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Abstract

Hematopoiesis is a complex process with a variety of different signaling pathways influencing 

every step of blood cell formation from the earliest precursors to final differentiated blood cell 

types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ 

development and protect organs in different pathological conditions. Hematopoietic Stem and 

Progenitor Cells (HSPCs) are responsible for generating all adult differentiated blood cells. 

Defects in HSPCs or their downstream lineages can lead to anemia and other hematological 

disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model 

system to study hematopoiesis. The developmental processes and molecular mechanisms involved 

in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental 

accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in 
vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably 

phenocopy human blood disorders, making it a highly attractive model system to screen small 

molecules to design therapeutic strategies. In this review, we summarize the key developmental 

processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings 

highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic 

disorders.

INTRODUCTION

Zebrafish offer several key advantages as a model system for studying hematopoiesis. These 

include external fertilization, optical transparency, genome editing, and easy high-resolution 

optical imaging in live animals. These features have led to many novel insights into 

hematopoietic development and differentiation. Large scale forward-genetic screens in 

zebrafish have identified several key genes essential for proper hematopoiesis. These same 

screens have also yielded mutants phenocopying human hematological disorders that have 

contributed significantly to our understanding of the molecular mechanisms behind these 

diseases.
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Hematopoiesis in zebrafish takes place primarily in two major waves (1). Primitive 

hematopoiesis takes place during early embryonic development and is primarily responsible 

for generating primitive erythroid and myeloid cell populations. Later during development 

definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs), which 

are responsible for generating all adult blood cells (Figure 1). The anatomical sites of 

hematopoiesis are different in zebrafish compared to mammals, although the molecular 

mechanisms behind hematopoiesis are highly conserved (1, 2) (Figures 2 and 3).

In recent years, use of genome editing technologies such as TALENs and CRISPR/Cas9 

systems have contributed significantly to the analysis of additional genes involved in this 

complex process. It is also relatively easy to make zebrafish transgenic lines labeling 

different types of blood cells with GFP or similar fluorescent proteins. The optical 

transparency and rapid external development of fish embryos and larvae permits 

visualization of hematopoiesis in living animals. Thanks in large part to these unique 

advantages, the zebrafish has contributed significantly to our understanding of how HSPCs 

are specified during definitive hematopoiesis, and how they enter circulation and migrate to 

their future destinations and settle in their niche (3). The availability of several transgenic 

lines labeling different types of immature and differentiated blood cells has allowed unique 

blood cell populations to be studied by enriching them using florescence activated cell 

sorting (FACS). FACS enrichment has facilitated genome wide gene expression analysis and 

transplantation studies in zebrafish, among other things.

In addition to genetic and molecular studies, zebrafish are also ideal for large-scale chemical 

screens to identify small molecules that influence different aspects of hematopoiesis. 

Zebrafish embryos develop externally and it is easy to obtain hundreds or thousands of 

fertilized eggs from wild-type or transgenic lines. Zebrafish embryos can be soaked in 

different concentrations of small molecules and screened for hematological phenotypes at a 

later time point. It is possible to easily screen though hundreds or even thousands of 

compounds in a few days. Whole embryo drug screens also have the added advantages of 

identifying toxicities and off-target effects that might not be evident in cell-based assays. 

These types of screens have identified compounds which affect hematopoietic cell numbers 

in zebrafish and that have been subsequently validated using mouse or cultured cell models 

(4, 5).

In this review, we discuss important developmental steps and signaling molecules involved 

in zebrafish hematopoiesis. We also summarize the key tools and technologies available for 

studying blood cell formation in the fish.

PRIMITIVE HEMATOPOIESIS

Primitive hematopoiesis, the initial wave of blood cell formation, produces erythrocytes that 

facilitate tissue oxygenation during rapid embryonic growth (6) and also macrophages that 

phagocytose pathogens and apoptotic cells arising as a natural byproduct of development 

(7). Primitive macrophages may also influence the morphology of the developing circulatory 

system in some contexts, shaping the developing vasculature by mediating blood vessel 

regression (8) or acting as endothelial cell chaperones to facilitate tip cell fusion (9). 
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Microglia differentiating from primitive macrophages (10–12) are essential regulators of 

central nervous system neural development and function (reviewed in (13)). Consequently, 

although non-pluripotent, transient cell types arise from the initial hematopoietic wave, 

primitive hematopoietic defects may have far-reaching developmental consequences.

Common origin of endothelial and primitive hematopoietic cells

Based on their intimate association during early development, it was long ago hypothesized 

that angioblasts (endothelial cell precursors) and primitive hematopoietic cells arise during 

embryogenesis from a common ‘hemangioblast’ progenitor (2, 14, 15). In zebrafish, the 

existence of at least a transient bipotential progenitor cell during very early development is 

suggested by the identification of cells with common hematopoietic and endothelial gene 

expression (16), and shared regulatory factors that are required for the formation of both 

lineages, such as the PAS-domain-containing bHLH transcription factor npas4l (the mutated 

gene in cloche embryos) (17–19) lysocardiolipin acyltransferase lycat (20), and angiogenic 
factor with G-patch and FHA domains 1 (aggf1) (21). More conclusive fate-mapping 

experiments show that cells that give rise to both blood and endothelial cells are present 

within the ventral mesoderm of shield (early gastrula)-stage zebrafish embryos (22, 23). 

However, these same fate-mapping studies indicate that most zebrafish endothelial and 

primitive hematopoietic cells likely arise directly from ventral mesoderm, rather than from a 

transient common hemangioblast progenitor (22, 23). The Retinoic Acid (24, 25), BMP (26), 

JAK/STAT (27), and VEGF (28) signaling pathways have all been implicated in regulating 

zebrafish hemangioblast identity.

Primitive hematopoietic cell specification

Zebrafish primitive hematopoiesis occurs primarily in the so-called intermediate cell mass 

(ICM) blood islands, which form at the trunk midline from bilateral stripes of posterior 

lateral-plate mesoderm (PLM) (29). The ICM is situated below the notochord, in between 

the somites and above the yolk sac. It can be thought of as at least conceptually analogous to 

the extra-embryonic yolk sac blood islands of mammals and birds, and is responsible for 

generating most embryonic hematopoietic cells. Zebrafish primitive hematopoietic cell 

specification is subject to precise molecular regulation by a hierarchical cascade of 

transcription factors that are conserved throughout the vertebrates with clear mammalian 

orthologues. The earliest molecular marker of primitive hematopoiesis, the bHLH 

transcription factor stem cell leukemia (scl/tal1) is expressed as early as 10.5 hpf (2-somites) 

in the PLM (30, 31). Domains of gene expression become more refined at 11 hpf (3-

somites), as mesoderm cell fate is progressively restricted to endothelial and hematopoietic 

lineages. At this stage, cells of the PLM demonstrate overlapping expression patterns of scl, 
other hematopoietic transcription factors such as LIM domain only 2 (lmo2), and 

vasculogenic genes including GATA binding protein 2a (gata2a) and the ETS family 

members fli1a, fli1b, and ets-related protein (etsrp/etv2) (24, 32, 33) (Figure 1A, B and 

Figure 3). Scl and its binding partner Lmo2 act downstream of the bHLH-PAS transcription 

factor cloche, which is required for both hematopoietic and endothelial development (17). 

Both are necessary for the formation of primitive hematopoietic cells (34–38) and sufficient 

to generate hemangioblasts from non-axial mesoderm (31, 39, 40). Etsrp also acts 

downstream of cloche in zebrafish, and upstream of scl and fli1a (41). Its depletion leads to 
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reduced scl, fli1a, and vascular endothelial growth factor receptor kdrl angioblast gene 

expression and corresponding defects in vascular endothelial cell specification (17, 41–45). 

Conversely, overexpressing the mammalian etsrp homologue (Etv2) in zebrafish leads to 

ectopic scl and kdrl angioblast gene expression (46). Although morpholino-based 

knockdown studies indicate that fli1a and fli1b act in parallel to cloche to help regulate 

endothelial-specific cell fate (45, 47), fli1a and fli1b double homozygous zebrafish mutants 

do not exhibit angiogenic defects (33), indicating possible compensatory action by other Ets-

related factors. Indeed, the angiogenic defects of etsrp zebrafish mutants recover as 

development proceeds, but only in the presence of intact Fli1b (33). gata2a-mutant zebrafish 

embryos exhibit reduced kdrl expression, and trunk circulatory defects resulting from 

impaired dorsal aorta morphogenesis (48, 49).

By 12 hpf, (5-somites) cell fate is irreversibly determined as ICM precursors adopt one of 

three fates: (i) erythroid cell fate, characterized by gata1a expression (29, 50), (ii) myeloid 

cell fate, characterized by pu.1 (spi1b) expression (7, 51–55), or (iii) angioblast 

(presumptive vascular) fate, which is characterized by kdrl expression (19, 30, 56). By 19 

hpf (20-somites), overlapping expression of the granulocyte marker myeloid peroxidase 
(mpx) and gata1a in cells within the PLM, and later within the ICM, may indicate a 

primitive myeloerythroid cell population (54, 55, 57), although this remains to be tested. In 

zebrafish, primitive erythrocytes begin to enter circulation beginning at approximately 24 

hpf (58). Unlike mammalian erythrocytes, they are oval-shaped and remain nucleated (59). 

Zebrafish primitive erythrocytes express embryonic hemoglobin genes (hbae1.1, hbae3, 

hbae5, hbbe1.1, hbbe1.2, hbbe1.3, hbbe2, hbbe3) (60–63), which allows them to be 

distinguished from their definitive hematopoietic counterparts.

In addition to the PLM, zebrafish also possess a second, more anterior hematopoietic site 

(Figure 1A,B). Known as the rostral blood islands (RBI), this site originates from anterior 

lateral-plate mesoderm (ALPM), and generates primitive macrophages, embryonic 

microglia, and neutrophilic granulocytes (7, 51, 64). At 10 hpf (tail bud), RBI cells express 

etsrp in an overlapping domain with scl, and the myeloid marker and ETS family 

transcription factor pu.1 (40, 51, 64). By 16–18 hpf (17 to 18-somites), these cells express 

the pan-leukocyte marker l-plastin (lcp1) (65–68), and macrophage progenitors spread out 

across the embryonic mesenchyme (68). Around this time, RBI-derived cells adopt more 

specific myeloid fates, expressing either interferon regulatory factor 8 (irf8) (69, 70), which 

is required to specify macrophage cell fate in zebrafish (69), or the granulocyte progenitor 

marker CCAAT/enhancer binding protein 1 (cebp1) (71, 72). Beginning at 21.5 hpf (25-

somites) primitive macrophages express colony-stimulating factor receptor 1a (csf1ra/fms) 

(68), macrophage-expressed 1 (mpeg1) (66, 73), microfibrillar-associated protein 4 (mfap4) 
(73, 74), chemokine receptor cxcr3.2 (73), and ptpn6 (73). At 24 hpf, ALPM-derived 

granulocyte progenitors begin to differentiate, expressing lysozyme C (lyz) (7, 51, 64, 75), 

and mpx (72). By 36 hpf, (prim-25) lyz/mpx double-positive neutrophils stain strongly with 

Sudan Black, indicating that they are fully mature (72). Neutrophilic granulocytes are 

apparent within the trunk and tail by 48 hpf (long-pec) (53, 76). Beginning at 2.5 days post 

fertilization (dpf), microglia derived from the RBI colonize the developing zebrafish brain in 

response to neural cell death (77). Unlike in mice, where adult and embryonic microglia 

both arise from yolk sac blood islands (10, 78–80), fate mapping analyses in zebrafish 
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indicate that RBI-derived embryonic microglia are eventually replaced by those originating 

from dorsal aorta hemogenic endothelium (12).

Different regulatory mechanisms are responsible for specifying ICM and RBI-derived 

granulocytes; Although etsrp does not regulate mpx myeloid gene expression within the 

ICM, loss of Etsrp leads to reduced mpx expression within the ALPM, and a concomitant 

reduction in neutrophil progenitors (57). Furthermore, fate mapping studies indicate that 

ALPM mpx-expressing cells are derived from cells that once expressed etsrp (52, 57).

Antagonism between gata1 and pu.1 regulates erythroid versus myeloid fate

The relationship between gata1 and pu.1 in specifying erythroid versus myeloid cell fate is 

well established (reviewed by (81). Gata1 represses myeloid differentiation, and is an 

essential regulator of erythroid cell fate (50, 82). In support of this, Gata1-depleted zebrafish 

embryos display expanded populations of granulocytic neutrophils and macrophages that 

occur at the expense of erythrocytes (50, 82). Biochemical data suggests that GATA1 and 

PU.1 proteins physically associate, transcriptionally inhibiting each other’s target genes (83–

87). Evidence for this interaction also occurs in vivo, as Pu.1-depleted zebrafish embryos 

demonstrate ectopic ALPM gata1 expression (82), while Gata1-depleted zebrafish embryos 

demonstrate increased numbers of pu.1-positive cells, both within the ICM and ALPM (50, 

82, 88). Notably, loss of function experiments show that Gata1 feedback maintains scl 
expression in the zebrafish ICM (88). Beyond Pu.1, the function of Gata1 in regulating 

erythroid cell fate is also modulated through its interactions with multiple other factors 

(reviewed by (89–92). These include Scl (93, 94), Friend of GATA (Fog1) (93, 95, 96), and 

multiple Kruppel-like transcription factors (Klfs) (81, 90, 91, 97–99). Genetic evidence 

suggests that Pu.1 dosage also influences macrophage versus neutrophilic granulocyte cell 

fate, as ALPM cells with high Pu.1 levels preferentially give rise to macrophages (72). Few 

identified factors have been shown to act upstream of gata1 or pu.1 to regulate the balance 

between erythroid and myeloid cell fate. However, the RNA-binding protein Elav1a has 

been shown to promote primitive erythroid cell fate in zebrafish by stabilizing gata1 mRNA 

(21). Furthermore, loss and gain of function analyses in zebrafish have implicated 

transcription intermediate factor 1γ (tif1γ) (100, 101), stat1b (102), as well as hox genes, 

and their cofactors Pbx2/4 and Meis1 (30, 103, 104) in regulating primitive erythropoiesis 

upstream of gata1.

DEFINITIVE HEMATOPOIESIS

Definitive hematopoiesis is the last wave of blood producing cells and although it starts as 

early as 26 hpf, this wave is responsible for generating self-renewable hematopoietic stem 

cells (HSPCs) that will maintain myeloid, erythroid and lymphoid lineages throughout the 

zebrafish life. As it has for primitive hematopoiesis, the zebrafish has also served as a solid 

model for uncovering genetic players and signaling pathways driving definitive 

hematopoiesis (105, 106). HSPCs in mammals and other vertebrates reside in the bone 

marrow, whereas zebrafish HSPCs seed the pronephros/kidney (107, 108). Despite this 

anatomical discrepancy, the signaling molecules, transcription factors and genetic programs 

controlling the definitive hematopoietic machinery are highly conserved between zebrafish 
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and mammals. Zebrafish embryos bring a huge advantage when used to unveil gene 

regulators important for hematopoiesis, as they can survive without erythrocyte-dependent 

oxygen exchange up to 7 days, relying solely on passive diffusion. This feature has benefited 

the hematopoietic field, as a large variety of blood-related mutations were isolated in the 

classic 1996 zebrafish forward genetic screens and subsequent genetic screens while the 

function of other blood genes has been identified by reverse genetics. Functional work-up of 

many of these genes is difficult using mammalian models since most murine hematopoietic 

mutants are embryonic lethal (100, 105, 109–111). The advantages of the fish have gained 

more impact as several mutations discovered in zebrafish have later been shown to be 

present in human blood related diseases, ranging from anemic disorders to diverse types of 

leukemias and lymphomas (106, 112–123). Another factor propelling the zebrafish forward 

as a powerful animal model for hematopoiesis is the generation and use of transgenic 

reporter lines labeling specific HSPC-derived cell lineages, amplifying the advantages of the 

fish for in vivo imaging and lineage tracing (100, 108, 111, 124–133); See Table 1).

Sites and timing of definitive hematopoiesis

As development proceeds and circulation initiates at around 24 hpf, generation of 

hematopoietic cells derived from primitive hematopoiesis begins to subside, setting the stage 

for the definitive hematopoietic wave. The transition to definitive hematopoiesis occurs in 

two sequential events. First, a transient intermediate wave takes place in the posterior blood 

island (PBI), located ventro-caudally at the end of the yolk extension (55). This brief 

intermediate event generates gata1 and lmo2-expressing cells known as erythro-myeloid 

hematopoietic progenitors (EMPs) that will differentiate into erythroid and myeloid but not 

lymphoid lineages and populate the larval zebrafish (55, 134). Second, at around 28–30 hpf 

true multipotent self-renewable HSPCs become specified from endothelial cells in the 

ventral wall of the dorsal aorta (VDA), also known as the aorta-gonad-mesonephric (AGM) 

due to its mammalian anatomical counterpart. Specified HSPCs detach from the hemogenic 

endothelium by a dynamic process known as the endothelial-hematopoietic transition (EHT) 

(135, 136). Once detached, HSPCs enter circulation through the axial vein and will persist 

through adulthood as multipotent progenitors of all adult blood cell types (107, 124, 134, 

136, 137). HSPCs seed three main hematopoietic organs, the caudal hematopoietic tissue 

(CHT) by 2 dpf, the thymus by 3 dpf, and the kidney marrow at ~4 dpf (Figures 2 and 3). 

HSPCs embedded in the CHT will serve as a source of embryonic macrophages, neutrophils 

and monocytes. The kidney, which corresponds to the mammalian bone marrow, will 

produce myeloid, erythroid, thromboid and lymphoid lineages, leaving the thymus to 

produce mature lymphoid T cells throughout adulthood.

Genetic signaling molecules in specification and lineage differentiation

Specific markers expressed by zebrafish EMPs and HSPCs facilitates their isolation and 

analysis. Transgenic lines based on gata1 and lmo2 promoters have been used to isolate 

EMPs from zebrafish embryos, while the distinctive expression of runx1, itga2a and c-myb 
on nascent HSPCs identifies these cells (124, 136, 137). Runx1 is considered one of the 

earliest markers of HSPCs, with cmyb acting downstream. Analysis of zebrafish mutants has 

demonstrated that cmyb expression is runx1-dependent. Runx1 mutants lose their HSPCs 

due to their incapacity to undergo EHT (136, 137). In the most severe cmyb loss of function 
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animals, HSPCs are correctly specified, but fail to exit the dorsal aorta (138). Other cmyb 
mutants progressively lose adult hematopoietic lineages starting from 20 dpf but are viable 

up to at least 3 months old (137, 139). The induction of Runx1 relies on Notch1a/b receptor-

mediated signaling in the hemogenic endothelium (140), and the requirement for Notch-

Runx1 signaling is a key feature distinguishing HSPCs from EMPs. HSPCs are unable to 

form in the absence of Notch-Runx1 signaling, as demonstrated by analyzing mindbomb 
(mib) mutants and embryos treated with the γ-secretase inhibitor DAPT (141–143). 

Conversely, EMPs do not express the Notch receptor and their generation is not affected 

under these conditions (141, 142). As mib mutants and DAPT-treated embryos exhibit 

reduced arterial gene expression and ectopic venous gene expression within the dorsal aorta 

(143, 144), it is perhaps not surprising that they fail to produce HSPCs. However, transient 

activation of Notch signaling by induction of the Notch intracellular domain (NICD) in wild 

type embryos leads to the upregulation of HSPC sprouting from the AGM, without inducing 

ectopic arterial gene expression (142, 145), and jagged1-mutant zebrafish fail to produce 

HSPCs, but do not exhibit defects in specifying arterial cell fate (146). Combined, these data 

support the idea that there are arterial-venous patterning-independent functions for Notch 

signaling in definitive hematopoiesis.

Notch and downstream HSPC specification are also regulated by non-canonical Wnt 

signaling. The ligand Wnt16 induces the ligands deltaC and deltaD in the somites 

surrounding the dorsal aorta, leading to induction of runx1- and cmyb-expressing HSPCs. 

Knocking down wnt16 does not affect vasculature formation but leads to the loss of 

itga2b(+)/cmyb(+) HSPCs and lymphocytic lineages (147). Transforming growth factor β 
(tgfβ) is another signal coming not only from the dorsal aorta endothelium, but from the 

environment surrounding the AGM. Knocking down tgfβR2 leads to significant loss of 

runx1 and other HSPC markers and results in impairment of HSPC budding without 

affecting the arterial endothelium (148).

Additional factors act with or without Notch-Runx1 during specification of AGM-derived 

HSPCs. Mutations in cbfβ, the non-DNA binding beta-subunit of the Core Binding factor, 

showed that this Runx1 partner is also essential for HSPC’s sprouting (135). Using double 

specific scl promoter driven transgenic lines, it was shown that the transcription factor 

isoforms sclα/sclβ act consecutively during HSPC formation. sclβ expression, co-expressed 

with the endothelial kdrl marker, is required in the AGM for HSPC specification and EHT 

initiation, while expression of sclα only appears once the HSPCs detach from the AGM, and 

is important for their maintenance as evidenced by increased HSPC cell death noted in sclα 
morphants (149). The transgenic reporter lines available in the zebrafish have been very 

useful in advancing our knowledge of specific HSPC-derived cell lineages. For instance, 

thrombocytes populating the thymus were first imaged live using a line where GFP 

expression is driven by the itga2b promoter (a.k.a. CD41). This analysis revealed that 

nascent HSPCs express itga2b, showed by flow cytometry isolation that thrombocytes 

express high levels of CD41-GFP(+) and that thrombocyte formation is scl-dependent (150). 

Tissues surrounding the hemogenic endothelium also play important roles in HSPC 

specification. Using fli1a and sox10-driven transgenic lines, researchers observed that 

migratory neural crest cells (NCCs) come in touch with the dorsal aorta endothelium at the 

onset of and during HSPC specification. When NCC contact with the dorsal aorta was 
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impeded, HSPC specification was lost. Pdfgra-dependent signaling from the migratory 

neural crest is required for this process. Pdgfra-deficient embryos display a lack of runx1 
and cmyb positive HSPCs, as well as mature rag2 positive T-lymphocytes in the thymus 

(151).

Epigenetic signaling molecules in specification and lineage differentiation

Epigenetic control of gene regulation has gained significant interest in recent years, and 

recent evidence suggests that it plays important roles in hematopoiesis. Epigenetic 

adaptations include histone modifications, DNA methylation, small RNAs, and chromatin 

remodeling complexes (152). DNA methylation plays critical, evolutionarily conserved roles 

during vertebrate development (153, 154). Methyl marks are added to cytosines in CpG 

dinucleotides within DNA by specific enzymes called DNA methyltransferases (DNMTs). 

De novo DNMTs add methyl marks to previously unmarked DNA sequences, while 

maintenance DNMTs copy preexisting methyl marks onto newly synthesized strands during 

DNA replication. The zebrafish de novo DNA methyltransferase family consists of dnmt3aa, 
dnmt3ab, dnmt3ba, dnmt3bb.1, dnmt3bb.2, and dnmt3bb.3. Recent work has shown that 

dnmt3bb.1 is essential for maintenance of HSPC specification (124). Dnmt3bb.1 is the 

closest homologue of mammalian DNMT3b, and it is similarly expressed in developing 

HSPCs. Zebrafish dnmt3bb.1 mutants lose expression of cmyb by 72 hpf, followed by HSPC 

apoptosis and loss of downstream hematopoietic lineages as evidenced by a reduction of 

myeloid and lymphoid markers such as l-plastin and rag1, respectively (124). Bisulfite 

sequencing of dnmt3bb.1 mutants revealed that the intron1 CpG island of cmyb is a target of 

dnmt3bb.1 DNA methylation during definitive hematopoiesis. Dnmt3bb.1 expression is 

dependent on runx1 and ectopic expression of dnmt3bb.1 is sufficient to induce not only 

cmyb but downstream blood lineage specific markers in either wild type or runx1-deficient 

endothelium. Ectopic expression of dnmt3bb.1 during blastula stages demonstrated that 

dnmt3bb.1 is also capable of inducing cmyb in these naïve pre-gastrula cells, in addition to a 

battery of erythroid, myeloid, and lymphoid blood lineage markers, all without induction of 

non-hematopoietic mesodermal markers such as cadherin5 or etv2. Together, the findings 

from this zebrafish study indicate that once HSPCs detach from the AGM and begin to 

downregulate runx1 expression, continued maintenance of cmyb and downstream blood 

lineage marker expression depends on dnmt3bb.1 (124, 152). Interestingly, conditions 

defective epigenetic regulation has been shown to lead to hematopoietic malignancies like 

leukemias and lymphomas, and drugs targeting DNA methylation and other epigenetic 

modifications are currently being used as therapies for these conditions, as recently reviewed 

in detail elsewhere (152).

Later hematopoietic development in zebrafish

After being specified and detaching from the AGM, HSPCs seed a number of zebrafish 

hematopoietic organs and tissues, including the thymus and anterior kidney. Zebrafish 

possesses the same blood types found in mammals, and mostly they share similar anatomical 

locations and morphological and functional features. In teleost fish like the zebrafish the 

anterior portion of the kidney is the main source of blood cells, where HSPCs reside through 

adulthood, and it is comparable to the mammalian bone marrow (107, 108, 155). Zebrafish 

studies have been useful for studying juvenile and adult stages of hematopoiesis. The 
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runx1W84X mutant described earlier loses all HSPC-derived lineages, but still has some 

cd41(+) cells in the AGM at larval stages. Although most homozygous mutants die by 20 

dpf, a small percentage of runx1W84X/W84X homozygotes recover and survive to adulthood, 

forming all blood lineages as adults (137). ~10–12% of dnmt3bb.1 homozygous mutants 

also survive to adulthood, and, like the cmyb mutants described above, these show a strong 

reduction in hematopoietic cell number and malformation of the remaining erythrocytes, 

providing an interesting model for studying adult hematopoietic deficiency (124). Examples 

such as these open the door to investigate potential alternative hematopoietic sources in fish 

and may permit later juvenile and adult experiments not possible in mammalian models.

A variety of hematopoiesis-derived cells found away from the hematopoietic organs also 

have important roles in later-stage and adult zebrafish. Microglia, a brain resident 

macrophage, have an important role in protecting the CNS from toxic elements and cell 

debris and are also important effectors of neural development and function (156–158). In 

mice, they are known to arise during primitive hematopoiesis from yolk sac-derived 

macrophages (159). This is also the case in the larval zebrafish, where microglia arise from 

macrophages born in the rostral blood island (7, 68, 160). A recent study using a “switch 

line” to laser-induce a heat shock driving Cre recombination specifically in coro1-expressing 

leukocytes shed light on the origins of the adult population of zebrafish microglia. 

Temporally- and spatially-restricted activation of the switch line in wild type and pu1G242D, 

cmybhkz3 or runx1W84X mutant animals demonstrated that embryonic and adult microglia in 

zebrafish have different origins. While embryonic microglia formation occurs during 

primitive hematopoiesis and is pu.1-dependent and runx1-independent, adult microglia 

depend on runx1 and arise from the ventral wall of the dorsal aorta (12).

ZEBRAFISH AS A MODEL FOR HEMATOPOIETIC DISORDERS

Zebrafish has become an important model system for studying hematopoietic disorders and 

developing small molecule based therapeutic approaches. Conventional large-scale genetic 

screens have identified several zebrafish mutants that phenocopy human hematological 

disorders. In the last decade, this list has grown due to the relative ease of generating 

zebrafish mutants in genes linked to human diseases using CRISPR/Cas9 and other genome 

editing technologies. Hematopoiesis in zebrafish is very similar to that in higher vertebrates, 

and many of the mutated zebrafish orthologs of human disease genes have successfully 

phenocopied the human disease phenotypes. Since as noted above the small, externally 

developing zebrafish embryos and larvae can passively absorb oxygen and continue organ 

development for up to a week without red blood cells, the fish provides an ideal model 

system to study severe anemia and other disorders which might be difficult to study in 

higher vertebrates (161). The relative ease with which transgenic animals can be generated 

has also contributed significantly to the development of different leukemia models in 

zebrafish. Several research groups have used cell type-specific promoters to drive human 

oncogenes and fusion gene cDNAs to model different types of human blood cancers in 

zebrafish. These models have contributed significantly to our understanding of different 

aspects of these human diseases. In addition to studying disease biology, zebrafish leukemia 

models are being successfully used to develop epigenetic therapies (162). Table 2 lists a 

compilation of current zebrafish models of hematopoietic disorders.
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Zebrafish also offer unique advantages for large scale high throughput drug screening, 

including optical transparency, external fertilization and development, and the availability of 

a wide variety of transgenic reporter lines (Table 1). These advantages have made the use of 

zebrafish embryos in initial small molecule screens a standard practice around the world. A 

variety of different compounds that influence HSPCs and hematopoiesis in general have 

been identified through such screens (163). More recently, screens to isolate epigenetic 

modifiers have shown promise for developing new therapeutic targets.

Non-malignant models of hematopoietic disorders

Large scale forward genetic screens and reverse genetics using genome editing technologies 

have generated an array of zebrafish mutants that model different types of human anemia 

conditions. Zebrafish mutants chablis and merlot develop red blood cells (RBCs) with 

elliptical morphology that often contain two nuclei. Positional cloning revealed both mutants 

carry mutations in RBC membrane protein Epb41b (164). Erythrocytic membrane proteins 

play crucial roles in regulating RBC cytoskeleton and other membrane proteins (165). 

Human mutations in EPB42 are linked to hereditary elliptocytosis (166). Mutations in five 

human genes lead to Hereditary spherocytosis, a type of anemia with low number of RBCs 

typically caused due to hemolysis or structural defects in RBCs. Zebrafish mutations in beta-
spectrin and slc4a phenocopy human hereditary spherocytosis. Zebrafish mutants in these 

genes show defective RBC morphology and abnormal cytokinesis (167, 168). Identification 

of these genes not only shed light on the human disease conditions but also revealed roles of 

these genes in RBC differentiation.

A number of zebrafish mutants model Diamond-Blackfan anemia, a bone marrow disorder 

caused due to mutations in ribosomal genes (169). People affected by Diamond-Blackfan 

syndrome carry increased risk of complications related to the bone marrow and have higher 

chances of developing secondary hematological conditions such as myelodysplastic 

syndrome and acute myeloid leukemia (170). Zebrafish models of Diamond-Blackfan 

syndrome have not only shed light on the molecular mechanisms behind this disease, but 

have proven useful in developing potential pharmacological therapies for this disease.

In humans, mutations in ferrochelatase (FCH) cause erythropoietic protoporphyria, a 

disorder in which RBCs accumulate excess phototoxic heme synthesis intermediates and 

undergo hemolysis after exposure to light (171). The toxic compounds released after lysis 

accumulate and damage the liver. Zebrafish ferrochelatase (dracula) mutants have strongly 

fluorescent RBCs that undergo lysis upon illumination (172). The mutant embryos also 

show abnormal liver development as in the human disease condition. Dracula mutant 

embryos provide a model system to screen small molecules that can block hemolysis (172).

Malignant models of hematopoietic disorders

Abnormal differentiation and uncontrolled growth of blood cells leads to blood disorders 

such as leukemia. Blood cancers are generally classified based on the type of blood cells 

involved in the disease. Many of these conditions arise through chromosomal translocations 

and insertions that lead to abnormal activation of oncogenes in HSPCs or in a specific 

downstream blood cell lineage (173). Many of these human fusion oncogenes cause blood 
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disorders similar to human cancers when they are overexpressed in zebrafish (174). 

Inducible overexpression of AML1-ETO fusion protein in fish leads to defective 

erythropoiesis and granulopoiesis, a phenotype also seen in human acute myeloid leukemia 

(175). Overexpression of NUP98-HOXA9 fusion protein in zebrafish using a myeloid cell 

type-specific promoter causes overproliferation of HSPCs and myeloid cell expansion (176). 

Both the AML models were successfully used to identify small molecules that can reverse 

these conditions. Cyclooxygenase (COX) inhibitors and benzodiazepine Ro5–3335 

treatment of NUP98-HOXA9 overexpressing embryos reverses myeloid cell over 

proliferation (177). Interestingly, epigenetic inhibitors targeting histone deacetylase or DNA 

methyltransferase activity reduces myeloid cell proliferation seen in AML1-ETO and 

NUP98-HOXA9 transgenic embryos respectively (115, 162). These results also highlight the 

potential role of epigenetics in these diseases.

Similar to the AML models described above, myc oncogene and Notch intracellular domain 

overexpression in zebrafish using lympohoid cell promoters leads to T-cell acute 

lymphoblastic leukemia (T-ALL) (125, 178). In these T-ALL zebrafish models, co-

expression of GFP in leukemic cells allows high-resolution imaging of the behavior of these 

cancer cells in living animals, a difficult feat in murine models. GFP labelled cells are also 

easy to isolate from T-ALL zebrafish models using FACS techniques. Transplantation of the 

isolated cells in conditioned recipient zebrafish initiates full symptoms of leukemia, 

recapitulating human cancer cell-like behaviors (125, 178). Together, these zebrafish 

leukemia models provide powerful tools to identify molecular mechanisms behind these 

cancers.

CONCLUSIONS

Zebrafish has become an important model to study hematopoiesis. Over the last decade in 

particular many crucial new discoveries regarding different aspects of normal and 

pathological hematopoiesis have been made using zebrafish as a model system. Zebrafish is 

highly amenable to genetic manipulations and with recent advances in genome editing 

technologies it has become relatively easy to probe the functional roles of the different 

signaling molecules involved in hematopoiesis. An array of new transgenic zebrafish lines 

unique to specific hematopoietic cell populations have also been developed, and in addition 

to providing valuable research tools for studying basic molecular mechanisms of normal and 

pathologic hematopoiesis, they have already been used successfully in chemical screens to 

identify potential new therapeutic agents for human disease. With the availability of these 

powerful genome editing, transgenic, and chemical screening tools the fish seems likely to 

yield many more important new insights into the molecular mechanisms underlying 

malignant and non-malignant hematopoietic disorders.

There are still a few small limitations that need to be overcome to use zebrafish to study 

hematopoiesis. Culturing HSPCs and differentiating them into downstream lineages in vitro 
(similar to colony formation assays done in higher vertebrates) is still limited. Although 

there have been some successful attempts to culture zebrafish hematopoietic stem cells in 
vitro, more needs to be done to improve the culture conditions and make them 

straightforward and simple. Lack of reliable cell surface markers and antibodies against 
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these markers is another problem for the zebrafish hematopoiesis field. FACS sorting of 

hematopoietic subpopulations using a broad array of antibodies targeting specific cell-

surface proteins is widely used in mammalian studies. In fish most of the current 

hematopoietic cell isolation protocols are based on transgenic labeling, greatly limiting 

isolation of subpopulations of particular lineages. Developing many more reliable cell 

surface marker-specific antibodies would be very helpful in isolating specific hematopoietic 

cell populations. Despite these limitations, the zebrafish provides a superb model system to 

study hematopoiesis and hematopoietic disorders. In the future, the zebrafish will continue 

to greatly facilitate the discovery of new drugs and new molecular processes involved in 

hematopoiesis.
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Figure 1: 
Primitive hematopoiesis in zebrafish is responsible for generating the first populations of 

erythroid and myeloid cells. (A) Camera lucida drawing with superimposed green coloring 

depicting expression of an ETS transcription factor in the anterior (arrowhead) and posterior 

(arrows) lateral plate mesoderm. Primitive blood lineages are specified in anterior and 

posterior lateral plate mesoderm during early somitogenenesis. (B) Confocal image of a 16 

hour-old Tg(fli1a:egfp)y1 embryo showing transgenic expression of EGFP in the anterior 

(arrowhead) and posterior (arrows) lateral plate mesoderm. (C) Camera lucida drawing of a 

31 hpf zebrafish embryo with a blue box noting the approximate region of the trunk shown 

in panel D. (D) Double in situ hybridization staining for hbae1.1 primitive erythrocytes (red, 

arrows) and cmyb developing HSPCs (blue, arrowheads) in the ventral floor of the dorsal 

aorta of 32 hpf embryo.
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Figure 2: 
Definitive hematopoiesis in zebrafish is responsible for generating all types of blood cells. 

(A) Camera lucida drawing of a 48 hpf zebrafish embryo with red, blue, and green colored 

boxes noting the approximate regions of the embryo shown in panels B, C, and D, 

respectively. (B) HSPCs develop in the ventral wall of the dorsal aorta. Confocal image of 

the mid trunk of a 32 hpf Tg(runx1+23:EGFP); Tg(kdrl:mCherry-caax) double-transgenic 

embryo showing EGFP-positive developing HSPCs (green; arrows) in the ventral floor of 

the mCherry-positive dorsal aorta (red). (C) The developing zebrafish thymus. Lateral view 

of a 5 dpf Tg(lck:GFP); Tg(kdrl:mCherry) double-transgenic embryo, just ventral to the 

otolith, showing GFP-positive thymocytes (green; arrow) developing adjacent to an 

mCherry-positive blood vessel (red). (D) The zebrafish head kidney is a major organ of 

definitive hematopoiesis equivalent to the bone marrow of mammals. Confocal image of the 

from the anterior trunk of a 5 dpf Tg(runx1+23:EGFP); Tg(lyve1:dsRed) double-transgenic 
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embryo, showing GFP-positive hematopoietic cells (green; yellow box, white arrow) 

developing adjacent to an mCherry-positive vein (purple).
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Figure 3: 
Schematic diagram illustrating the different sites of zebrafish hematopoiesis used throughout 

development. Stage of development is indicated in hours post fertilization (hpf) or days post 

fertilization (dpf). RBI, rostral blood islands; PLM, posterior lateral-plate mesoderm; ICM, 

intermediate cell mass; DA, dorsal aorta; CHT, caudal hematopoietic tissue.
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Table 1:

Transgenic lines available to study hematopoiesis in zebrafish

Transgenic line Cell type labeled References

Tg(cmyb:EGFP) HSPCs, myeloid (5)

Tg(−6.0itga2b:EGFP) aka
Tg(cd41:EGFP)

HSPCs, thrombocytes (179)

Tg(runx1:EGFP) HSPCs, anterior and posterior lateral plate mesoderm (108)

Tg(runx1+23:EGFP) HSPCs (3, 180)

TgBAC(gata2b:KalTA4)sd32

aka Tg(gata2b:GFP)
HSPCs (32)

Tg(scl-α:d2EGFP) HSPCs, intermediate cell mass (149)

Tg(scl-β:d2EGFP) HSPCs, intermediate cell mass (149)

Tg(lck:GFP) T cells, lymphocytes (126)

TgBAC(ikaros:EGFP) T Cells, lymphocytes (181)

Tg(rag1:GFP) T Cells (182)

Tg(rag2:GFP) T Cells (183)

Tg(mhc2dab:GFP)sd6 B Cells, dendritic cells (184)

Tg(mpx:GFP) Neutrophils (185)

Tg(lyz:EGFP) Neutrophils (133)

Tg(mpeg1:EGFP) Macrophages (186)

Tg(gata1:GFP) Erythrocytes (58)

Tg(−20.7gata2:EGFP)la3

aka Tg(gata2a:GFP)
Erythrocytes (179)
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Table 2:

Zebrafish models of hematological disorders

Human Disease condition Zebrafish transgenic line or mutant Affected gene Reference

Hereditary elliptocytosis chablis and merlot epb41b (164)

Hereditary spherocytosis type 2 riesling b-spectrin (167)

Hereditary spherocytosis type 4 retsina slc4a1 (168)

Erythropoietic protoporphyria and X-linked 
sideroblastic anemia

sauternes alas2 (187)

hypochromic microcytic anemia zinfandel hbbe1.1 (62)

hypochromic microcytic anemia chianti tfr1a (188)

Hemochromatosis type 4 weissherbst slc40a1 (189)

Erythropoietic protoporphyria dracula fech (172)

Diamond-Blackfan anemia rpl11 rpl11 (190)

Acute Myeloid leukemia Tg(hsp:AML1-ETO) runx1 (175)

Acute Myeloid leukemia Tg(spi1:lox-EGFP-lox-NUP98-
HOXA9)

hoxa9 (176)

Myelodysplastic Syndrome Tet2 mutants Tet2 (191)

Myelodysplastic Syndrome crimsonless hspa9b (192)

T- cell Acute lymphoblastic leukemia Tg(rag2:EGFP-myc) Myc-oncogene 
overexpression

(125)

T- cell Acute lymphoblastic leukemia Tg(rag2:NOTCH1ICD-EGFP) Notch1-intracellular 
domain overexpression

(178)

Pre-B cell Acute Lymphoblastic leukemia Tg(ef1alpha:EGFP-TEL-AML1) runx1 (193)
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