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Synchronization of stochastic expressions drives the
clustering of functionally related genes
Haiqing Xu1, Jing-Jing Liu2, Zhen Liu1,3, Ying Li1*, Yong-Su Jin2,4, Jianzhi Zhang1†

Functionally related genes tend to be chromosomally clustered in eukaryotic genomes even after the exclusion
of tandem duplicates, but the biological significance of this widespread phenomenon is unclear. We propose
that stochastic expression fluctuations of neighboring genes resulting from chromatin dynamics are more or
less synchronized such that their expression ratio is more stable than that for unlinked genes. Consequently,
chromosomal clustering could be advantageous when the expression ratio of the clustered genes needs to stay
constant, for example, because of the accumulation of toxic compounds when this ratio is altered. Evidence
from manipulative experiments on the yeast GAL cluster, comprising three chromosomally adjacent genes en-
coding enzymes catalyzing consecutive reactions in galactose catabolism, unequivocally supports this hypoth-
esis and elucidates how disorder in one biological phenomenon—gene expression noise—could prompt the
emergence of order in another—genome organization.
INTRODUCTION
Genomes are not random assemblies of constituent genes; there is
mounting evidence that functionally related genes tend to be chromo-
somally clustered in eukaryotic genomes even after the removal of
tandem duplicates (1–5). Several hypotheses have been proposed to
explain this phenomenon (1–8). For example, one hypothesis posits
that such clustering minimizes recombination between coadapted al-
leles of functionally related genes and so is selectively favored (1). An-
other hypothesis argues that functionally related genes are easier to be
simultaneously horizontally transferred when they are clustered than
when they are not, causing the spread of gene clusters (5, 7). But, none
of the proposed benefits of gene clustering have been experimentally
validated (1–8), rendering the cause of this phenomenon elusive. In
this study, we propose that the benefit of chromosomal clustering of
functionally related genes is to reduce the stochastic fluctuations of the
relative expression levels of these genes, which, under certain circum-
stances, can raise fitness. We then test this hypothesis using manipu-
lative experiments on a metabolic gene cluster in the budding yeast
Saccharomyces cerevisiae.
RESULTS
The expression cofluctuation hypothesis
Likemost cellular processes, gene expression has substantial stochastic
variation or biological noise, because the substrates of transcription
and translation typically have only one to several molecules per cell
(9). In eukaryotes, gene expression noise arises primarily from the
pulse-like transcriptional initiations due to the stochastic on/off
switches of promoters as a result of random opening and closing of
chromatin domains (9–11). Many biological functions require the co-
operation of multiple proteins with a strict stoichiometry (12–14), but
the expression noise poses a challenge (15), because even if the pro-
moters of the genes encoding these proteins are identical, each pro-
moter is randomly switched on and off independently. As a result,
the between-gene ratio in mRNA concentration fluctuates substan-
tially (Fig. 1A). Because neighboring genes on a chromosome are
likely controlled by the same chromatin domain, the transcriptional
pulses of neighboring genes are synchronized (16) such that their rel-
ative mRNA and, consequently, protein concentrations are more or
less constant even though the expression noise of individual genes is
inevitable (Fig. 1B). Therefore, chromosomal clustering of function-
ally related genes is advantageous if a relatively constant expression
ratio among these genes is favored. An analysis of 100 fungal ge-
nomes (8) revealed that gene pairs that are both chromosomal neigh-
bors and metabolic neighbors (i.e., encoding enzymes catalyzing
successive reactions in a metabolic pathway) tend to have a toxic in-
termediate metabolite when compared with gene pairs that are meta-
bolic neighbors but not chromosomal neighbors, suggesting that
chromosomal clustering of metabolic genes is an adaptation against
the accumulation of toxic intermediates. It is known in bacteria that
suboptimal relative enzyme concentrations resulting from gene ex-
pression noise could lead to the accumulation of toxic metabolites
and growth arrest (17). Furthermore, fungal metabolic gene clusters
are often regulated by chromatin-based mechanisms (18). Given the
above observations and considerations, we propose that it is the syn-
chronization of stochastic expressions of neighboring genes that en-
sures a stable stoichiometry of their products, which minimizes the
accumulation of toxic intermediates in metabolic pathways (Fig. 1B);
consequently, chromosomal clustering ofmetabolic genes is selectively
favored.

To theoretically verify our model, we analyzed a linear pathway
consisting of two reactions with an intermediate metabolite. It can be
shown analytically that, under steady states, the expected concentra-
tion of the intermediate metabolite decreases with the correlation be-
tween the concentrations of the enzymes respectively catalyzing the
two reactions, due to nonlinear relationships between enzyme con-
centrations and metabolic fluxes (see Materials and Methods). Nu-
merical simulations confirmed this result (Fig. 1C) and suggested
that the trend also holds under non–steady states (Fig. 1D). While
multiple additional factors can influence the relative concentrations
of enzymes and the accumulation of intermediate metabolites in
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relation to gene expression noise (15, 17, 19–22), our model is ten-
able, at least in principle.

The yeast GAL cluster as a case study
To experimentally test our hypothesis, we used S. cerevisiae, a model
eukaryote where metabolic gene clusters have been extensively sur-
veyed (3, 4). Among the 20 clusters reported in this species (4), we
focused on theGAL cluster because of its better-understood function
and regulation (23). The S. cerevisiae GAL cluster comprises three
chromosomally adjacent genes: GAL1, GAL7, and GAL10 (Fig. 2A).
They encode enzymes catalyzing three consecutive reactions in galac-
tose catabolism, with a cytotoxic intermediate, galactose-1-phosphate
(galactose-1-P) (24) (Fig. 2B). Using numerical simulations, we con-
firmed that expression cofluctuations among the three GAL genes are
expected to reduce the galactose-1-P concentration (Fig. 2C and
fig. S1). The S. cerevisiae GAL cluster emerged through relocations of
initially unlinked genes in evolution (25). Similar events occurred in-
dependently in Cryptococcus fungi, resulting in another GAL cluster
with different order and different orientations of the three genes (25).
These observations suggest that it is the chromosomal proximity in-
stead of the order or orientation of theGAL genes that has potentially
been selected for. The yeast galactose catabolism pathway has been a
Xu et al., Sci. Adv. 2019;5 : eaax6525 9 October 2019
model for understanding gene regulation (23) and its evolution (26).
When glucose is present in the medium, GAL gene expressions are
repressed; when glucose is absent and galactose is present, GAL gene
expressions can be up-regulated by as much as 1000-fold (23). This
strong induction depends on the binding of the transcriptional activator
Gal4 on the specific upstream activating sequence (UAS) present inGAL
gene promoters. Given that the GAL genes are already coregulated by
Gal4, it is fascinating to investigate whether chromosomal clustering
provides yet another layer of coregulation in the face of expression noise.

Test of the hypothesis for GAL1 and GAL10
We started by examining the pair of GAL1 and GAL10 (Fig. 2A). Our
hypothesis predicts that the expression ratio between the two genes
should have smaller variations when they are linked thanwhen they are
unlinked. Without relocating the genes, which could have unintended
consequences such as disrupting regulatory sequences or encountering
position effects (27), we created a diploid that has one GAL1 allele
tagged with a yellow fluorescence protein gene (YFP) and one GAL10
allele from either the same or homologous chromosome tagged with a
cyan fluorescence protein gene (CFP), yielding a cis-tagging strain and a
trans-tagging strain, respectively (Fig. 2D). Thus, the Yfp/Cfp expres-
sion ratio in the cis- and trans-tagging strains respectively measures
Fig. 1. Schematics explaining the hypothesis that coordination of stochastic expressions drives the clustering of functionally related genes. Genes 1 and 2
encode two enzymes catalyzing successive reactions in a metabolic pathway, where the intermediate metabolic of the two reactions is toxic. (A) When the two genes
are unlinked, their stochastic expressions are uncoordinated, leading to a high variation of their expression ratio that causes the accumulation of the toxic intermediate.
(B) When the two genes are closely linked, their common chromatin environment coordinates their stochastic expressions, stabilizing their expression ratio, which
lessens the accumulation of the toxic intermediate. (C and D) Expected concentrations of the intermediate metabolite under different levels of correlation between the
concentrations of enzyme 1 and enzyme 2, determined by numerical simulations under steady states (C) or non–steady states (D). Each circle shows the average from
100,000 simulations in (C) or 10,000 simulations in (D). Error bars show SEs.
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Fig. 2. Testing advantageous coordination of stochastic expressions of GAL1 and GAL10 in the GAL gene cluster. (A) Chromosomal locations of GAL cluster
genes in yeast. Arrows indicate transcriptional directions. Each small triangle indicates a UAS. (B) Yeast galactose catabolism pathway, showing metabolic reactions
catalyzed by enzymes encoded by the GAL gene cluster (solid arrows) and a reaction catalyzed by aldose reductase (dashed arrow). The skull-and-crossbones symbol
indicates toxicity. Galactitol is probably toxic (28, 29). (C) Expected concentrations of galactose-1-P under different levels of correlation between the concentrations of
Gal1 and Gal10, determined by non–steady-state numerical simulations. The correlation coefficients in the concentration between Gal1 and Gal7 and that between
Gal7 and Gal10 are fixed at various levels indicated on the top of the figure. Each circle indicates the average from 2000 simulations. (D) Schematics showing cis- and
trans-tagging strains. Blue and yellow arrows, respectively, represent the cyan (CFP) and yellow (YFP) fluorescence protein genes. (E) The CV of the Gal1-yfp/Gal10-cfp
protein level ratio among cells is significantly lower for the cis- than trans-tagging strains. Each circle indicates the mean from eight biological replicates, each with 5000
cells. (F) Schematics showing cis- and trans-deletion strains. A red cross indicates gene deletion. (G and H) Cellular concentrations of galactose-1-P (G) and galactitol (H)
are significantly lower in the cis- than in the trans-deletion strains. In (G) and (H), each circle represents the mean from four biological replicates, each having three
technical repeats. a.u., arbitrary units. (I) Schematics showing cis- and trans-deletion strains used for fitness estimation via strain competition. Green and yellow cells,
respectively, indicate cells that express a green fluorescence protein gene (GFP) and a YFP gene at the HO locus. (J) The fitness of the cis-deletion strain relative to the
trans-deleting strain in (I) is substantially greater than 1 in a galactose medium (YPGal) but is slightly below 1 in a glucose medium (YPD). (K) Schematics showing cis-
and trans-deletion strains with reciprocal fluorescence markers used for fitness estimation. (L) The fitness of the cis-deletion strain relative to the trans-deleting strain in
(K) is substantially greater than 1 in YPGal but is not different from 1 in YPD. In (J) and (L), each circle represents the mean from eight biological replicates, and statistical
tests of the null hypothesis that the relative fitness equals 1 are performed. In all panels, error bars show SEs. Significance levels are indicated as follows: NS, P ≥ 0.05;
*P < 0.05; **P < 0.01, ***P < 0.001.
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the Gal1/Gal10 expression ratio for the linked and unlinkedGAL genes.
We grew each strain in YPGal, a richmediumwith galactose as the car-
bon source, until the mid-log phase, and simultaneously quantified the
two fluorescence signals of individual cells by flow cytometry. We cal-
culated the Yfp/Cfp signal ratio for each cell and used the coefficient of
variation (CV) of this ratio among 5000 cells as a measure of the varia-
tion of the Gal1/Gal10 expression ratio.

The among-cell mean protein level of Gal1-yfp is not significantly
different between the cis- and trans-tagging strains (P = 0.41, t test;
fig. S2A), nor is the mean level of Gal10-cfp (P = 0.20, t test; fig. S2B).
However, the CV of the ratio of the Gal1-yfp to Gal10-cfp levels is
significantly lower for the cis- than for the trans-tagging strains (P =
0.0092, t test; Fig. 2E). Consistently, the partial correlation between
the Gal1-yfp and Gal10-cfp levels among cells upon the control of
Xu et al., Sci. Adv. 2019;5 : eaax6525 9 October 2019
cell morphology is greater for the cis- than trans-tagging strains
(P = 0.045, t test; fig. S2C). These results support our hypothesis that
gene clustering reduces the stochastic variation of the expression ra-
tio of the clustered genes.

Our hypothesis further predicts that the enhanced expression co-
fluctuation of GAL1 and GAL10 lowers the cellular concentration of
the toxic intermediate in galactose catabolism and increases the fit-
ness. To verify these predictions without relocating any gene in the
genome, we used CRISPR-Cas9 to create a cis-deletion diploid with
only one intactGAL1 allele and one intactGAL10 allele, both located
on the same chromosome, and a trans-deletion diploid with only one
intact GAL1 allele and one intact GAL10 allele, respectively located
on the two homologous chromosomes (Fig. 2F and fig. S3); these two
strains are otherwise genetically identical. To be noted, using the
Fig. 3. Testing advantageous coordination of stochastic expressions of GAL7 and GAL10 in the GAL gene cluster. (A) Schematics showing cis- and trans-tagging
strains and cis- and trans-deletion strains. Blue and yellow symbols, respectively, represent the CFP and YFP genes. A red cross indicates gene deletion. (B) The CV of the
Gal7-yfp/Gal10-cfp protein level ratio among cells is significantly lower for the cis- than for the trans-tagging strains. Each circle is the average from six replicates, each
with 5000 cells. (C and D) Cellular concentrations of galactose-1-P (C) and galactitol (D) are significantly lower in the cis- than in the trans-deletion strains. In (C) and (D),
each circle represents the average from four biological replicates, each having three technical repeats. (E) The fitness of the YFP-marked cis-deletion strain relative to
the GFP-marked trans-deletion strain is substantially greater than 1 in a galactose medium (YPGal) but is slightly below 1 in a glucose medium (YPD). (F) The fitness of
the GFP-marked cis-deletion strain relative to the YFP-marked trans-deletion strain is substantially greater than 1 in YPGal but is not different from 1 in YPD. In (E) and
(F), each circle represents the average from eight biological replicates, and statistical tests of the null hypothesis that the relative fitness equals 1 are performed. In all
panels, error bars show SEs. Significance levels are indicated as follows: NS, P ≥ 0.05; *P < 0.05; **P < 0.01, ***P < 0.001.
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scarless and markerless CRISPR-Cas9 technology here is vital be-
cause traditional gene deletion methods typically introduce selection
markers and scars, which could reduce the detectability of fitness ef-
fects of gene linkage (6).

The accumulation of galactose-1-P is cytotoxic in yeast (24) and
causes galactosemia in humans (28). Additionally, because intracellu-
lar galactose could be reduced to galactitol by aldose reductase when
the galactose catabolism is inefficient (Fig. 2B), galactitol is accumu-
lated in patients with galactosemia (28) and is believed to contribute to
galactosemia (29). We used gas chromatography–mass spectrometry
(GC-MS) to quantify the cellular concentrations of galactose-1-P and
galactitol in the cis- and trans-deletion strains cultured in YPGal. Sup-
porting our prediction, both galactose-1-P (P = 0.018, t test; Fig. 2G)
and galactitol (P = 0.016; Fig. 2H) concentrations are significantly
lower in the cis- than in the trans-deletion strains.

We respectively inserted at the HO locus of the cis- and trans-
deletion strains YFP and GFP (green fluorescence protein gene) to al-
low the use of flow cytometry to differentiate between the two deletion
strains in a coculture (Fig. 2I). The two strains competed in YPGal and
YPD (yeast extract, peptone, and dextrose), a rich medium with glu-
cose as the carbon source. By cell counting of the two genotypes in the
coculture at multiple time points during the competition, we esti-
mated that the fitness of the cis-deletion strain is ~6% higher than that
of the trans-deletion strain in YPGal, but this disparity diminished
when they competed in YPD (Fig. 2J), as one would expect from
the fact that galactose catabolism is turned off in glucose. Swapping
the fluorescence markers between the two deletion strains (Fig. 2K)
did not change the results (Fig. 2L), indicating that our results are
not attributable to any potential difference in the fitness effect of the
two fluorescent protein genes.

Test of the hypothesis for GAL7 and GAL10
GAL1 and GAL10 are divergently oriented with only 668 nucleotides
between their translation start sites, and they share UASs that are
bound by Gal4 (23) (Fig. 2A). To test if our hypothesis holds beyond
such circumstances, we similarly investigated the pair of GAL7 and
GAL10, which are concordantly oriented without shared UASs (Fig. 3A).
As in the case ofGAL1 andGAL10, themeanprotein levels ofGal7-yfp
(P = 0.87; fig. S2D) and Gal10-cfp (P = 0.92; fig. S2E) are not signifi-
cantly different between the cis- and trans-tagging strains. By contrast,
the Gal7-yfp/Gal10-cfp protein level ratio has a smaller CV in the cis-
than in the trans-tagging strains (P = 0.039; Fig. 3B), and the partial
correlation between the Gal7-yfp and Gal10-cfp levels upon the con-
trol of cell morphology is higher in the cis- than in the trans-tagging
strains (P = 0.015; fig. S2F). Thus, the chromosomal clustering of
GAL7 and GAL10 promotes their expression cofluctuation even though
they do not share cis-regulatory elements. GC-MS revealed lower con-
centrations of galactose-1-P (P = 0.0002; Fig. 3C) and galactitol
(P = 0.0057; Fig. 3D) in the cis- than in the trans-deletion strains. Con-
sistently, competition assays showed that the cis-deletion strain is signif-
icantly fitter than the trans-deletion strain in YPGal but not YPD,
regardless of whether the cis-deletion strain has YFP (Fig. 3E) or GFP
(Fig. 3F). Therefore, our hypothesis also holds for the pair of GAL7
and GAL10.
DISCUSSION
In this study, we proposed a potential benefit for chromosomal
clustering of functionally related genes in eukaryotic genomes
Xu et al., Sci. Adv. 2019;5 : eaax6525 9 October 2019
and tested this hypothesis using the yeast GAL cluster as a case study.
Although our comparison between cis- and trans-deletion strains
allows assessment of the consequences of gene linkage without relocat-
ing genes, there is a caveat. When constructing these strains for the pair
of GAL1 and GAL10, for example, we deleted one allele each of GAL1
and GAL10 but left both alleles of GAL7 intact, creating dose imbal-
ance between GAL7 and the other two GAL genes. Notwithstanding,
the imbalance is the same in the cis- and trans-deletion strains, so it
does not invalidate our comparison between them. However, the dose
imbalancemightmodulate the effect of disrupting the linkage between
GAL1 andGAL10. Greater differences between the cis- and trans-deletion
strains were observed for the pair of GAL7 and GAL10 (Fig. 3) than the
pair ofGAL1 andGAL10 (Fig. 2) in terms of toxic intermediate concen-
trations and fitness, despite that the difference in the CV of expression
ratio is similar for the two gene pairs. This is probably because having
one allele each of GAL7 and GAL10 but two alleles of GAL1 slows the
use of galactose-1-P relative to its production (Fig. 2B), raising the con-
centration of galactose-1-P. By contrast, having one allele each of
GAL1 andGAL10 but two alleles ofGAL7may have reduced the impact
of disrupting the linkage between GAL1 and GAL10 because of a slower
production than the use of galactose-1-P (Fig. 2B). One might think that
it is better to compare cis- and trans-deletion strainswithonly one copyof
each of GAL1, GAL7, and GAL10 to avoid gene dose imbalance. How-
ever, dosage balance for the GAL pathway likely also involves GAL
regulatory proteins and the galactose transporter. So, maintaining
only one copy of each of GAL1, GAL7, and GAL10 would not solve
the dosage imbalance problem. Furthermore, such a design would
have two pairs of genes in the trans configuration, complicating the
interpretation of any observation.

A recent study reported that the genomic region between GAL1
and GAL10 encodes a long noncoding RNA (GAL10-ncRNA) that
can repress the stochastic expression of GAL1 (30). Nevertheless, this
suppression diminishes upon cell preculture in galactose (30). Because
we precultured cells in galactose before the competition between cis-
and trans-deletion strains, the impact of GAL10-ncRNA should be
minimal. Additionally, both the promoter and poly(A) signal of
GAL10 are known to influence GAL7 expression (31). But, because
our gene deletions removed only the coding regions of theGAL genes,
the comparison between the corresponding cis- and trans-deletion
strains remains valid.

In summary, our experiments provide direct evidence that chro-
mosomal clustering of genes encoding enzymes of the samemetabolic
pathway minimizes the random fluctuation of their relative expres-
sions, which reduces the accumulation of toxic intermediates and pro-
motes growth. Our finding echoes reports of molecular and genomic
features that are shaped by various cellular noises/errors as well as nat-
ural selections that lower the impacts of these imprecisions (32–34). It
illustrates how disorder in one biological phenomenon—stochasticity
of gene expression—could prompt the emergence of order in another,
genome organization, and argues for the value of systemic analysis in
understanding biology. Our finding can also help design optimal syn-
thetic genomes.

Although our experiments focused on metabolic genes, our hy-
pothesis is general and can be applied to any cluster as long as fluctua-
tions of relative expression levels of its constituent genes are selectively
disfavored. For example, multiple lines of evidence support the view
that dosage imbalance among subunits of stable protein complexes is
deleterious (13, 35, 36). Hence, our hypothesis can explain why these
genes tend to be located within 10 to 30 kb of each other in yeast (37).
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Our hypothesis probably also holds in other eukaryotes, because the pri-
mary role of stochastic opening and closing of chromatin domains in
generating gene expression noise is likely universal among eukaryotes.
A recent analysis of mammalian single-cell RNA sequencing data re-
vealed a genome-wide feature of stronger among-cell expression cor-
relations between linked alleles than unlinked alleles (38). This said,
we caution that only one gene cluster has thus far been shown to sup-
port our hypothesis, and many more studies are required to establish
its potential generality. It is also worth stressing that the experimental
validation of our hypothesis does not refute other evolutionary hypothe-
ses (1–8) on the chromosomal clustering of functionally related genes.
In the future, it will be important to experimentally test these other
hypotheses and evaluate the relative merits and applicability of var-
ious hypotheses.
MATERIALS AND METHODS
Concentration of the intermediate metabolite in a
two-reaction linear pathway
Let x and y be two random variables with expectations of mx and my
and variances of Var(x) and Var(y), respectively. Let f(x, y) be a func-
tion of x and y. Using the Taylor expansion of the function at q(mx, my),
we have

f ðx; yÞ≈ f ðqÞ þ f ′xðqÞðx � qxÞ þ f ′yðqÞðy � qyÞ þ 1
2
f ″xðqÞðx � qxÞ2þ

f ″xyðqÞðx � qxÞðy � qyÞ þ 1
2
f ″y ðqÞðy � qyÞ2

Thus, the expectation of f(x, y) is

Eðf ðx; yÞÞ≈ E f ðqÞ þ f ′xðqÞðx � qxÞ þ f ′yðqÞðy � qyÞ þ
�

1
2
f ″xðqÞðx � qxÞ2 þ f ″xyðqÞðx � qxÞðy � qyÞ þ 1

2
f ″yðqÞðy � qyÞ2Þ ¼

f ðqÞ þ f ′xðqÞEðx � qxÞ þ f ′yðqÞEðy � qyÞ þ 1
2
f ″xðqÞVarðxÞ þ

f ″xyðqÞCovðx; yÞ þ 1
2
f ″yðqÞVarðyÞ ¼ f ðqÞ þ 1

2
f ″xðqÞVarðxÞ þ

f ″xyðqÞCovðx; yÞ þ 1
2
f ″yðqÞVarðyÞ

when f ðx; yÞ ¼ x
y ; f ″xðx; yÞ ¼ 0; f ″xyðx; yÞ ¼ �y�2; and f ″yðx; yÞ ¼

2xy�3. Hence

Eðf ðx; yÞÞ≈ mx
my

� Covðx; yÞ
my2

þ VarðyÞmx
my3

ð1Þ

Now, let us consider the following two metabolic reactions that
form a linear pathway.

M1 þ E1→M2 þ E1;with v1 ¼ kcat1½M1�½E1�
Km1 þ ½M1�

M2 þ E2→M3 þ E2;with v2 ¼ kcat2½M2�½E2�
Km2 þ ½M2�

In the above, E1 and E2 are two enzymes that respectively catalyze
the two reactions, whereasM1 is the substrate for the pathway,M2 is
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the intermediate metabolite, and M3 is the product of the pathway,
respectively. [] stands for the concentration of the chemical inside
the brackets. Km1 and Km2 are the Michaelis constants, and kcat1 and
kcat2 are the catalytic rate constants of the two reactions, respectively.

At the steady state, v1 ¼ v2:Hence; kcat1½M1�½E1�
Km1þ½M1� ¼ kcat2½M2�½E2�

Km2þ½M2� : Let

L1 ¼ kcat1½M1�
Km1þ½M1� :We then have [E1]L1(Km2 + [M2]) = kcat2[M2][E2].

Thus

½M2� ¼ L1Km2½E1�
kcat2½E2� � L1½E1� ð2Þ

Let x=[E1] and y = kcat2[E2] − L1[E1]. Let Eð½E1�Þ ¼ m1;
Varð½E1�Þ ¼ s21; Eð½E2�Þ ¼ m2;Varð½E2�Þ ¼ s22; and Covð½E1�; ½E2�Þ ¼
rs1s2. So, EðxÞ ¼ m1;VarðxÞ ¼ s21;EðyÞ ¼ kcat2m2 � L1m1;VarðyÞ ¼
k2cat2s

2
2 þ L21s

2
1 � 2kcat2L1rs1s2, and Covðx; yÞ ¼ kcat2rs1s2 � L1s21.

Using Eqs. 1 and 2, we have

Eð½M2�Þ ¼ E
L1Km2½E1�

kcat2½E2� � L1½E1�
� �

¼ L1Km2E
x
y

� �

≈ L1Km2
mx
my

� Covðx; yÞ
my2

þ VarðyÞmx
my3

 !

¼ L1Km2
m1

kcat2m2 � L1m1
� kcat2rs1s2 � L1s21

ðkcat2m2 � L1m1Þ2
þ

 

m1ðk2cat2s22 þ L21s
2
1 � 2kcat2L1rs1s2Þ

ðkcat2m2 � L1m1Þ3
Þ

According toEq. 2, because [M2] > 0, kcat2m2–L1m1 > 0. Thus,E([M2])
decreases with r. In other words, increasing r, the correlation in con-
centration between the two enzymes, causes a reduction in E([M2]), the
expected concentration of the intermediate metabolite.

Numerical simulation of the two-reaction linear pathway
We first simulated the above-described linear pathway with two re-
actions. [M1] and the kinetic parameters in the simulation were as-
signed with biologically relevant values (table S1). [M1] was kept
constant throughout the simulation. Under the steady-state assump-
tion, equilibrium is reached instantly, and [M2] is given by Eq. 2. Be-
cause [M2] > 0, kcat2[E2] must exceed L1[E1]. Enzyme concentrations
were randomly sampled from a truncated bivariate Gaussian distribu-
tion with means of 10,000 molecules per cell for both enzymes. The
CV of enzyme concentration was set at 0.5 for both enzymes, and the
correlation coefficient between the concentrations of the two enzymes
was set at 0.1, 0.2, 0.3, ..., or 0.9. Given that, in reality, enzyme concen-
trations cannot be negative or too large and that the steady-state as-
sumption puts a constraint on the [E1]/[E2] ratio, we applied an upper
bound of 13,500 molecules per cell and a lower bound of 6500 mole-
cules per cell for both [E1] and [E2] in the simulation. Under each set of
parameters, we simulated 100,000 pairs of enzyme concentrations and
computed 100,000 [M2] values and the average [M2].

Under non–steady states, we first calculated the steady-state [M2]
when both enzymes are at the concentration of 10,000 molecules per
cell and used that value as the starting [M2].We simulated the enzyme
concentrations at time zero and used them for the next 30min of sim-
ulation, because protein concentrations fluctuate over a time scale that is
on the order of a cell cycle (39). Everyminute, [M2] is calculated by [M2]

at the previous minute plus v1� v2 ¼ kcat1½M1�½E1�
Km1þ½M1� �

kcat2½M2�½E2�
Km2þ½M2� , where
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substrate concentrations are from the previous minute. We esti-
mated the mean [M2] of each simulation by averaging [M2] of the
30 time points. We replicated the simulation 10,000 times and esti-
mated the overall mean [M2] across replicates. In total, nine scenar-
ios were simulated, with the correlation coefficient between the
enzyme concentrations being 0.1, 0.2, 0.3, ..., or 0.9. Qualitatively sim-
ilar results were obtained when enzyme concentrations were sampled
every 20 or 100 min.

Numerical simulation of the GAL pathway
The relevant part of the GAL pathway can be described as follows.

Galþ G1→G1Pþ G1;with v1 ¼ kcat1½Gal�½G1�
Km1 þ ½Gal� ð3Þ

G1Pþ UGlþ G7→Gl1Pþ UGaþ G7;withv2

¼ kcat2½G7�½G1P�½UGl�
Km2½G1P� þ Km3½UGl� þ ½G1P�½UGl� ð4Þ

UGaþ G10→UGlþ G10;with v3

¼ kcat3½G10�ð½UGa� � ½UGl�=KeqÞ
Km4 þ ½UGa� þ Km4½UGl�

Km5

ð5Þ

where G1, G7, and G10, respectively, refer to Gal1, Gal7, and Gal10
enzymes, while Gal, G1P, Gl1P, UGl, and UGa, respectively, stand for
galactose, galactose-1-P, glucose-1-P, uridine diphosphate (UDP)–
glucose, and UDP-galactose. Km and kcat refer to the Michaelis con-
stant and catalytic rate constant of the corresponding substrate and
reaction (table S2), whereas Keq is the equilibrium constant of the re-
action in Eq. 5. The values of these parameters used in the numerical
simulation are provided in table S2. The galactose concentration was
maintained constant throughout the simulation. Given that we have
three reactions with multiple parameters, the steady-state assumption
would lead to too many constraints. So, we only performed non–
steady-state simulations. We similarly started with all metabolite
concentrations at the equilibrium, sampled the enzyme concentrations
at the beginning of the simulation, and used them for a 30-min simula-
tion. The concentrations of Gal1, Gal7, and Gal10 were sampled from
a truncated trivariate Gaussian distribution with identical means of
1000molecules per cell for all enzymes. The CVof enzyme concentra-
tion was set at 0.33 for all enzymes. To avoid extreme protein concen-
trations, we set an upper limit of 4000 molecules per cell and a lower
limit of 10molecules per cell.We calculatedmetabolite concentrations
every 0.1 min because the kcat values of the Gal enzymes are large, and
computed the mean G1P concentration across the 300 time points.
We examined one pair of enzymes at a time while fixing the correla-
tion coefficients in enzyme concentration of the other two pairs at one
of six different levels: 0.3, 0.4, 0.5, ..., and 0.8. The correlation coeffi-
cient in enzyme concentration for the focal pair varied from 0.3 to 0.9
in the simulation. Under each parameter set, we repeated the simula-
tion 2000 times and estimated the overall mean G1P concentration by
averaging the mean concentration of G1P from each simulation. For
the focal pair of Gal7 andGal10, we increased the simulation to 10,000
times because of the large stochasticity.

Strain constructions
Here, we use the pair of GAL1 and GAL10 genes as an example to de-
scribe strain constructions, because strains involving the pair ofGAL7
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and GAL10 were similarly constructed. All primers used in this study
are provided (table S3), and so are all guide RNA (gRNA) target se-
quences (table S4).

To construct cis- and trans-tagging strains, we generated a linker-
YFP-CYC1T-TEF1P- KanMX4-TEF1T cassette with a region homologous
to the C terminus of GAL1 and a linker-CFP-CYC1T-TEF1P-NatMX-
TEF1T cassette with a region homologous to the C terminus of GAL10
by polymerase chain reaction (PCR) from plasmids pRS416-HO-YFP-
Kan and pRS416-FIT2-CFP-Nat, respectively. Here, the gene name
followed by a subscript T refers to the source of the terminator, whereas
the gene name followed by a subscript P refers to the source of the
promoter. Each cassette was separately introduced into yeast cells by
high-efficiency transformation (40). KanMX4 and NatMX respec-
tively provide yeast with resistance to geneticin and nourseothricin,
allowing selection for correct genotypes after yeast transformations.
Via homologous recombination, GAL1 of the laboratory strain
BY4741 was fused with the cassette of linker-YFP-CYC1T -TEF1P-
KanMX4-TEF1T, yielding the BY4741 GAL1-YFP strain. Similarly,
GAL10 of the laboratory strain BY4742 and that of the BY4741
GAL1-YFP strain were fused with the cassette of linker-CFP-CYC1T-
TEF1P-NatMX-TEF1T to yield the BY4742 GAL10-CFP strain and the
BY4741 GAL1-YFP GAL10-CFP strain. Because GAL10 is adjacent to
both GAL1 and GAL7, we deleted NatMX together with its promoter
and terminator by CRISPR-Cas9–based technology to prevent its po-
tential influence on the expressions of its neighboring genes. The
gRNA was constructed by annealing two primers and ligating the pro-
duct to a backbone plasmid with a Cas9 expression module, following a
previous protocol (41). The resulting plasmid was confirmed by Sanger
sequencing. The donor for CRISPR-Cas9 deletion was generated by an-
nealing and extending two primers. The colonies were picked from the
selection plates, checked by PCR, and subsequently confirmed by Sanger
sequencing. Last, the BY4741 GAL1-YFP strain was mated with the
BY4742 GAL10-CFP strain to create the trans-tagging diploid strain,
while the BY4741 GAL1-YFP GAL10-CFP strain was mated with
BY4742 to create the cis-tagging diploid strain.

To construct cis- and trans-deletion strains, we generated a TDH3P-
GFP-CYC1T cassette and a TDH3P-YFP-CYC1T cassette by PCR from
plasmids pRS416-HO-GFP-Kan and pRS416-HO-YFP-Kan, respec-
tively, and integrated them into the HO locus of the BY4742 strain by
CRISPR-Cas9, yielding the BY4742 hoD::YFP strain and the BY4742
hoD::GFP strain (fig. S3). Next, we used CRISPR-Cas9 to delete the cod-
ing sequence of GAL1, GAL10, or both of them in BY4741, BY4742
hoD::YFP, and BY4742 hoD::GFP, yielding the strains of BY4741 gal1D,
BY4742 hoD::YFP gal10D, BY4742 hoD::GFP gal10D, and BY4741
gal1Dgal10D (fig. S3). Genome editing was confirmed by the correct
fragment size upon PCR, followed by Sanger sequencing. The Cas9
plasmids for all these mutants were lost by serial transfer per 12 hours
in YPD (1% yeast extract, 2% peptone, 2% glucose, and 2% agar) for a
total of 36 hours. The final culturewas diluted and plated onYPDplates.
The colonies without Cas9 plasmids were screened by replica plating
onto an YPD plate with selective drugs corresponding to the resistant
genes on the Cas9 plasmids. Then, BY4741 gal1D was respectivelymated
with BY4742 hoD::YFP gal10D and BY4742 hoD::GFP gal10D to yield the
trans-deletion diploid strains (fig. S3). BY4741 gal1Dgal10D was mated
respectively with BY4742 hoD::YFP and BY4742 hoD::GFP to yield the
cis-deletion diploid strains (fig. S3).

Although we confirmed the DNA sequences in regions subject to
CRISPR-Cas9 editing, off-target mutations outside the sequenced re-
gions are possible. We conducted a control experiment of competitions
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in the glucosemedium (see below). It is extremely unlikely that such off-
target mutations occurred and affected fitness in the galactose, but not
glucose, media.

Quantifying GAL gene expressions
We precultured all the cis- and trans-tagging strains in 5 ml of the
YPGal medium (1% yeast extract, 2% peptone, and 2% galactose)
for 24 hours at 30°C.We thenmeasured cell density at optical density at
a wavelength of 660 nm (OD660) using a Genesys 5 spectrophotometer
(Thermo Fisher Scientific). In a 96-well plate, we diluted cells into fresh
YPGal with a starting cell density of ~2 × 104 cells/ml, with 10 replicates
per strain. After 18 hours of growth at 30°C on a roller drum, we mea-
sured cell density using a plate reader (Tecan Sunrise). Next, we diluted
cells to ~1.5 × 106 cells/ml in 30 ml of phosphate-buffered saline in a
96-well plate before examining them using the iQue Screener
PLUS–VBR flow cytometer (IntelliCyt). The violet laser (405 nm)
channel with a 530/30 optical filter was used for capturing the Cfp
signal, while the blue laser (488 nm) channel with a 572/28 optical
filter was used for capturing the Yfp signal. Fluorescence data were
analyzed with customR scripts. First, we used the forward scatter area
(FSCA) and side scatter area with a clustering package to remove non-
cell particles. Second, we used the FSCA and forward scatter height to
remove doublets. Third, we used cluster analysis to remove cells with
fluorescence outside the 99% quantile region. Fourth, we randomly
picked 5000 cells from the remaining cells. Last, because the two fluor-
escent proteins have overlapped spectra, we eliminated the cross-talk
following a previously described method (42).

Fitness estimation by competition
Following a published protocol (43), we competed cis- and trans-
deletion strains to measure their relative fitness. The cis- and trans-
deletion strains with different fluorescent markers were first cultured
in 5 ml of either YPD or YPGal for 36 hours to reach saturation. We
thenmeasured the cell density, diluted cells, andmixed approximately
equal numbers of cis- and trans-deletion cells in the same culture (of
either YPD or YPGal) with eight replicates for each competition in a
96-well plate. Cells were grown at 30°C on a roller drum for 12 hours
of acclimation, at which point we considered time t = 0 in our fitness
estimation. Cells were diluted at t = 0, 12, 23, and 41 hours, transferred
to fresh media, and grown at the above condition. At t = 0, 12, 23, and
41 hours, cell density was counted using an Accuri C6 flow cytometer
(BD Biosciences). When each genotype grows exponentially at a fixed
rate, the logarithm of the relative cell number of the two genotypes in a
competition is a linear function of t (44). This linear relationship was
indeed observed in our experiment (fig. S4). The fitness of the cis-
deletion strain relative to the trans-deletion strain was estimated
using the following equation

ln
Ncis
t

N trans
t

� �
¼ ln

Ncis
0

N trans
0

� �
þ ðrcis � rtransÞt ð6Þ

Here,Ncis
0 andNcis

t are cell numbers of the cis-deletion strain at time
0 and t, respectively, N trans

0 and N trans
t are cell numbers of the trans-

deletion strain at time 0 and t, respectively, and rcis and rtrans are the
growth rates of the cis- and trans-deletion strains, respectively. We
plotted ln(Ncis

t =N trans
t ) against t across multiple time points, allowing

the estimation of the slope, which is rcis − rtrans. Fitness of the cis-
deletion strain relative to the trans-deletion strain was estimated
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by f = e(rcis − rtrans)T, where T is the doubling time of the trans-deletion
strain (table S5).

The competition data presented in Fig. 2 were from the same batch
of experiments, and the replicates were from the same transformants.
Nevertheless, these competitions were repeated multiple times, and
the conclusion did not change from batch to batch. The same can
be said for Fig. 3.

Doubling time estimation using bioscreen C
Each trans-deletion strain was precultured in 5 ml of either YPD or
YPGal for 36 hours to reach saturation. We then measured cell den-
sity, diluted cells, and transferred cells into honeycombplates (Growth
CurvesUSA) with a final volume of 150 ml and an initial cell density of
~1 × 106 cells/ml per well. The honeycomb plates were put into a
Bioscreen C (Oy Growth Curves Ab) for culturing at 30°C. Optical
density wasmonitoredwith a 600-nm filter,measurements were taken
every 20 min, and the shaking model was set to continuous shaking
withmaximal amplitude and fast speed. The doubling time was calcu-
lated according to a previous protocol (45).

Quantifying galactose-1-P and galactitol using GC-MS
Yeast cells were precultured overnight in YPGal and then transferred
to fresh YPGal at an initial OD600 of 0.1. Cell culture (0.5 ml) grown to
the mid-log phase was vacuum filtered using Vac-Man Laboratory
Vacuum Manifold (Promega) assembled with a nylon membrane fil-
ter (pore size, 0.45 mm; diameter, 13 mm; Whatman) and a filter
holder (Millipore). The filtered cell culture was then washed with
2.5 ml of prechilled distilled water. The entire process of fast filtration
was completed within 1 min. The filter membrane containing the
washed cells was quickly mixed with 1 ml of cold 90% (v/v) methanol
and 100 ml of glass beads. The mixture was vortexed for 3 min to
disrupt cell membranes, allowing extraction of intracellular metabo-
lites. The extraction mixture was then centrifuged at 16,100 relative
centrifugal force for 3 min at 4°C. Supernatant (0.6 ml) containing
the intracellular metabolites was dried for 4 hours using a speed va-
cuum concentrator. Prior to GC-MS, intracellular metabolites were
derivatized by trimethylsilylation. Specifically, the intracellular
metabolites were trimethylsilylated by adding 50 ml of N-methyl-
N-trimethylsilyltrifluoroacetamide (Sigma-Aldrich) and 50 ml of pyr-
idine (Sigma-Aldrich) at 90°C for 30 min. The derivatized metabolite
samples were analyzed by GC-MS by an Agilent 7890A GC/5975C
mass-selective detection system (Agilent Technologies) equipped with
an RTX-5Sil MS capillary column (30 m by 0.25 mm; film thickness,
0.25 mm;Restek) and an additional 10-m-long integrated guard column.
One microliter of the derivatized sample was injected into the GC in a
splitlessmode. The oven temperature of theGCwas initially set at 150°C
for 1 min, after which the temperature was raised to 330°C at 20°C per
minute, where it was held for 5 min. Themass spectra were recorded in
a scan range of 85 to 500 mass/charge ratio at 70 eV of electron impact,
and the temperatures of the ion source and transfer line were 230° and
280°C, respectively. The raw data obtained from the GC-MS analysis
were processed using an automated mass spectral deconvolution and
identification system (AMDIS) software for peak detection and deconvo-
lution ofmass spectra. The processed data were uploaded to SpectConnect
(http://spectconnect.mit.edu) for peak alignment and generation of the
data matrix with Golm Metabolome Database mass spectral reference
library. Galactitol intensity was shown after the data analysis. Galactose-
1-P in the sampleswas identified by comparingwith a galactose-1-P stan-
dard (Sigma-Aldrich) and manually analyzed by the height of the peak.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/10/eaax6525/DC1
Fig. S1. Simulation of the GAL pathway.
Fig. S2. Comparison of protein expression levels of GAL genes between cis- and trans-tagging
strains.
Fig. S3. Flowchart showing the construction of cis- and trans-deletion strains for the pair of
GAL1 and GAL10 genes.
Fig. S4. Ln(cell number ratio between the cis- and trans-deletion strains) as a function of
competition time.
Table S1. Parameter values used in the simulation of the linear pathway with two reactions.
Table S2. Parameter values used in the simulation of the GAL pathway.
Table S3. Primers for strain construction.
Table S4. gRNA target sequences.
Table S5. Doubling times for various trans-deletion strains.
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