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Abstract

Current phylogenetic clustering approaches for identifying pathogen transmission clusters are limited by their dependency
on arbitrarily defined genetic distance thresholds for within-cluster divergence. Incomplete knowledge of a pathogen’s un-
derlying dynamics often reduces the choice of distance threshold to an exploratory, ad hoc exercise that is difficult to stan-
dardise across studies. Phydelity is a new tool for the identification of transmission clusters in pathogen phylogenies. It
identifies groups of sequences that are more closely related than the ensemble distribution of the phylogeny under a statis-
tically principled and phylogeny-informed framework, without the introduction of arbitrary distance thresholds. Relative to
other distance threshold- and model-based methods, Phydelity outputs clusters with higher purity and lower probability of
misclassification in simulated phylogenies. Applying Phydelity to empirical datasets of hepatitis B and C virus infections
showed that Phydelity identified clusters with better correspondence to individuals that are more likely to be linked by
transmission events relative to other widely used non-parametric phylogenetic clustering methods without the need for pa-
rameter calibration. Phydelity is generalisable to any pathogen and can be used to identify putative direct transmission
events. Phydelity is freely available at https://github.com/alvinxhan/Phydelity.
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1. Introduction

Recent advances in high-throughput sequencing technologies
have led to the widespread use of sequence data in infectious dis-
ease epidemiology (Gardy and Loman 2018). In particular, epide-
miologically relevant information such as the structure of
transmission networks and infection source identification are in-
creasingly inferred from virus phylogenies, especially for measur-
ably evolving viral pathogens like HIV-1 and hepatitis C viruses

(Ambrosioni et al. 2012; Bezemer et al. 2015; de Oliveira et al.
2017; Matsuo et al. 2017; Charre et al. 2018). Non-parametric phy-
logenetic-based clustering tools operate on the assumption that
pathogens in a transmission cluster are linked by transmission
events rapid enough that molecular evolution between the trans-
mitted pathogens is minimal, and thus genetically more similar
amongst themselves than to the ensemble of input isolates
(Prosperi et al. 2011; Ragonnet-Cronin et al. 2013). This assump-
tion is generally valid for rapidly evolving pathogens such as RNA
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viruses as genetic changes between sequences sampled from
transmission pairs are generally low (Campbell et al. 2018).

Non-parametric phylogenetic clustering methods typically
measure the genetic divergence of sequence pairs either by
their genetic distances that are computed from the sequence
data directly (Aldous et al. 2012; Ragonnet-Cronin et al. 2013) or
by their patristic distances from the inferred phylogenetic tree
(i.e. the sum of the inferred phylogenetic branch lengths linking
the two sequences; Brenner et al. 2007; Prosperi et al. 2011). The
divergence of a cluster can be defined as the median (Prosperi
et al. 2011) or largest (Ragonnet-Cronin et al. 2013) pairwise dis-
tance between member sequences of the cluster. To define
transmission clusters, an upper divergence threshold is imple-
mented either as an absolute distance limit (Ragonnet-Cronin
et al. 2013) or as a percentile of the distribution of pairwise se-
quence distances (Prosperi et al. 2011). A fundamental limita-
tion of these non-parametric phylogenetic clustering tools is
the need to define this arbitrary absolute transmission cluster
divergence thresholds (termed as ‘cutpoints’ by Villandre et al.
2016). The lack of a consensus definition of a phylogenetic
transmission cluster (Grabowski and Redd 2014) coupled with
incomplete knowledge of a pathogen’s underlying epidemiolog-
ical dynamics often reduces the choice of cutpoints to an ad hoc
exploratory exercise resulting in subjective cluster definitions.

Phydelity is a novel phylogenetic clustering tool designed to
negate the need for arbitrarily defined cluster divergence
thresholds. Requiring only the phylogenetic tree as input,
Phydelity infers putative transmission clusters through the
identification of groups of sequences that are more closely re-
lated to one another than the ensemble distribution under a
statistically principled framework. Phydelity, like another phy-
logenetic clustering tool that we recently developed, PhyCLIP, is
based on integer linear programming (ILP) optimisation (Han
et al. 2019). However, the two clustering tools are substantially
different in their approaches and ILP models such that their
clustering results have entirely distinct interpretations. PhyCLIP
uses the divergence information of the entire phylogenetic tree
to inclusively assign statistically supported cluster membership
to as many sequences in the tree as possible that putatively
capture variant ecological, evolutionary or epidemiological pro-
cesses. To this end, PhyCLIP is useful for sub-species nomencla-
ture development. Phydelity, on the other hand, exclusively
distinguishes closely related pathogens with pairwise sequence
divergence that are significantly more likely to be drawn from
the same low divergence distribution than that of the ensemble.
As such, while PhyCLIP’s designated clusters are underpowered
to be interpreted as sequences linked by transmission events,
clusters inferred by Phydelity can be interpreted as putative
transmission clusters (see Supplementary Data).

To demonstrate the utility of Phydelity in identifying puta-
tive transmission clusters, the algorithm underlying Phydelity
is first presented in detail. The clustering tool is then applied to
both simulated and empirical datasets, including outbreaks of
hepatitis B and C viruses as well as seasonal A/H3N2 influenza
virus infections, and compared against results generated by
existing phylogenetic clustering methods. Phydelity is freely
available at http://github.com/alvinxhan/Phydelity.

2. Method
2.1 Clustering algorithm

Figure 1a shows the overall workflow of Phydelity. First,
Phydelity considers the input phylogeny as an ensemble of

putative clusters, each consisting of an internal node i and the
leaves it subtends. The within-cluster diversity of node i is mea-
sured by its mean pairwise patristic distance lið Þ. The patristic
distance between two nodes, which can be any sequence tips or
internal nodes in the phylogeny, refers to the sum of branch
lengths linking those two nodes. Sequences subtended by i (i.e.
all descendant tree tips of node i) are considered for clustering if
li is less than the maximal patristic distance limit (MPL), under
which sequences are considered more closely related to one an-
other than the ensemble distribution (Fig. 1b).

Phydelity computes the MPL by first calculating the pairwise
patristic distance distribution of closely related tips comprising
the pairwise patristic distances of sequence xj to the closest
k-neighbouring tips (i.e. d xj; xjkð Þ ¼ dl) wherein their closest
k-neighbours include sequence xj as well (i.e. the kth core dis-
tance distribution, Dk; Fig. 1b). Additionally, Dk is incrementally
sorted (dl � dlþ1) and truncated up to dL if the common log dif-
ference between dL and dLþ1 is more than zero:

Dk ¼ d1; . . . ; dl; dlþ1; . . . ; dLjdl � dlþ1; lg
dlþ1 � dl

dl

� �
� 0

� �
:

The user can opt to either input the desired k parameter or
allow Phydelity to automatically scale k to the value that yields
the supremum kth core distance distribution with the lowest
overall divergence (i.e. the largest possible k that still yields the
lowest overall divergence between k-neighbouring tips). This is
done by testing if Dkþ1 and Dk are statistically distinct (P< 0.01)
using Kuiper’s test (see Supplementary Data). All clustering
results of Phydelity presented in this work were generated using
the autoscaled value of k.

The MPL is then calculated by

MPL ¼ l þ r

where l is the median pairwise distance of Dk and r is the corre-
sponding robust estimator of scale without assuming symmetry
about l using the Qn method (see Supplementary Data;
Rousseeuw and Croux 1993; Fig. 1b).

This is then followed by dissociation of distantly related de-
scendant subtrees/sequences to all putative nodes for cluster-
ing, thereby facilitating identification of both monophyletic as
well as nested paraphyletic clusters (Fig. 1c; see Supplementary
Data). Phydelity filters outlying tips from putative clusters un-
der the assumption that viruses infecting individuals in a trans-
mission chain coalesce to the same most recent common
ancestor (MRCA). Additionally, Phydelity requires any clonal
ancestors in between the MRCA and tips of a putative cluster to
be as genetically similar to each other as they are to the tips of
the cluster. As such, for a putative transmission cluster, the
mean pairwise nodal distance between all internal and tip
nodes of a cluster must also be �MPL (Fig. 1c).

An ILP model is implemented and optimised under the ob-
jective to assign cluster membership to sequences satisfying
the aforementioned relatedness criteria within the least num-
ber of clusters. In other words, Phydelity uses ILP optimisation
to search for the clustering configuration that favours the desig-
nation of larger clusters of closely related sequences which are
likely linked by transmission events. Any topologically outlying
singletons that were spuriously clustered are removed. Finally,
it is important to note that a transmission cluster identified by
Phydelity should only be interpreted as a fully connected net-
work of likely transmission pairs without implying any underly-
ing transmission directionality. The full algorithm description
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and mathematical formulation of Phydelity are detailed in
Supplementary Data.

2.2 Assessing clustering results of simulated epidemics

Phydelity was evaluated on phylogenetic trees derived from
simulated HIV epidemics of a hypothetical men who have
sex with men (MSM) sexual contact network (C-type net-
works in Villandre et al. 2016). The simulated sexual contact
network comprised of 100 subnetworks (communities) sam-
pled from an empirical distribution obtained from the Swiss
HIV Cohort Study. All communities were linked in a chain
initially and additional connections between any two com-
munities were generated at a probability of 0.00075.
Subjects in the network could either be in the ‘susceptible’,

‘infected’ or ‘removed’ (i.e. individual was diagnosed and
sampled) state. Transmission clusters were attributed to sex-
ual contact among individuals belonging to the same
community.

A total of 300 epidemics were simulated for four different
weights of inter-community transmission rates (w¼ 25%, 50%,
75% or 100% of the within-community rate). Two infected indi-
viduals were randomly introduced in any of the 100 communi-
ties. Transmission time along an edge followed an exponential
distribution with rates directly proportional to the associated
weights. Time until removal was based on a shifted exponential
distribution with the shift representing the minimum amount
of time required for a virus to be transmitted to susceptible
neighbours. The simulation ended once 200 individuals were in
the ‘removed’ state.

(a) (b)

(c)

Figure 1. (a) Phydelity algorithm pipeline. Phydelity considers the input phylogenetic tree as a collection of putative clusters each defined by an internal node i and tips

j that it subtends. The algorithm first infers the kth core distance distribution (Dk) from the pairwise patristic distances of the closest k-neighbouring tips. k can be de-

fined by the user or scaled by Phydelity to obtain the supremum Dk with the lowest divergence. Dk is then used to compute the maximal patristic distance limit (MPL)

under which tips are considered to be more closely related than to the ensemble. Dissociation of distally related subtrees/sequences (c) ensues such that both mono-

phyletic and paraphyletic clustering structures can be identified. Phydelity then incorporates the distance and topological information of the remaining nodes and tips

into an integer linear programming (ILP) model to be optimised by clustering all tips that satisfy the relatedness constraints within the least number of clusters.

Finally, post-ILP steps are implemented to remove any tips that may have been spuriously clustered. (b) Determination of the maximal patristic distance limit (MPL) us-

ing the median (l) and robust estimator of scale (r) based on the kth core distance distribution (Dk) of every sequence xj and its k-closest neighbours (dðxj; xjk Þ; k¼ 2 in

this case as shown by the pairs of sequences highlighted with distinct colours). (c) Distal dissociation of a putative transmission cluster subtended by internal node a.

If a sequence tip has a pairwise sequence distance that is greater than MPL, it will be dissociated and not be clustered under the internal node of interest (i.e. internal

node a). In this case, sequence x3 is dissociated from the putative cluster a due to its exceedingly long branch length violating the MPL threshold (i.e. dðx3; x3k Þ > MPL).

Additionally, whole subtrees subtended by the internal node of interest will be dissociated if any of its inter-nodal patristic distance exceeds MPL. Here, subtree d and

its descending sequences (i.e. x6 and x7) will be dissociated from a as its inter-nodal distances with internal nodes b and c are both larger than MPL.
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These simulated datasets were tested by Villandre et al. (2016)
to compare the outputs of four ‘cutpoint-based’ phylogenetic
clustering methods where the arbitrary distance threshold defin-
ing a transmission cluster (i.e. cutpoint) was computed as the: (1)
absolute patristic distance threshold between any two tips
(Brenner et al. 2007); (2) standardised number of nucleotide
changes (i.e. ClusterPicker; Ragonnet-Cronin et al. 2013); (3) per-
centile of the phylogeny’s pairwise sequence patristic distance
distribution (i.e. PhyloPart; Prosperi et al. 2011) and (4) height of
an ultrametric tree obtained using the weighted pair-group
method of analysis (WPGMA). For each method, Villandre et al.
varied the corresponding cutpoint parameter over an equivalent
range of thresholds. Comparing the output clusters generated by
the four methods at their respective optimal cutpoint by adjusted
rand index (ARI) (see below), it was found that the WPGMA
method tended to produce clusters with better correspondence to
the underlying sexual contact structure. As such, clustering
results from Phydelity were compared with those obtained by
Villandre et al. using the WPGMA method. Additionally, Phydelity
was also compared with the multi-state birth�death (MSBD)
method which inferred transmission clusters on the same simu-
lated datasets by detecting significant changes in transmission
rates (Barido-Sottani, Vaughan, and Stadler 2018).

To assess and compare the output clusters from Phydelity
and the aforementioned clustering methods that had been
tested on these networks previously, several metrics were used
to measure how well the clustering results corresponded with
the known sexual contact network:

i. ARI measures the accuracy of the clustering results by com-
puting the frequencies of pairs of sequences of the identical
(or distinct) subnetwork(s) assigned to the same (or differ-
ent) cluster(s) (Hubert and Arabie 1985). ARI ranges between
�1 (matching between output clusters and community
labels is worse than random clustering) and 1 (perfect
match between output clusters and ground truth).

ii. Modified Gini index (IG). Gini impurity, commonly used in
decision tree learning, refers to the probability of a ran-
domly selected item from a set of classes being incorrectly
labelled if it was randomly labelled by the distribution of
occurrences in the class set (Breiman et al. 1984). Here, IG

measures how often a randomly selected sequence from
the given network would be incorrectly clustered by the in-
ferred clusters. For a sexual contact network with T com-
munities (i.e. t 2 f1; 2; . . . ; Tg), IG is computed as:

IG ¼
XT

t¼1

pt 1�
XC�
c¼1

p cjjtð Þ
 !" #

where C� is the set of clusters defined to have correctly classified
sequences attributed to community t (i.e. any cluster that con-
stitutes the largest proportion of sequences from community t
at both the cluster and the community label levels), pt is the
probability of sequence from community t and p cjjtð Þ refers to
the probability that a sequence is clustered under cluster c con-
ditional of it being from community t. If output clusters per-
fectly align with the underlying sexual contact network (i.e. one
cluster only constitute one class of community), IG ¼ 0.
Conversely, if clustering results are completely random, IG ¼ 1.

iii. Purity measures the average extent that the output clusters
contain only a single class (i.e. a particular sexual contact
community; Manning, Raghavan, and Schütze 2008):

Purity ¼
XC

c¼1

1
Nc

maxt Nc;tf g
Nc

� �

where Nc is the size of cluster c, Nc;t is the number of tips from
community t clustered under cluster c and C is the set of all out-
put clusters. Note that purity (as well as IG) can be inflated if the
total number of clusters is large (i.e. if each tip is assigned to a
unique cluster, purity¼ 1 and IG¼ 0).
iv. Normalised mutual information (NMI) trades off the output

clustering quality against the number of clusters (Manning,
Raghavan, and Schütze 2008):

NMI ¼ IðT;CÞ
HðTÞ þ H Cð Þ
� �

=2

where H(T) and H(C) are the respective entropies of the network
communities and output clusters, and I(T, C) is the mutual in-
formation between them. If clustering is random with respect
to the network community labels, I T;Cð Þ ¼ 0 (i.e. NMI ¼ 0). On
the other hand, maximum mutual information is achieved (i.e.
I T;Cð Þ ¼ I T;Cð Þmax) either when the output clusters map the sex-
ual contact network perfectly or all clusters have one member
only. Hence, to penalise large cardinalities (i.e. number of mem-
bers in a cluster) while normalising I T;Cð Þ between 0 and 1, NMI
is calculated since (1) entropy increases with increasing number
of clusters and (2) H Tð Þ þ H Cð Þ½ �=2 is a tight upper bound to
I T;Cð Þ.

2.3 Empirical datasets

Phydelity was also tested on three empirical datasets—acute
hepatitis C virus infections among MSM (Charre et al. 2018),
hepatitis B viruses (HBVs) collected from members of the same
families (Matsuo et al. 2017) as well as A/H3N2 influenza viruses
collected from a community-based cohort of households during
the 2014/2015 season (McCrone et al. 2018). All phylogenetic
trees were reconstructed using RAxML (v8.2.12) under the
GTRGAMMA model (Stamatakis 2014).

2.4 Comparisons to ClusterPicker and PhyloPart

ClusterPicker (Ragonnet-Cronin et al. 2013) and PhyloPart
(Prosperi et al. 2011), two non-parametric phylogenetic cluster-
ing tools that are methodologically comparable to Phydelity,
were also applied to the hepatitis C and B virus datasets for
comparisons. Either clustering tool has been previously applied
to multiple studies involving different pathogens (Prosperi et al.
2011; Jacka et al. 2014; Bezemer et al. 2015; Bartlett et al. 2016;
Coll et al. 2017; de Oliveira et al. 2017; Charre et al. 2018). Other
than the phylogenetic tree, both ClusterPicker and PhyloPart
also require users to input an arbitrarily defined genetic dis-
tance threshold (as an absolute distance limit for ClusterPicker
and percentile of the global pairwise patristic distance for
PhyloPart). As such, a range of distance limits (PhyloPart:
0.5�10th percentile; ClusterPicker: 0.005�0.1 nucleotide/site)
were applied to both tools. No bootstrap support threshold was
implemented for comparability to Phydelity.

The lowest optimal threshold for the distance range tested
was found by maximisation of the mean Silhouette index (SI)
for both ClusterPicker and PhyloPart. The SI measures how sim-
ilar an item is to members of its own cluster as opposed to the
nearest neighbouring clusters—i.e. a larger mean SI indicates
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that items of the same cluster are more closely related amongst
themselves than to its neighbours (Rousseeuw 1987). No param-
eter optimisation was required for Phydelity.

3. Results
3.1 Simulated HIV epidemics

Phydelity was applied to simulated HIV epidemics among MSM
belonging to a hypothetical sexual contact network structures
where transmission clusters were attributed to transmission by
sexual contact among individuals belonging to the same sub-
network (see Section 2; Villandre et al. 2016). These simulations
were originally used to assess the performance of ‘cutpoint-
based’ clustering tools, including ClusterPicker, PhyloPart as
well as the WPGMA that generally attained the highest ARI
score across all simulations when calibrating their respective
cutpoint thresholds against the ground-truth. Phylogenetic
trees generated from these simulations were also tested by the
MSBD method (Barido-Sottani, Vaughan, and Stadler 2018).

Clustering results from Phydelity were compared with out-
puts from the MSBD method and those from the WPGMA
method achieving the best ARI scores. The purity, modified Gini
index (IG) and NMI measures were also used to provide a more
comprehensive assessment of the clustering results (Fig. 2;
Supplementary Fig. S3 and Table S1; see Section 2).

The phylogenetic trees generated from the simulations had
a large number of clusters that were relatively small in size (i.e.
percentage of sequences that were part of ground truth clusters
with sizes <8 tips¼ 33.9% (weight of inter-community transmis-
sion rates, w¼ 25%); 55.5% (w¼ 100%); see Barido-Sottani,
Vaughan, and Stadler (2018) for more details). Furthermore,
these ground truth clusters were not all monophyletic (Fig. 2c).
As a result, while Phydelity and WPGMA yielded comparable
ARI scores (Phydelity: 0.44�0.45 (SD¼ 0.05); WPGMA: 0.44�0.56
(SD¼ 0.05�0.05); Supplementary Table S1), Phydelity’s output
clusters, which allows paraphyletic clusters (Fig. 2c), are sub-
stantially purer (mean purity; Phydelity: 0.81�0.88 (SD¼ 0.03);
WPGMA: 0.67�0.74 (SD¼ 0.06�0.06)) and have a lower probabil-
ity of misclassification when compared with WPGMA which
assumes clusters are strictly monophyletic (mean IG; Phydelity:
0.27�0.28 (SD¼ 0.04�0.05); WPGMA: 0.33�0.40 (SD¼ 0.04�0.05)).
Coverage of sequences clustered by Phydelity lies between 58.2
per cent and 61.6 per cent.

The clustering results from WPGMA presented in this work
were based on the optimal distance threshold derived by cali-
bration against the simulated ground-truth. Notably,
Phydelity’s auto-scaling mitigates the need for threshold cali-
bration and enables application to empirical datasets where
ground truth clustering is unavailable, as is typically the case
for epidemiological studies.

3.2 HBV transmission between family members

Phydelity was tested on empirical datasets to demonstrate its
applicability on real-world data, including HBVs collected from
residents in the Binh Thuan Province of Vietnam (Matsuo et al.
2017). In such highly endemic regions, HBV is commonly trans-
mitted either vertically from mothers to children during the
perinatal period or horizontally between cohabitants of the
same household (Matsuo et al. 2017). As complete genome nu-
cleotide sequences were not available for all individuals, a phy-
logenetic tree was reconstructed using the viral polymerase
sequences collected from forty-one patients, of which twelve of

them were confirmed to be members of three families (i.e.
denoted as F2, F3 and F4) by a family survey as well as mito-
chondrial analyses. Besides Phydelity, the resulting phylogeny
was also implemented in ClusterPicker and PhyloPart.

Phydelity identified three likely transmission clusters that
distinguish between the separate family households (Fig. 3). At
their respective optimal distance thresholds by mean SI (see
Section 2), ClusterPicker and PhyloPart achieved similar cluster-
ing results. Importantly, Phydelity was able to obtain the same
optimal clustering results without optimisation and implemen-
tation of a hard-to-interpret distance parameter.

3.3 Hepatitis C virus transmission among MSM

Incidence of HCV infections among HIV-negative MSM has been
relatively limited as compared with their HIV-positive counter-
parts. However, the recent uptake of pre-exposure prophylaxis
(PrEP) among HIV-negative individuals to prevent HIV infection
could pose higher risk of sexually transmitted HCV infections
(Volk et al. 2015; Charre et al. 2018). In a study on HIV-positive
and HIV-negative MSM patients in Lyon, 108 cases of acute HCV
infections (80 primary infections; 28 reinfections) were reported
between 2014 and 2017 among 96 MSM (72 HIV-positive; 24 HIV-
negative, of which 16 (67%) of them were on PrEP; Charre et al.
2018). Separate phylogenetic analyses were performed on a sub-
set of 89 (68 HIV-positive; 21 HIV-negative) HCV isolates belonging
to Genotypes 1a and 4d based on their NS5B sequences.
Additionally, 25 HCV sequences from HIV-infected MSM collected
before 2014 were included along with 60 control HCV sequences
derived from HIV-negative, non-MSM patients residing in the
same geographical area as controls. All sequences collected from
MSM patients were given strain names in the format of
‘MAH(ID)_accession’ while control sequences from non-HIV, non-
MSM patients were denoted as ‘NCH(ID)_accession’ (Fig. 4).
Phydelity as well as ClusterPicker and PhyloPart were applied to
the reconstructed phylogenies, with the latter calibrated over a
range of distance thresholds. Again, only clustering results based
on the lowest distance threshold maximising the mean SI for
ClusterPicker and PhyloPart were compared with Phydelity’s out-
put clusters (see Section 2).

Generally, membership of the MSM transmission clusters
and pairs identified by Phydelity across both genotypes were
strictly limited to sequences derived from MSM patients.
Relaxing the monophyletic assumption by dissociating distantly
related tips from putative monophyletic clusters (see Section 2)
enables Phydelity to identify likely outlying sequences as evi-
denced by their relatively longer branch lengths from the clus-
ter ensemble (Table 1; Fig. 4; Genotype 1a: Cluster C1—MAH66
and Cluster C3—MAH31, MAH62 and MAH72; Genotype 4d:
Cluster C3—MAH24 and MAH08). In particular, for Genotype 1a,
even though the mean pairwise distance of MAH72 to members
of Cluster C3 is within a standard deviation of the latter’s
within-cluster diversity, its distance to the more distant mem-
bers (e.g. MAH15 and MAH40; Fig. 4) violated the inferred MPL
(Table 1). Additionally, as a result of distal dissociation,
Phydelity distinguishes clusters that are genetically more alike
amongst themselves than to those phylogenetically ancestral to
it (e.g. Cluster C1.1 that is ‘nested’ within Cluster C1 for
Genotype 1a; Fig. 4a).

For both genotypes, Phydelity found multiple clusters that
included both HIV-positive and HIV-negative MSM patients (i.e.
Genotype 1a: Clusters C2 and C3, Fig. 4a; Genotype 4d: Clusters
C2 and C2.2, as well as pair P2, Fig. 4b). While it is not clear
which of the HIV-negative patients were on PrEP (information
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(a)

(b)

(c)

Figure 2. Clustering results of simulated HIV epidemics in a hypothetical MSM sexual contact network. (a) Clustering metrics for clustering algorithms (Phydelity,

weighted pair-group method of analysis (WPGMA) and multi-state birth�death (MSBD) methods) applied simulated phylogenies with inter-communities transmission

rates weighted at half of within-community rates (i.e. w¼0.5). Coverage refers to the proportion of tips clustered by Phydelity. Adjusted rand index (ARI) measures

how accurate the output clusters corresponded with the community labels. Purity gives the average extent clusters contain only a single class of community. Modified

Gini index (IG) is the probability that a randomly selected sequence would be incorrectly clustered. Normalised mutual information (NMI) accounts for the trade-off be-

tween clustering quality and number of clusters. (b) Results for simulations where inter-communities transmission rates were identical to within-community rates

(i.e. w¼1.0). (c) Sample output clusters of Phydelity for a subtree of an example simulation (w¼0.5). Tips that were clustered by Phydelity are distinctly coloured

according to their cluster membership. By relaxing the monophyletic assumption, Phydelity is capable of detecting paraphyletic clusters (e.g. transmission pair 166-

T17 and 171-T17 and cluster subtending 132-T14, 135-T14 and 137-14).
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not supplied in the original paper), the clustering results from
Phydelity were in line with the findings by Charre et al. that
acute HCV infections among HIV-negative MSM were likely
sourced from their HIV-positive counterparts.

While ClusterPicker managed to consolidate all of the MSM
Genotype 4d sequences into a single monophyletic cluster
(Fig. 4b), its clustering of Genotype 1a was problematic as a large

number of non-MSM control sequences were clustered together
with those from MSM patients (Fig. 4a). PhyloPart’s optimal clus-
tering output was consistent Phydelity’s for Genotype 1a.
However, the larger number of identical sequences in the
Genotype 4d tree skewed the optimal distance parameter
(expressed as xth percentile of the pairwise patristic distribution
of the entire phylogeny) to only cluster these identical sequences.

(a)

(b)

Figure 3. Clustering results of hepatitis B viruses (HBV) collected from residents in the Binh Thuan Province of Vietnam. (a) Plots of mean Silhouette index (SI) com-

puted for the range of genetic distance thresholds implemented in ClusterPicker and PhyloPart. Clustering results from the lowest optimal distance threshold (toptimal)

with the highest SI value for each method were compared with Phydelity as depicted in (b) (ClusterPicker: toptimal ¼0.011 nucleotide/site, SI¼0.265; PhyloPart:

toptimal ¼4.60%, SI¼0.225). Plot for ClusterPicker is truncated at �0.05 nucleotide/site as the entire tree collapsed to a single cluster after this threshold. (b) Maximum

likelihood phylogeny of HBV polymerase sequences derived from viruses collected from forty-one patients. Twelve patients were confirmed to be members of three

separate family households (F2, F3 and F4; tip names shaded with a distinct colour for each family). Clustering results from Phydelity are depicted as a heatmap along-

side outputs from ClusterPicker and PhyloPart based on their respective toptimal . Each distinct colour of the heatmap cells denotes a different cluster.
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3.4 Seasonal A/H3N2 influenza virus infections within a
community and the effects of sampling

Phydelity was also applied to A/H3N2 influenza viruses col-
lected from a community-based cohort of 340 households (1431
participants) in Southeastern Michigan, USA during the 2014/

2015 season (McCrone et al. 2018). Of the influenza-positive
cases, 206 virus samples were collected from 166 individuals
that belonged to 81 households and sequenced. As concurrent
infections among individuals within the same household do not
necessarily imply transmission, McCrone et al. implemented

(a)

Figure 4. Maximum likelihood phylogeny and clustering results of hepatitis C viruses (HCV) obtained from men who have sex with men (MSM) in Lyon, France. All

highlighted tip names denoted in the format ‘MAH(ID)_accession’ were samples from MSM patients (blue: HIV-positive, red: HIV-negative, green: HIV-positive and con-

sidered as outlying sequences by Phydelity). Non-highlighted tips were collected from non-HIV, non-MSM patients residing in the same geographic region and time pe-

riod. Clustering results from Phydelity, ClusterPicker and PhyloPart are depicted as a heatmap. Each distinct colour refers to a different cluster. Similar to the

Vietnamese hepatitis B empirical viral datasets (Fig. 3a; Supplementary Fig. S4), mean Silhouette index was used as the optimality criterion to determine the optimal

absolute distance threshold for ClusterPicker and PhyloPart. Only results based on the optimised thresholds are shown here for ClusterPicker and PhyloPart. No param-

eter optimisation is required for Phydelity. (a) Genotype 1a and (b) Genotype 4d.
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stringent epidemiological as well as genetic distance con-
straints to identify transmission pairs: (1) the donor and recipi-
ent of a transmission pair were of the same household with
onset of illness symptoms occurring within 7 days of each other,
with the donor having the earlier symptom onset date; (2) there
must be no other potential donors with the same symptom on-
set date; (3) symptom onset dates of donor and recipient should
not be on the same day unless they were index cases; and (4) ge-
netic distance between the within-host viral populations of do-
nor and recipient must be below the 5th percentile of the
distance distribution of random pairs of infected individuals
from the community (McCrone et al. 2018). In total, fifty virus
isolates constituting thirty-two high-quality transmission pairs

were identified. Consolidating transmission pairs with overlap-
ping donors and recipients into clusters, there were twenty-two
genetically validated transmission clusters, comprising of six-
teen pairs and six trios in total.

Using the phylogeny constructed from the consensus whole
genome sequences of all 206 viruses, Phydelity was able to iden-
tify 20 of the 22 high-quality transmission clusters as distinct
clusters (Supplementary Fig. S5). Applying the same metrics
used to assess clustering performance of the simulated dataset
earlier and using the high-quality transmission cluster labels as
ground truth, Phydelity was able to produce highly pure clusters
(97.8%), with a low probability of misclassification (IG ¼ 0:022)
and good accuracy (ARI¼ 0.962), even after accounting for the

(b)

Figure 4. continued
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number of predicted clusters (NMI¼ 0.993; Table 2). As trans-
mission events defined by McCrone et al. were based on highly
conservative criteria imposed on deep sequencing datasets,
Phydelity, which operates at the consensus sequence level,
could also cluster viruses that did not satisfy these constraints
but were still linked epidemiologically by their household iden-
tities. As such, Phydelity’s clustering results were assessed
based on the household association of the clustered individuals
as well, yielding slightly diminished but nonetheless high qual-
ity performance (Purity¼ 0.894, IG ¼ 0:081, ARI¼ 0.791,
NMI¼ 0.964; Supplementary Fig. S5; Table 2).

The full A/H3N2 sequence dataset was then randomly sam-
pled to smaller pools of fifty-two (25%) as well as ninety-three
(45%) isolates to assess how low sampling rates might affect
Phydelity’s performance. To ensure that sequences involved in
high-quality transmission pairs were also sampled, such iso-
lates would constitute different proportions (either 25% or 45%;
as well as 70% for pools of fifty-two sequences only) of the
downsampled datasets. Ten distinct downsamples were gener-
ated for each sample size/high-quality transmission sequence
combination and the average results were tabulated (Table 2).

As the MPL is informed by the phylogenetic tree, clustering
results will consequently be sensitive to the diversity of closely

related tips within the input phylogeny. Specifically, the closely
related sequences that constitute the kth core patristic distance
distribution (Dk) must be homogenous (i.e. similar difference be-
tween consecutive distances when Dk is sorted; see Section 2)
but sufficiently distinct from the background diversity of the
phylogeny. This was demonstrated by the improved clustering
results with respect to household identities with greater propor-
tional inclusion of genetically similar, high-quality transmis-
sion pairs in the downsampled dataset (Table 2). Furthermore,
erroneous clustering of distantly related tips can be obtained if
Dk has a similar distance distribution relative to the entire tree
due to insufficient divergence information from reduced sam-
pling. This is evident from the general decrease in the clustering
performance of all downsampled data. In particular, clustering
closely related, high-quality transmission clusters was worse
off with a lower sample size.

3.5 Computational performance

For computational performance, Phydelity can process a phy-
logeny of 1,000 tips, on an Ubuntu 16.04 LTS operating system
with an Intel Core i7-4790 3.60 GHz CPU, in �3 min using a single
CPU core and 253 MB of peak memory usage.

4. Discussion

Phydelity is a statistically principled tool capable of identifying
putative transmission clusters from pathogen phylogenies
without the need to introduce arbitrary distance thresholds.
Instead, Phydelity infers the maximal patristic distance limit
(MPL) for cluster designation using the pairwise patristic dis-
tance distribution of closely related tips in the input phyloge-
netic tree. Unlike other cutpoint-based methods, Phydelity does
not assume clusters are strictly monophyletic and can identify
paraphyletic clustering owing to its distal dissociation ap-
proach. For datasets that span extended periods of time, multi-
ple introductions within the same contact network and
concurrent onward transmissions to other communities can re-
sult in ‘nested’ introduction events that would go undetected by
monophyletic clustering (Barido-Sottani, Vaughan, and Stadler
2018). By relaxing this assumption, not only can Phydelity pick
up these ‘nested’ events, it tends to produce clusters that are
purer with a lower chance of misclassification while excluding
putative outlying tips that are exceedingly distant from the in-
ferred cluster.

Even though there are algorithmic similarities between
PhyCLIP (Han et al. 2019) and Phydelity, clustering results gener-
ated by PhyCLIP should not be interpreted as sequences linked by
transmission events. For instance, when applied to the HCV
Genotype 1a NS5B dataset, PhyCLIP clustered 131 of the 155 input
sequences into seven clades, all of which encompasses

Table 1. Comparing the genetic distance between outlying tips and the clusters they coalescence to with the genetic diversity of those clusters.

Genotype MPL Cluster Mean pairwise patristic distance
of cluster (r)

Outlier Mean pairwise patristic distance of
outliers to cluster members (r)

1a 0.029 C1 0.011 (0.012) MAH66 0.043 (0.009)
C3 0.016 (0.009) MAH62 0.045 (0.027)

MAH31 0.041 (0.025)
MAH72 0.022 (0.015)

4d 0.010 C1 0.006 (0.004) MAH24 0.019 (0.006)
MAH08 0.009 (0.005)

Table 2. Clustering performance of Phydelity on seasonal A/H3N2 in-
fluenza viruses collected by McCrone et al. (2018).

Basis nsample %trans Purity IG ARI NMI

High-quality transmission
clusters

All 0.98 0.02 0.96 0.99
52 25% 0.87 0.06 0.72 0.93

45% 0.87 0.04 0.74 0.95
70% 0.85 0.07 0.76 0.94

93 25% 0.94 0.03 0.88 0.98
45% 0.94 0.03 0.90 0.98

Household All 0.89 0.08 0.79 0.96
52 25% 0.56 0.29 0.35 0.82

45% 0.73 0.16 0.56 0.90
70% 0.82 0.11 0.74 0.93

93 25% 0.75 0.16 0.64 0.92
45% 0.87 0.11 0.80 0.95

Ground truth used for clustering assessment was either based on the identities

of genetically validated, high-quality transmission clusters as defined by

McCrone et al. or by the patients’ households. Besides analysing all of the vi-

ruses collected (bolded results), Phydelity was also applied to downsampled

datasets consisting of different sample size (nsample) and proportion of sequen-

ces derived from the aforementioned high-quality transmission pairs (%trans).

Adjusted rand index (ARI) measures how accurate the output clusters corre-

sponded with the ground truth labels. Purity gives the average extent clusters

contain only a single class. Modified Gini index (IG) is the probability that a ran-

domly selected sequence would be incorrectly clustered. Normalised mutual in-

formation (NMI) accounts for the trade-off between clustering quality and

number of clusters (see Section 2).
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genetically similar viruses of both MSM and non-MSM origins
that were endemic in Lyon during a specific period in time. In
contrast, Phydelity assigned seventy-three sequences into twelve
transmission pairs and five transmission clusters that distin-
guished the underlying MSM transmission events from non-MSM
ones (Supplementary Fig. S1). A detailed comparison between
Phydelity and PhyCLIP can be found in Supplementary Data.

One of the key assumptions made by Phydelity is that the
transmitted pathogens coalesce to the same MRCA and that the
pairwise genetic distance of internal nodes found between the
MRCA and the tips of the cluster to be bounded below MPL. While
Phydelity does not explicitly equate the inferred phylogeny to a
transmission tree, imposing a distance threshold between the in-
ternal nodes within a phylogenetic cluster may be construed as an
implicit assumption that the internal nodes are representative of
transmission events. There are important differences in the inter-
pretation of phylogenetic and transmission trees. The former
depicts the shared ancestry between the sampled tips while the
latter represents the true transmission history between the trans-
mitted pathogens (Pybus and Rambaut 2009; Ypma, van
Ballegooijen, and Wallinga 2013). It should be noted that Phydelity
neither attributes any interpretation of transmission events to the
internal nodes nor does it relate branch lengths of the phylogenetic
tree, which correlate with the timing of coalescence, to transmis-
sion times. Restricting the distances between internal nodes below
the MPL is strictly meant to increase conservatism in identifying
clusters that are as closely related as possible.

There have also been criticisms that non-parametric cluster
identification by genetic similarity is biased towards the detec-
tion of recent infections as opposed to discerning variations in
transmission rates between different subpopulations, which
can be further exacerbated by oversampling (Poon 2016;
Dearlove, Xiang, and Frost 2017; Le Vu et al. 2018). While this ca-
veat limits the interpretation of the inferred transmission clus-
ters, it does not render all phylogenetic clustering tools
obsolete. Phylogenetic clustering tools supplemented by epide-
miological meta-data can still be used to systematically identify
infection trends, potential risk factors and target subpopula-
tions, as demonstrated by multiple epidemiological studies of
different measurably evolving pathogens (de Oliveira et al. 2017;
Matsuo et al. 2017; Charre et al. 2018).

Additionally, constructing a phylogenetic tree can be a com-
putational bottleneck for large sequence datasets. As an alter-
native, genetic distance-based clustering algorithms such as
HIV-TRACE (Kosakovsky Pond et al. 2018), which negate the
need to build a phylogenetic tree have become increasingly pop-
ular. However, HIV-TRACE still requires users to specify an arbi-
trary absolute distance threshold. Additionally, while it
performed better than other existing phylogenetic clustering
methods, HIV-TRACE did not preclude problems with bias to-
wards higher sampling rates (Poon 2016).

Despite its limitations, clustering results generated by
Phydelity for the simulation and empirical datasets in this study
demonstrate its superior performance over current widely used
phylogenetic clustering methods. Importantly, Phydelity obvi-
ates the need for users to define or optimise non-biologically in-
formed distance thresholds. Phydelity is fast, generalisable, and
freely available at https://github.com/alvinxhan/Phydelity.
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