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Abstract

Predicting the risk of mortality for patients with acute myocardial infarction (AMI) using 

electronic health records (EHRs) data can help identify risky patients who might need more 

tailored care. In our previous work, we built computational models to predict one-year mortality of 

patients admitted to an intensive care unit (ICU) with AMI or post myocardial infarction 

syndrome. Our prior work only used the structured clinical data from MIMIC-III, a publicly 

available ICU clinical database. In this study, we enhanced our work by adding the word 

embedding features from free-text discharge summaries. Using a richer set of features resulted in 

significant improvement in the performance of our deep learning models. The average accuracy of 

our deep learning models was 92.89% and the average F-measure was 0.928. We further reported 

the impact of different combinations of features extracted from structured and/or unstructured data 

on the performance of the deep learning models.
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Introduction

In 2016, the top two death causes were heart disease and cancer, accounting for 44.9% of all 

deaths in that year [1]. Based on a recent report from the American Heart Association, 

cardiovascular disease and stroke are accounted for tremendous economic and health-related 

burdens in the United States and worldwide [2]. Acute myocardial infarction (AMI) is an 

event of myocardial necrosis caused by the unstable ischemic syndrome. It is the leading 

cause of mortality worldwide [3]. Appropriate management of AMI and timely interventions 

play a key role in reducing mortality from cardiovascular diseases. Nevertheless, this 

requires us to understand the past trends and patterns of AMI-related mortality and 
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subsequently to inform the design of future tailored interventions based on the available data 

and models [4][5].

Prediction models have been increasingly used in hospital settings to assist with risk 

prediction, prognosis, diagnosis, and treatment planning, ultimately leading to better health 

outcomes for patients. For example, predictive modeling can inform personalized care based 

upon health conditions of each individual patient [6]. Specifically, mortality prediction 

models estimate the probability of death for a group of patients based on their characteristics 

including the severity of their illness and many other associated risk factors for death [7]. 

They are important complementary tools to assist in clinical decision-making [8][9]. In 

current clinical practice, score-based mortality prediction systems, such as the series of the 

acute physiology and chronic health evaluation (APACHE) scoring system, are widely used 

to help determine the treatment or medicine should be given to patients admitted into 

intensive care units (ICUs) [10]. Nevertheless, these scoring systems have significant 

limitations, e.g., 1) they are often restricted to only few predictors; 2) they have poor 

generalizability and may be less precise when applied to specific subpopulations other than 

the original population used for the initial development; and 3) they need to be periodically 

recalibrated to reflect changes in clinical practice and patient demographics [6]. The wide 

adoption of electronic health record (EHR) systems in healthcare organizations allows the 

collection of rich clinical data from a huge number of patients [11]. Large EHR data enables 

one to 1) build more precise prediction models considering a wider range of patient 

characteristics; 2) be able to refresh these prediction models more frequently with less 

engineering efforts; and 3) improve the quality of these prediction models with fewer issues 

such as the common generalization problem [12].

One contemporary approach to build these prediction models is to use Machine Learning 

(ML) methods. ML is a field of computer science closely related to artificial intelligence that 

has drawn significant attention in the last few years. ML methods can be used to extract 

patterns and to predict different outcome variables (e.g., mortality) based on a training 

dataset. They have been shown to improve the predictive power in many real-world 

prediction tasks; and especially on biomedical problems, ML methods can lead to a better 

prognosis with richer predictors compared to traditional statistical approaches [6][13]. Most 

ML methods require significant feature engineering efforts, which rely on a deep 

understanding of the data and their underlying relationships with the outcome variable. 

Traditional artificial neural networks, even though relaxed the requirements of feature 

engineering, have a limited number of layers, connections and learning capacity because of 

the constraints of their computational power. In recent years, with the fast growing 

evolutions in both computer hardware (e.g., graphics processing unit, GPU) and training 

algorithm developments (e.g., the backpropagation algorithm that fine-tunes the whole 

network toward optimized representations [14]), deep learning systems now have the ability 

to use multi-layer architecture to learn patterns based on raw input data in every layer, in 

which features are not engineered by human but are learned from data automatically.

In recent years, a number of studies have deployed different deep learning architectures to 

predict mortality using EHR data. For example, Du et al. used a deep belief network (DBN) 

to predict critical care patient’s 28-days mortality [15].
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Zahid et al. used self-normalizing neural networks to predict 30-day mortality and hospital 

mortality in ICU patients [16]. Rajkomar et al. proposed a new representation of raw 

medical data and used deep learning to predict multiple medical events including in-hospital 

mortality 24 hours after admission [17]. However, these studies either did not consider free-

text data in their feature sets or were only concentrated on short-term mortality prediction 

such as 24-hour mortality, for which any interventions might be too late.

In a previous study [18], we built a number of machine learning models using structured 

EHR data including admission information, demographics, diagnoses, treatments, laboratory 

tests, and chart values. The aim of the study was to predict one-year mortality in patients 

diagnosed with AMI or PMI. We compared the prediction results of these different machine 

learning models (i.e., shallow learners such as random forest and adaboost); and then 

compared the prediction performance of the best performing shallow learners to a deep 

learning model—a fully connected neural network. The results showed that the deep 

learning model enhanced recall and F-measure metrics (i.e., from a recall of 0.744 to 0.820; 

and a F-measure of 0.715 to 0.813) while preserving a good prediction accuracy of 82.02%.

In this study, we advance our previous work by adding unstructured data to the previous 

models. Word embedding features are extracted from free-text discharge summaries and 

added to the structured features. This study aims to improve the deep learning model 

performance using the mixture of both structured and unstructured data, which will be called 

mixed data throughout this paper. Also, the best performing shallow learners from the 

previous study are compared once again with the deep learning model using the same mixed 

data. Further, we examine the performance of the deep learning model using the 

unstructured set of data only, as well as five different combinations of the structured and 

unstructured data. We aim to determine which set of features contributes the most in 

enhancing the performance of deep learning models.

Methods

In this section, we first briefly introduce our preparation of the structured data as well as the 

free-text data. Our goal was to build and compare deep learning and traditional machine 

learning (i.e., shallow learner) models to predict one-year mortality in ICU patients with 

AMI and PMI. Many tasks in natural language processing (NLP) have benefited from neural 

word representations. These representations do not treat words as symbols; but rather can 

capture the semantics of the words and reflect their semantic similarities. These methods 

that represent words as dense vectors are referred to as “neural embeddings” or “word 

embeddings”. Word embeddings have been proven to benefit a variety of NLP tasks [19]. 

Then, we briefly introduce the best performing shallow learners from the previous study, 

which was used to build new models based on the new mixed dataset. Then, we explain the 

architecture of the deep learning model. A workflow of this study is depicted in Figure 1.

Dataset Processing

Data Source and Patient Cohort—We used the data from the Medical Information 

Mart for Intensive Care III (MIMIC-III). MIMIC-III is a freely accessible, de-identified 

critical care patient database developed by the MIT Lab for Computational Physiology [20]. 
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The latest version of the MIMIC-III dataset includes information about 58,000 admissions to 

the Beth Israel Deaconess Medical Center in Boston, Massachusetts from 2001 to 2012. 

Using the International Classification of Diseases, Ninth Revision (ICD-9) codes of 410.0–

411.0 (Acute myocardial infarction, Postmyocardial infarction syndrome), we identified 

5,436 admissions into our experiment dataset.

Structured Data Processing—The structured data in MIMIC-III include admission 

information (e.g., total days of admission, initial emergency room diagnoses, etc.), 

demographics (e.g., age at admission, gender, etc.), treatment information (e.g., cardiac 

catheterization, cardiac defibrillator, and heart assist anomaly, etc.), comorbidity information 

(e.g., cancer, endocrinology, etc.) and lab and chart values (e.g., cholesterol ratio, alanine 

transaminase, etc.). We selected these features based on the features used in similar studies. 

For details, see [18]. They were further refined and limited by their availabilities in MIMIC-

III. To ensure that there was only one admission per instance, duplicates were removed. If 

duplicates existed because of multiple treatments or comorbidities for the same admission, 

all of them were counted. Regarding the demographics, since age and death age for people 

over 89 years old were masked in MIMIC-III by adding 211 to the actual age, we changed 

them back by subtracting 211 from their value. Some lab values were entered with a ‘0’ and 

associated with a note of ‘see comment’. Thus, 0 values were removed from the lab. Also, 

the lab or chart values that were biologically invalid were removed. We replaced removed 

values with the mean value of each feature column. The data was imbalanced with 30% 

positive and 70% negative cases. The outliers were removed based on the interquartile range 

rule [18]. Data values were normalized between 0 and 1.

Unstructured Data Processing—The unstructured data were retrieved based on the 

corresponding admission IDs in the structured dataset using NOTEEVENTS table of 

MIMIC-III, from discharge summaries associated with each admission. Discharge 

summaries are the main method to communicate a patient’s plan of care to the next provider 

[21]. Thus they include rich information about a patient’s condition and treatments. Skip-

gram model is a neural embedding method to learn an efficient vector representations of 

words from unstructured text data. These representations of words encode many linguistic 

regularities and patterns. The Skip-gram model finds the word representations that can 

predict the surrounding words [22]. The resulting dense vectors are called word embeddings. 

In this work, we opted to use document embeddings which is the average of word 

embeddings vectors for the words in the discharge summary of an admission, because the 

order of the words is not associated with the outcome (i.e., mortality). We used the 

Word2Vec algorithm in the Gensim library, a free Python library for processing plain text 

[23]. We used the embeddings pre-trained with Gensim using scientific articles (i.e., 

PubMed abstracts and PubMed Central full texts [24]).

Case Labeling—The goal of this study was to predict one-year mortality, i.e., whether a 

patient will die within a year after admission or not. Thus, the admission records of the 

patients who died within a year were labelled as positive instances, and of those who did not 

die within a year were labelled as negative instances.
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Predictive Modeling

Machine Learning Models—Waikato Environment for Knowledge Analysis (WEKA) is 

a freely available Java-based software developed at the University of Waikato, New Zealand. 

Based on the results from our previous study [18], simple logistic and logistic model trees 

(LMT) classifiers in WEKA produced the best results using the dataset of structured features 

including admission information, demographics, treatment information, comorbidity 

information, lab values, and chart values. The simple logistic classifier in WEKA, builds 

linear logistic regression models. LMT in WEKA builds classification trees with logistic 

regression functions at the leaves [25].

Deep Learning Model—The deep learning model we used in this work consists of four 

layers (i.e., the input layer, two hidden layers, the classification layer). Figure 2 shows the 

deep neural network architecture used in this study. We used the Keras library [26] running 

on top of the Tensorflow framework [24], as well as a number of other Python packages 

including SciPy [27], Scikit-learn [28], NumPy [29], and Pandas [30].

The deep neural network we used for this study had 2 hidden layers fully connected with 

400 neurons in each layer. The input dimension was 279. We used hyperbolic tangent 

activation function in hidden layers, and softmax activation function in the classification 

layer. We used the stochastic gradient descent method for optimization and categorical cross 

entropy as the loss function. To avoid over-fitting, we used L2 regularization in each hidden 

layer as well as dropout with a rate of 0.3. Batch size was 100 and epoch size was 60. In 

each hidden layer we applied batch normalization. All the deep learning architecture settings 

were chosen based on an extensive examination of different values and their impact on the 

overal performance. Since the data size was limited, we considered 10-fold cross-validation 

technique for model validation. We shuffled the data before each run.

Model Evaluation

We ran each algorithm 10 times. In each run, the data was shuffled randomly and 10-fold-

cross-validation was employed to evaluate the performance (90% for training and 10% for 

testing). The performance metrics (i.e., accuracy, precision, recall and F-measure) were 

averaged after 10 folds.

The accuracy metric reports the model overall performance on the test set; however, recall 

and precision metrics of these models are more important in our task. If the actual outcome 

for a patient is mortality within a year, recall metric evaluates how many times the model 

was able to predict this correctly that a patient died within a year (true positive) out of all the 

patients who actually died within a year (true positive + false negative). Precision, on the 

other hand, evaluates how many times a correct prediction (true positive) happened out of all 

positive predictions made by the model regardless of their correctness (true positive + false 

positive). False negative in this study means that a patient who is predicted to live within a 

year actually died. False positive in this study means a patient who is predicted to have died 

within a year did not die. F-measure evaluates the balance between these two metrics. 

Although the receiver operator characteristics (ROC) curve is another popular evaluation 

metric, its interpretation requires caution when used with imbalanced datasets [31]. Since 
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our dataset is imbalanced, we used precision-recall plot for the visual evaluation of the 

binary classifier.

Results

In our previous study [18], we first compared the performance of various machine learning 

models on each set of structured features separately and then compared them to the 

performance of machine learning models on the combined dataset (admission + treatment + 

lab and chart values + demographics + comorbidities). We observed that LMT and simple 

logistic models achieved the best accuracy of 85.12% on the combined dataset. The recall 

values were low (from 0.499 to 0.660). Only the J48 classifier yielded a precision of 0.993 

using the admission dataset alone, while other performance metrics decreased notably 

comparing to using the combined dataset. Then we showed that a deep learning model can 

enhance the performance. Our deep learning model achieved 82.02% accuracy, while 

boosted recall and F-measure metrics to 0.820 and 0.813, respectively. All features used in 

the previous study were derived from structured data.

In this work, we first compared the performance of machine learning and deep learning 

models on the mixed dataset (i.e., features from both structured and unstructured data). 

Then, we created different combinations of structured data with unstructured data to 

examine which set of features has more predictive power for our classification task. Table 1 

shows the performance of the two top performing traditional machine learning models (as 

obtained from our previous study) and a deep learning model on the mixed dataset. The deep 

learning model outperformed the best shallow learners considerably.

In Table 1, we can see that the precision values of shallow learners are higher than their 

recall values, which means they are exact but not complete. A low recall value indicates a 

large number of false negatives (i.e., incorrectly classified as not dying within a year), which 

is suboptimal in this classification task. The dimension of data in our previous study was 79 

considering only features from structured data. Adding features derived from unstructured 

data increased the total number of features and increased the input data dimension up to 279. 

Table 2 illustrates the comparison between the previous work and current study. We can see 

from the results that shallow learners did not benefit from more features (and higher data 

dimensionality). Accuracy slightly improved, while precision slightly dropped. Recall 

improved less than 0.03. Unlike the shallow learners, our deep learning model showed 

considerable improvements with more than 10% increase in accuracy and ~10% 

improvement in both precision and recall. Further, we were interested in comparing the 

performance of deep learning models using only free-text features vs. using different 

combinations of structured and free-text features. Results are summarized in Table 3.

From the results we observed, demographic and admission information are two key groups 

of structured features in enhancing the deep learning model. Demographic information in 

this dataset includes age at admission, gender, religion, ethnicity and marital status. 

Admission information includes total days of admission, discharge location and initial ER 

diagnosis as AMI or rule out AMI.
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The combination of admission information with free-text features produced an accuracy of 

88.25% in the deep learning model; while, the accuracy of the deep learning model based on 

the combination of demographics data with free-text features was 87.37%. We compared 

these two models to the accuracy of another deep learning model based on the complete 

mixed dataset, which produced an accuracy of 92.89%. Figure 3 illustrates the precision-

recall curve resulted after 10 rounds of deep learning algorithm run. Table 4 shows a 

comparison of other recent works in mortality prediction using deep learning methods on 

EHR data.

Discussion and Conclusions

In this work, we enhanced our previous deep learning model by combining unstructured and 

structured data to predict one-year mortality in ICU patients with AMI and PMI. For 

unstructured data, we extracted word embedding features from discharge summaries of each 

patient admission. While these word embedding features had no impact on the shallow 

learners, the performance of our deep learning model increased and achieved an accuracy of 

92.89%, precision of 0.931, recall of 0.929 and F-measure of 0.928.

Our findings suggest that a richer data dimension through adding features from unstructured 

data will enhance deep learning model performance. We also confirmed our previous 

findings that initial emergency room diagnosis, gender, age, and ethnicity are important 

factors for the prediction of one-year mortality. One limitation worth noting is that using 

ICD-9 CM codes for cohort identification may introduce some noise. But this noise should 

not impact the findings of this study. In future work, we are interested in: 1) designing deep 

neural network ensembles that have the potential to further improve the model performance; 

2) exploring the unstructured sequential data through other state-of-the-art models such as 

recurrent neural networks and long short-term memory (LSTM) techniques; and 3) the 

potential to enrich the textual features by extracting Unified Medical Language System 

(UMLS) concepts from the free-text data.
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Figure 1–. 
The workflow of the study (Icons made by https://www.flaticon.com)
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Figure 2–. 
a fully connected deep neural network architecture: two hidden layers, each with 400 

neurons, initial weights=random uniform, initial bias=zeros, learning rate =0.001
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Figure 3–. 
Precision-Recall Curve, after 10 runs average precision = 0.931, average recall = 0.929
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Table 1–

Comparing machine learning models to deep learning model based on the mixed dataset

Model Accuracy Precision Recall F-measure

LMT 85.78% 0.856 0.621 0.724

Simple Logistic 85.71% 0.863 0.623 0.723

Deep Learning 92.89% 0.931 0.929 0.928
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Table 2–

Comparing machine learning and deep learning models based on structured dataset vs. mixed dataset 

(structured + unstructured),-p means previous study, -c means current study

Model Accuracy Precision Recall F-measure

LMT-p 85.12% 0.867 0.594 0.705

LMT-c 85.78% 0.865 0.621 0.724

Simple Logistic-p 85.12% 0.867 0.549 0.705

Simple Logistic-c 85.71% 0.863 0.623 0.723

Deep Learning-p 82.02% 0.831 0.820 0.813

Deep Leanirng-c 92.89% 0.931 0.929 0.928
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Table 3–

Comparing using unstructured data only vs. different combinations with structured data in the deep learning 

model

Data Accuracy Precision Recall F-measure

Free text 81.83% 0.836 0.818 0.816

Free text + lab results 83.61% 0.853 0.836 0.833

Free text + treatment 84.15% 0.850 0.841 0.840

Free text + comorbidity 84.69% 0.856 0.846 0.842

Free text + demographics 87.37% 0.881 0.874 0.872

Free text + admissions 88.25% 0.885 0.882 0.881
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Table 4–

Comparing recent work in mortality prediction using deep learning methods on EHR data

Paper Mortality Prediction Task AUC ACC

Payrovnaziri et al. (this paper) 1-year 0.916 92.89%

Du et al.[15] 28-days Not reported 86%

Zahid et al.[16] 30-days/hospital 0.8445/0.86 Not reported

Rajkomar et al.[17] 24 h after admission 0.92–0.94 Not reported
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