Adhesivity and Organization Influences Mechanics

HA is a linear and negatively charged polysaccharide composed of disaccharide repeats of 

D-glucuronic acid and N-acetyl-D-glucosamine (Fig. 2).48 It is unique among 

glycosaminoglycans in that it is not a proteoglycan, is synthesized at the plasma membrane 

instead of the Golgi apparatus, and remains unsulfated and as an unbranched structure 

within the ECM.49 Each monomer contains one carboxylic acid, one primary alcohol, and 

one amide moiety, which are important for biological function and available for chemical 

modification. The carboxylic acid of the glucuronic acid subunit is effectively deprotonated 

at physiological pH, giving rise to a polyanionic character.50

The mass of an average human adult consists of ~15 g of HA throughout the body, with 

~30% of this total turned over daily.8,49 While some HA is found in virtually all tissue 

ECMs in the body, the abundance, organization, and MW of HA are strongly tissue-

dependent.1 Solid tissues in rabbit have been reported to have a range from 1 – 500 μg HA /g 

of wet tissue, while human cartilage contains as much as 2500 μg HA /g of wet tissue.51,52 

While the concentration of HA in most fluids is in the ng/mL to low μg/mL range, the 

concentration of the vitreous humor is as much as 200 μg/mL53 and that of the synovial joint 

is as much as 2–3 mg/mL.54 HA is traditionally regarded as an extracellular polymer; very 

little is understood about the intracellular role of HA.9,55 We focus exclusively on 

extracellular HA in this review based on its relevance for biomaterial design.

In fluids, HA does not exhibit a well-defined network structure but instead forms entangled 

networks that contribute to fluid viscosity particularly at high molecular weight (HMW) or 

with light crosslinking.56,57 The persistence length of HMW hyaluronan has been estimated 

to be ~10 nm, approximately 10 monomers, which is around the same length of HA that can 

bind to a single HA-binding domain.58 Proteins with HA-binding domains (hyaladherins) 
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contribute to non-covalent assembly of HA in vivo, and aspects of this assembly can be 

mimicked in vitro. In the presence of aggrecan, HA forms more ordered structures in 

solution with higher packing densities. leading to an increase in viscosity.59 In synovial joint 

fluid, assembly of these dense, viscous complexes are widely regarded as important for 

maintaining shear flow while resisting osmotic compression and absorbing compressive 

force.59–61

In solid tissues, HA is non-covalently assembled into a network by a subset of proteoglycans 

with HA binding domains.13,49,62 The organization varies by tissue type as well as the local 

cellular microenvironment (Fig. 3). In the brain, tenascins organize with link proteins and 

chondroitin sulfate (CS) proteoglycans such as versican, neurocan, and aggrecan to stabilize 

entangled networks of HA.62,63 These networks can form perineuronal nets that surround the 

cell membrane.64 HA-matrix organization dominates the intraparenchymal space of brain 

ECM, which is particularly high in HA content and low in fibrous proteins such as collagen 

I.65 In cartilage, HA is also bound and organized by proteoglycans but assembles into an 

interpenetrating network with collagen fibrils.66,67 HA-CS binding is mechanically 

reinforced by complexation with link proteins, which contain binding domains for both HA 

and CS.68 The organization and mechanical reinforcement of HA with other proteins is thus 

important for the mechanical properties of the overall matrix.

Hyaladherin-HA binding is generally based on a conserved mechanism involving 

electrostatic interactions. HA-binding domains, both in matrix proteins and cell receptors, 

contain positively-charged lysine and arginine residues, which coordinate with the 

negatively-charged HA backbone and bind 3–6 monomers depending on the hyaladherin 

type.69,70 Bano and colleagues investigated hyaladherin-HA affinity by measuring the 

rupture forces of HA and various hyaladherin binding domains using atomic force 

microscopy.71 The rupture force roughly correlated with the number of HA monomers 

bound by the hyaladherin and ranged from 24–52 pN. Remarkably, reinforcing aggrecan-HA 

binding by complexing with cartilage link protein effectively increased the binding force 

above that measured for streptavidin-biotin bonds. This result further supports the idea that 

HA-binding affinity depends on the length of the HA segment bound as well as underscores 

the role of HA in supporting ECM mechanical integrity.

Remodeling of HA Alters Mechanics

The MW of HA in the human body varies widely, from tetramers of around 1 kDa to HMW 

species of around 2 MDa.45 Changes in MW distribution affect both the physical properties 

of HA within the ECM as well as cellular biochemical signaling. The effects of MW on the 

physical properties of ECM stem largely from its contributions to mechanics. Within 

solutions, increasing MW greatly increases viscosity of HA, reflective of greater 

entanglement.72 The mechanical properties of HMW HA are key to the proper function of 

synovial joint fluid by resisting compressive forces while allowing shear thinning.73,74 

Increases in low molecular weight (LMW) HA are associated with pathological conditions; 

for example, osteoarthritis patients exhibit a higher ratio of LMW to HMW HA in synovial 

fluid compared to healthy patients.75 Similarly, LMW HA is not commonly found in solid 

tissue unless the tissue is undergoing either a physiological or pathological remodeling 

Wolf and Kumar Page 5

ACS Biomater Sci Eng. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



process.1,8,45 Elevations and other alterations in LMW HA species have been observed in 

cartilage during aging,76 as well as in a variety of tumors.77–79 Broadly, these studies 

suggest that a shift from HMW to LMW species is associated with plasticity in ECM 

mechanics and potentially loss of structural integrity.

HA MW can also influence biological processes through biochemical signaling. LMW HA 

generally stimulates an inflammatory response while HMW HA induces an anti-

inflammatory response.45 In macrophages, LMW HA fragments upregulate inflammatory 

gene expression contributing to polarization toward a tissue-destructive state.80 Later work 

showed that while LMW and HMW HA both activate macrophages, LMW HA induces a 

pro-inflammatory gene expression profile whereas HMW induces a pro-healing gene 

expression profile.81 The mechanisms by which cells sense and respond to MW of HA 

remain unclear, but experimental studies support several possibilities. It is possible that HA 

MW may affect cell signaling indirectly through changes in matrix mechanical properties 

such as increased viscous behavior resulting from increased chain entanglement, but the 

relative importance of this effect has not been directly demonstrated in vivo. More directly, 

HMW HA can induce multivalent binding and receptor clustering. Yang et al. showed that 

HMW HA induces CD44 clustering while HA oligomers of 3 – 10 monosaccharides inhibit 

clustering, with each reagent exerting differential effects on downstream ERK signaling.82 

From a physical perspective, higher MWs stabilize binding to CD44 such that LMW HA 

binding is reversible while HMW binding is essentially irreversible.83 The cumulative 

effects of binding time and stability could have a range of effects on cell motility and 

downstream signaling. MW may also affect cellular uptake and downstream intracellular 

signaling, but this process and mechanistic effects are not well understood.84

The MW and abundance of HA are mediated by the activity of hyaluronan synthases and 

hyaluronidases (Fig. 4A). There are three hyaluronan synthases (HAS1, HAS2, HAS3), all 

of which are multifold transmembrane receptors that vary in expression, rate, and MW of the 

HA produced. HAS1 has a slower rate of synthesis than HAS2 and HAS3. HAS1 and HAS3 

produce lower MW species, while HAS2 can produce very HMW species.85,86 HAS2 seems 

to play a particularly significant role in cell invasion and cancer progression. Its expression 

is elevated in diffusely infiltrating astrocytomas and serves as a prognostic factor.87 Elevated 

HAS2 correlates with lower survival in breast cancer78 and primary brain cancers.87

Five hyaluronidases are encoded in the human genome (HYAL1, HYAL2, HYAL3, HYAL4, 

PH-20/SPAM1), and their expression and function differ by tissue type.88 Notably, PH-20/

SPAM1 is expressed only in testes, while the rest of the hyaluronidases are expressed more 

broadly. Structures of human HYAL1 show that hyaluronidases bind tetrasaccharides, and 

the enrichment of arginine residues in the binding cleft suggest the importance of the 

carboxylic acid on HA for proper recognition.89 The hyaluronidases differ in the MW of HA 

they recognize as well as the MW of their cleavage products. Notably, HYAL2 cleaves 

HMW HA to ~20 kDa fragments, while other hyaluronidases cleave ~20 kDa fragments to 

tetrasaccharide products.88

Differential expression of enzymes with varying substrates, rates, and products provides a 

means by which cells can regulate the MW of HA within their environment and resulting 
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shift between inflammatory/prometastatic and anti-inflammatory/anti-metastatic signals 

(Fig. 4B). While this balance remains poorly understood, recent studies are revealing the 

biological function of this balance. As previously described, tumors are often HA-rich. In 
vitro models suggest that glioblastoma cells upregulate HA synthesis if HA is lacking in the 

surrounding matrix,90 and that incorporation of HA into gelatin matrices alters inhibitor 

sensitivity and upregulates malignancy.91,92 Interestingly, both HYAL2 and HAS2 gene 

expression are increased in mesenchymal subtype tumors, and inhibition of HAS2 gene 

expression results in more dependence on focal adhesion-mediated invasion.93 A similar 

pattern of expression is observed in highly invasive breast cancers, which express 

abnormally high amounts of both HYAL2 and HAS2.94 This somewhat paradoxical increase 

in expression of both synthases and hyaluronidases enriches the microenvironment in short, 

loosely bound, HA fragments.79 Consistent with this finding, Wu and colleagues observed 

that LMW HA, but not total HA, correlated with lymph node metastasis and cell 

invasiveness, and that both hyaluronidases and hyaluronan synthases were overexpressed.78 

Similarly, accumulation of LMW HA and the shift toward a metastatic phenotype results 

from upregulation of HA synthesis and degradation in prostate cancer.95,96

A notable recent study by Tian and colleagues demonstrated the relationship between very 

HMW HA (10 MDa) and cancer incidence in the naked mole rat, a species in which cancer 

is rarely observed.97 By perturbing the abundance of the HMW HA either through HAS2 

knockdown or HYAL2 overexpression, naked mole rat cells became highly susceptible to 

malignant transformation. These results clearly demonstrate the important biological role of 

HA MW regulation and its therapeutic potential.

PART II: Incorporation of HA Biophysical Properties into Biomaterial Design

While HA provides a rich set of biological cues in vivo, the biophysical signals arising from 

HA in biomaterials may dramatically differ depending on the fabrication method. We 

consider these biophysical properties categorically as relating to either mechanics, 

adhesivity, or degradability (Table 1). We then discuss strategies to achieve these properties 

in various biomaterial applications with the potential advantages or disadvantages of each 

strategy.

Applications of HA-based biomaterials

One of the earliest clinical applications of HA was to restore lubrication and enhance stress 

dissipation (viscosupplementation) in joints as a therapeutic treatment for osteoarthritis.98 

Not long after, HA became more widely used for viscosupplementation in ophthalmology, 

and eventually otology.98,99 Early work in these applications revealed that a main limitation 

of viscosupplementation was the rapid degradation (<1 day) of the injected HA, thereby 

reducing the therapeutic benefit.100 Chemical modification and crosslinking of HA was 

explored as a means to reduce degradation rates and extend treatment.101 As methods to 

chemically modify HA developed, the use of HA has expanded to dermal fillers, tissue 

regeneration, and drug delivery.102–106 In many of these applications, the anti-inflammatory, 

anti-tumorigenic properties of HMW HA have proven attractive. As a drug delivery vehicle, 

HA can be used to protect peptide or nucleotide therapeutics from rapid degradation or to 
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target cells or tissues with high HA uptake.107 A number of excellent reviews have been 

written about the clinical applications of HA matrices.108–110

A developing application of HA is for tissue engineering.111 HA-mediated signaling, 

particularly that arising from HMW HA, supports survival, proliferation, and stemness. 

Thus, HA-based biomaterials show promise for encapsulating stem cells and supporting 

their directed differentiation. As an example, Gerecht and colleagues demonstrated that HA-

based hydrogels can maintain stemness of human embryonic stem cells, but that the addition 

of soluble factors could still induce differentiation in a controllable manner.112 We have 

demonstrated that HA-based scaffolds support viability of implanted human pluripotent stem 

cell-derived dopaminergic neurons and neural progenitor cells for treatment of Parkinson’s 

disease.113,114 HA-based hydrogels have also been explored as scaffolds for adipose 

tissue115,116, cartilage117, and bone engineering.118 Because HA is a major component of 

endogenous ECM and the mechanics of HA can be tuned through a variety of parameters, 

HA-based biomaterials with controllable mechanics are also used as a research platform in 

mechanobiology.119–122

Central to the development of HA-based biomaterials is the presence of three functional 

moieties (primary alcohol, carboxylic acid, and amide) that can chemically and orthogonally 

modified, facilitating control of biophysical properties for the desired application.2,3,123–125 

Most modifications are made to the carboxylic acid and the primary alcohol, but 

modifications can also be made to the amide.2 These modifications support a large backbone 

diversity, which can then be crosslinked to form a gel or conjugated with peptides, growth 

factors, or other matrix proteins.3 HA can also be crosslinked with other polymer backbones 

to form semi-interpenetrating networks.126–128 Several excellent reviews have detailed the 

various chemistries and methodologies used for HA modification.2,3,123

Incorporating HA Mechanics into Biomaterial Design

To control mechanical properties of HA-abundant fluids for applications such as 

viscosupplementation, the concentration and MW of HA are the most important parameters.
56,57 Thus, the viscosity of soluble HA may be easily modulated simply by choosing an 

appropriate MW range and concentration. For applications requiring solid rather than fluid 

biomaterials, gelation must be induced through some form of crosslinking. In this case, the 

backbone MW, the degree of crosslinking, the chemistry of the modification and crosslinker, 

and the matrix density can all contribute to the bulk matrix properties. Bulk matrix 

properties can be engineered by tuning any of the aforementioned parameters, but some 

strategies may reduce cell viability or motility. Several studies have noted that high density 

HA matrices restrict cell migration and diffusion of biomacromolecules.129,130

One commonly used mechanical parameter of HA and other biological materials is the bulk 

storage modulus, which is widely understood to be an important effector of cell spreading 

and motility.131–133 The storage modulus varies widely by tissue type, from a few hundred 

Pa in soft tissues such as fat, marrow, and brain to tens of MPa in bone.134 HA materials are 

most easily fabricated with elastic moduli in the hundreds of Pa to tens of kPa, a range 

which encompasses most soft tissues.135 HA hydrogels are often limited for applications in 

regenerating hard tissues such as cartilage or bone regeneration due to the comparatively low 
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elastic modulus of these materials. One strategy for augmenting the elasticity of HA 

matrices is to assemble composite polymer networks with stiffer materials. For example, 

Tavsanli and colleagues used an HA and poly(N,N-dimethylacrylamide) (PDMA) to create 

hydrogels with high strength and high compressive modulus (in the MPa range) necessary 

for load-bearing tissues.136 As described below, a number of investigators have also 

exploited mixed stiff HA/collagen and HA/gelatin scaffolds for cell culture applications.

While mechanical characterization of solid biomaterials often tends to focus on bulk storage 

modulus, tissues are typically viscoelastic rather than purely elastic, and this mixed 

character can greatly influence cell morphology and signaling. Dense HA networks 

crosslinked with covalent bonds typically exhibit high elasticity with very little viscosity. 

However, incorporating crosslinks that can dynamically switch between bound and unbound 

states over experimental time scales results in an increased viscous component. For example, 

HA viscoelastic properties may be controlled by conjugating cyclodextrins to the HA 

backbone, which enables supramolecular assembly into structures capable of both storing 

and dissipating mechanical stresses.137 Variation of viscoelastic properties in this way 

influences mesenchymal stem cell (MSC) viability.121 More recently, Lou et al. employed a 

dynamic hydrazone bond to crosslink HA polymers within an interpenetrating network of 

HA and collagen I in order to confer stress relaxation to the hydrogel. Varying the 

crosslinker affinity, MW of HA, and concentration of HA allowed for tuning of the 

relaxation time, with faster relaxation times promoting MSC spreading and focal adhesion 

formation.138

Tissue ECM is not spatially homogeneous but rather exhibits temporal and spatial variation 

in mechanics and composition. Efforts to recapitulate these variations for tissue engineering 

or mechanobiology research have focused on biomaterial patterning. Because HA 

modification and crosslinking chemistries are compatible with photoactivation, recent work 

has focused on developing HA biomaterials with photoresponsive patterned properties. 

Marklein and Burdick used photoactivated crosslinking to pattern the bulk modulus of a gel 

from 3 kPa to 100 kPa, a range over which human MSC spreading and proliferation was 

found to vary.139 Our own laboratory used orthogonal photoresponsive chemistries to pattern 

perpendicular gradients of adhesive peptide and increasing modulus into a single gel for a 

high-resolution investigation of cell response to microenvironment variation.124 Rosales and 

colleagues incorporated a photoswitchable azobenzene moiety that was capable of forming a 

complex with cyclodextrin in the trans conformation and not in the cis conformation, 

allowing for photo-reversible control over the viscoelastic properties of HA.140 Ongoing 

work involves investigating the role of dynamic mechanics on cell morphology.

Thin film HA hydrogels (<100 μm) offer the opportunity to apply these materials as 

interfacial coatings, which may be necessary when a different material is needed to provide 

basal structural or mechanical properties (e.g. orthopedic implants). For example, HA 

conjugated with immobilized arginine-glycine-aspartic acid-containing peptides can be 

coated onto titanium in a polyelectrolyte film with chitosan to improve osteoblast adhesion 

and reduce bacterial fouling.141 A number of groups have generated thin films through 

layer-by-layer deposition with HA and cationic polyelectrolytes such as chitosan and 

polylysine.142,143 The storage modulus of the films can be controlled over several orders of 
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magnitude by secondary crosslinking in order to probe cell adhesion and 

mechanotransduction.144 For example, Richert et al. showed that the storage modulus of a 

film could increase from 20 kPa before additional crosslinking to 800 kPa after additional 

chemical crosslinking.145 Schneider et al. reported a similar magnitude of change in HA-

chitosan films from an initial modulus of 15 kPa to 150 kPa after additional crosslinking, 

subsequently leading to more fibroblast spreading and adhesion.146

As previously mentioned, HA scaffolds within tissue are typically composed of very long 

HA chains, and use of HMW HA in biomaterials applications strongly influences HA-

dependent adhesive signaling and can induce anti-inflammatory effects. However, the high 

viscosity of HMW HA solutions can make handling and mixing such solutions challenging, 

particularly in fabrication processes such as micromolding and 3D printing. To this end, 

supramolecular assembly of HA-based hydrogels has been exploited to enhance shear-

thinning.137,147 Ouyang and colleagues utilized the orthogonal modification of the HA 

backbone to synthesize a gel that would undergo shear thinning to facilitate 3D printing but 

could subsequently be stabilized by covalent fixation.147 With this technology, higher MWs 

of HA can be incorporated into 3D printed scaffolds as well as other applications requiring 

rapid mixing or manipulation. Continued consideration of MW should enhance efforts to 

model tissue using HA-based biomaterials. At least one recent study has successfully 

incorporated HMW (500 – 750 kDa) HA into culture scaffolds to emulate the MW present 

in brain matix.148

Incorporating Adhesivity and Biodegradability into Biomaterial Design

As previously described, cells express HA-specific receptors that can bind directly to the HA 

backbone. Given that most solid HA-based biomaterials require modification of the HA 

backbone, an important question is how chemical modification alters adhesion and adhesion-

dependent signaling. The adhesivity of the HA may be dependent on the type and degree of 

modification and seems to differentially affect specific receptors. For example, since 

receptor binding pockets typically accommodate around 4–6 HA monomers, it is likely that 

modifications on a low percentage of monomers (<15%) would only minimally affect HA 

adhesivity. As an example, modest aldehyde (10% of monomers) or thiol (25% of 

monomers) backbone modifications do not appear to significantly affect either aggrecan 

binding to the HA backbone or cell spreading and adhesion.149 However, increasing thiol 

functionalization of the carboxylic acid (from 20% to 40% of monomers) has been reported 

to reduce biodegradability and neurite extension of encapsulated cortical neurons.150 

Bencherif and colleagues found that degree of methacrylation correlated inversely with cell 

adhesion and degradation.151 The sulfonation of hydroxyl groups on the HA backbone also 

leads to a decrease of platelet adhesion, suggesting the importance of the hydroxyl moiety 

for some functions.152 Thus, the changes in HA adhesivity due to backbone modification are 

nuanced and depend on the degree, type, and site of modification.

The chemistry of the modification may also have specific, context-dependent effects. 

Increasing divinyl sulfone crosslinking can induce a subcutaneous inflammatory response in 

vivo, apparently offsetting the anti-inflammatory properties of HMW HA.153 Both 

deacetylation of the amide moiety and sulfation of the alcohol moiety of HA can reduce 
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CD44-mediated adhesion to HA, with dual modification further reducing adhesion.154 While 

the degree to which modification of the carboxylic acid moiety affects CD44 adhesion is not 

well known, crystallographic studies suggest that the negative charge and orientation of the 

carboxylic acid is important for binding to CD44.28 Modification would likely disrupt rather 

than enhance this binding. In a similar manner, Lord et al. found that serum proteins were 

more loosely bound on sulfated photoreactive HA versus non-sulfated HA, and that 

fibronectin orientation changed with sulfation to affect the degree of cell adhesion.155

While the HA backbone can intrinsically support cell adhesion, engagement of integrins is 

often an important biomaterial design goal, e.g. to promote cell spreading.156,157 To include 

these functionalities, peptides or recombinant proteins can be conjugated to the HA 

backbone which in turn affect cell morphology.158,159 However, protein conjugation 

generally requires backbone modification which reduces hyaladherin adhesivity based on the 

aforementioned studies. Alternatively, other matrix factors can be incorporated into HA-

based materials as interpenetrating networks, particularly collagen, Matrigel, and gelatin.
117,128,160,161 The inclusion of other matrix factors adds other types of adhesivity, but can 

lead to steric hindrance or matrix interactions that change other material properties of the 

hydrogel.128

A variety of studies suggest that while some degree of hyaluronidase recognition and 

degradation of HA is retained after backbone modification and gelation, these rates are 

reduced in a manner that depends on the modification site, the degree of modification, and 

the chemistry of the new functional moiety.162,163 Acrylation of the primary alcohol of HA 

has been reported to reduce hyaluronidase-mediated digestion of HA in solution by ~70%, 

implying that the modification interferes with enzyme binding or activity.159 While these 

studies clear indicate that hyaluronidase degradation of matrices is possible, the mechanism 

by which cells degrade HA-based biomaterials and the relationship with HA MW is poorly 

understood.

Because the carboxylic acid moiety on HA is important for hyaluronidase recognition, 

carboxylic acid modifications would be expected to inhibit HA degradation. To this end, 

complete esterification of the carboxylic group has been observed to prevent degradation by 

hyaluronidase, while partial esterification of the backbone reduced degradation rate.164 In 

one study, HA degradation rate was observed to depend critically on the degree of adipic 

dihydrazide modification of HA, with 65% modification reducing the rate nearly ten-fold.165 

In another study, a high degree of biotinylation of HA and other chondroitin sulfates at the 

carboxylic acid disrupted degradation by hyaluronidases, but partial biotinylation enabled 

some hyaluronidase-based degradation.166 Furthermore, increasing crosslink hydrophobicity 

via the use of hydrazide chemistry reduces hyaluronidase degradation rate.167 These results 

together suggest that degradability by hyaluronidase is subject to the modification and 

crosslinking chemistry, and thus should be a key consideration when designing biomaterials 

for tissue regeneration or engineering as well as for research platforms in mechanistic 

studies.

While most modification strategies can be used to reduce HA-based biomaterial degradation, 

it may be more challenging to retain degradability in applications where both robust 
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mechanics and degradability are desirable. Both properties are valuable in tissue engineering 

scaffolds and HA-based research platforms in which cells may need to be robustly organized 

but also be able to modify the microenvironment. The simplest strategy is to minimize the 

degree of modification to only modestly reduce HA bioactivity. To this end, the degree of 

modification is controllable to some degree by tailoring reaction conditions.168 

Alternatively, the degradability can be incorporated in the crosslinks through some non-

hyaluronidase based degradation mechanism. For example, Sahoo and colleagues used a 

crosslinking strategy to form an ester linkage with HA that could be rapidly hydrolyzed to 

yield the native HA backbone structure.169 Further work showed that the degradation rate 

could be extended by using a more hydrophobic polycaprolactone-based crosslinker.170 

Several groups have also used matrix metalloproteases (MMP)-degradable peptide 

crosslinkers.157,171 MSCs cultured in HA with MMP-sensitive crosslinkers exhibit more 

rapid sprouting and matrix deposition.158

Another option is to not modify the HA backbone at all, but instead rely on non-covalent 

methods for gelation. For example, HA can be incorporated into an interpenetrating network 

with collagen in which electrostatic forces result in an HA coating over collagen fibrils.115 

An alternative option that has yet to be explored in great depth is to use native CS or CS 

mimics to assemble HA matrices. As one example of this possibility, Bernhard and Panitch 

developed an aggrecan-mimetic peptide that increased the storage modulus of gels for 

cartilage engineering applications.172 While the high bond strength between HA and the CS-

link protein complex suggests such binding is possible, it is unclear whether this means of 

crosslinking would be practical for any of the current applications.

Conclusions and Future Outlook:

Based on its bioactivity and versatility, HA is an attractive material platform for a variety of 

research and technological applications. By carefully considering how HA signaling 

influences cells and tissues, researchers and engineers can create HA formulations to meet a 

wide range of design requirements. Central to HA biophysical signaling is its mechanical 

properties, adhesivity, and degradability. In addition, HA MW has key implications for 

biophysical signaling, with HMW HA being associated with homeostasis and LMW HA 

being associated with tissue remodeling.

Various strategies exist for modifying the biophysical cues of HA, each with advantages and 

limitations that depend on the application. Modification of the HA backbone is a powerful 

and the most common way to control mechanics, conjugate adhesive ligands, or control 

degradability. However, backbone modification or crosslinking can reduce the adhesivity of 

the HA to HA-specific receptors such as CD44 or hamper degradation by hyaluronidases. 

The degree of modification is still difficult to precisely control using current synthetic 

methods. Even with these modifications, no strategies to date have captured the complexities 

of HA organization with other matrix factors and resulting mechanics observed in vivo. As a 

whole, HA is not well suited to applications requiring truly inert or non-degradable 

biomaterials due to its significant influence on cell signaling and matrix remodeling.
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As the field’s understanding and appreciation of HA biology continues to expand, future 

work on HA-based biomaterials should focus on incorporating critical features of HA into 

biomaterial design and thorough characterization of the downstream effects. First, more 

attention to HA MW is warranted, given the importance of this parameter to both HA 

viscoelastic properties and biological effects. Second, the biological importance of HA 

organization within the ECM remains an open question in the field. As new studies seek to 

the address this question, chemistries and methodologies should expand to emulate key 

features of HA organization within biomaterial design. Third, the role of HA degradation in 

biomaterial performance remains understudied and needs to be addressed for both clinical 

and research applications. In each of these key areas, the biological effects of HA must be 

validated to ensure that HA is serving the expected or desired role within the context of the 

specific biomaterial formulation. With continued progress in all of these areas, the field will 

be poised to precisely tailor HA formulation for specific applications and better predict how 

these manipulations influence biological function.
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Figure 1. 
Cells sense biophysical properties of extracellular HA (adhesivity, mechanical properties, 

and degradability) through surface receptors such as CD44 and RHAMM. These biophysical 

properties influence cell adhesion, migration, and proliferation through cytoskeletal 

interactions, transcription, and receptor crosstalk. In turn, cells remodel extracellular HA 

through synthesis by hyaluronan synthases and degradation by hyaluronidases.
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Figure 2. 
Chemical structure of HA. The carboxylic acid (blue) and primary alcohol (green) are 

important for both recognition by hyaladherins and for chemical modification. The amide 

(yellow) also supports adhesion but is less commonly modified.
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Figure 3. 
Matrix organization of HA varies by tissue type and cell microenvironment. A) HA 

organizes as an interpenetrating network that interacts with mechanically-reinforcing 

collagen fibers in cartilage tissue. B) In contrast, intraparenchymal regions of brain tissue 

are generally devoid of collagen fibers and HA organizes primarily with chondroitin sulfates.
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Figure 4. 
The regulation and role of HA MW in biophysical signaling. A) MW is dependent on 

expression and activity of hyaluronan synthases and hyaluronidases. HMW HA is 

synthesized at lengths dependent on the hyaluronan synthase. HMW HA is degraded by 

HYAL2 to form ~20 kDa fragments which are then further degraded by other 

hyaluronidases, primarily HYAL1, into tetramer units. B) Human HA is present in a 

distribution of MWs varying from about 0.1 kDa to 2 MDa. LMW HA elicits a tissue 

remodeling response, while HMW promotes tissue maintenance. A shift from HMW species 

to LMW species can be induced by increased synthesis (HAS2) followed by greatly 

increased degradation (HYAL2) leading to the accumulation of HA fragments.78,79
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Table 1:

Potential advantages and disadvantages of strategies used to incorporate key biophysical properties of HA into 

biomaterial design.

Biophysical 
Property of HA in 
ECM

Strategy for Incorporating 
Property into HA 
Biomaterials

Potential Advantages and Disadvantages of Strategy

Mechanics

Change HA density • Higher HA density increases both storage and loss modulus56,130,144

• Higher density increases cell confinement and reduces spreading in 
3D129,130,160

Change molecular weight • HMW HA offers higher modulus, increased entanglement, and 
immunosuppressive signaling45,56,58,72

• LMW HA offers low viscosities and can induce inflammation45,153

HA backbone modification 
and crosslinking

• Enables tunable control of crosslinking2,3,139,140

• Can change viscosity depending on modification121,137

• Can affect hydrophobicity of hydrogel167,170

Incorporate interpenetrating / 
semi-interpenetrating 
networks

• Network can be used to tune mechanical properties136,143

• HA can interact with networking polymers128,159,161

• May avoid HA backbone modification115,172

Adhesivity

 Of HA 
backbone

HA backbone modification • Modification, especially of carboxylic acid and primary alcohol, 
reduces adhesivity of hyaladherins (cell receptors and 
ECM)150–152,154,155

• Modifications can cause immunogenic response153

 Of other ECM 
components

Peptide Conjugation • Requires backbone modification, which affects HA adhesivity

Form Interpenetrating network 
with other ECM components

• Networks may interact with HA backbone44,115,128,161

Degradability

 Of HA 
backbone

Backbone modification • Backbone modification generally reduces degradability159,162–166

Crosslinking • Crosslinker can affect degradability103,170

 Of CrossIinkers MMP-cleavable crosslinks • MMP cleavable linkages can enhance 3D cell spreading158

• Relative role of hyaluronidases is unknown

Crosslinks degrade by 
hydrolysis (i.e. esters)

• Rates can be controlled by crosslinker type169,170

• Native HA backbone is a product of hydrolysis allowing for 
hyaluronidase-based degradation169,170
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