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Microbiota and memory: A symbiotic 
therapy to counter cognitive decline?
Matthew Heyck, Antonio Ibarra1

Abstract:
The process of aging underlies many degenerative disorders that arise in the living body, including 
gradual neuronal loss of the hippocampus that often leads to decline in both memory and cognition. 
Recent evidence has shown a significant connection between gut microbiota and brain function, 
as butyrate production by microorganisms is believed to activate the secretion of brain‑derived 
neurotrophic factor (BDNF). To investigate whether modification of intestinal microbiota could impact 
cognitive decline in the aging brain, Romo‑Araiza et al. conducted a study to test how probiotic and 
prebiotic supplementation impacted spatial and associative memory in middle‑aged rats. Their results 
showed that rats supplemented with the symbiotic (both probiotic and prebiotic) treatment performed 
significantly better than other groups in the spatial memory test, though not in that of associative 
memory. Their data also reported that this improvement correlated with increased levels of BDNF, 
decreased levels of pro‑inflammatory cytokines, and better electrophysiological outcomes in the 
hippocampi of the symbiotic group. Thus, the results indicated that the progression of cognitive 
impairment is indeed affected by changes in microbiota induced by probiotics and prebiotics. Potential 
future applications of these findings center around combatting neurodegeneration and inflammation 
associated not only with aging but also with the damaging posttraumatic effects of ischemic stroke.
Keywords:
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prebiotics, probiotics, spatial memory, symbiotic

Introduction: Hippocampal 
Neurodegeneration is Linked 

with Aging

Degenerative changes within the central 
nervous system are often associated 

with aging and lead to decline in memory 
and learning capacity, both of which depend 
on the hippocampus.[1,2] Mild cognitive 
impairment  (MCI) is regarded as the 
intermediate stage between healthy aging 
and dementia, and the present estimates 
indicate that 30%–100% of patients with MCI 
will progress to the latter.[3] Moreover, the 
rate of evolution from MCI to Alzheimer’s 
disease has been reported to be 15% per 
year.[4]

MCI is linked to neurodegeneration in the 
hippocampus, and this loss of neurons 
has been related to mitochondrial defects, 
as well as oxidative stress that increases 
levels of pro‑inflammatory cytokines such 
as interleukin  (IL)‑1β, IL‑6, and tumor 
necrosis factor  (TNF)‑α.[5‑8] The result of 
such alterations is often neuroinflammation 
and consequently increased activity of 
microglia.[1,9,10]

Neuroinflammation Reduces 
Synaptic Plasticity and Levels 
of Brain‑derived Neurotrophic 

Factor

Neuroinflammation is correlated with a 
decline in cognitive function and memory, 
primarily because inflammation of the 
hippocampus tends to cause deleterious 
changes in synaptic transmission and 
plasticity.[11] Decreased plasticity can 
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lead to the deficient synthesis of glutamate with 
N‑methyl‑D‑aspartate receptor  (NMDAR) within 
the dentate gyrus and CA1 and CA3 regions of the 
hippocampus.[12] A lower number of these receptors seem 
to alter long‑term potentiation (LTP) generation, which 
represents experimental evidence of synaptic plasticity 
and memory consolidation.[8,11,13] Neuroinflammation also 
reduces hippocampal gene expression of brain‑derived 
neurotrophic factor (BDNF) a protein neurotrophic factor 
that is linked closely to synaptic plasticity and thus to 
memory consolidation.[14‑16]

Because BDNF helps to sustain and enhance LTP 
induction, it serves an essential role in cognitive 
function.[16] Aging is associated with decreased levels 
of BDNF, suggesting that the maintenance of adequate 
BDNF concentrations could potentially help to preclude 
or delay the onset of cognitive impairment.[17]

Enhancing Short‑Chain Fatty Acid 
Production through Modification of Gut 

Microbiota

One convenient way to raise BDNF levels is 
supplementation of butyrate, a short‑chain fatty 
acid  (SCFA) that functions as a histone deacetylase 
inhibitor.[18,19] Butyrate maintains the relaxation of 
chromatin and thereby enhances BDNF expression in 
the hippocampus.[18-22] Secretion of pro‑inflammatory 
cytokines may also be inhibited by BDNF, as the 
latter molecule interferes with activation of nuclear 
factor‑kappa beta  (NF‑κβ). [23] In addition, the 
expression of enzymes involved in the production of 
glutathione  (GSH) may also be triggered by butyrate 
secretion.[24‑26] GSH is an antioxidant enzyme that 
relieves oxidative stress – another neurodegenerative 
risk factor – by reducing hydrogen peroxide and lipid 
hydroperoxide.[1,24,25]

The intestinal microbiota is responsible for a significant 
proportion of SCFA production.[1] However, levels of 
SCFA decline with age due to dysbiosis, a microbial 
imbalance that often results in a considerable increase 
in pathological bacteria (Proteobacterium) at the expense 
of mutualistic ones  (Bifidobacterium).[1] Progression 
of gut dysbiosis has been linked to chronic systemic 
inflammation, including inflammation of the brain.[27]

One recent study concluded that microbiota likely 
influences different MCI pathophysiological sequences 
within the brain.[28] For this reason, supplementation 
with probiotics and prebiotics may counteract the 
damaging effects that aging has on the brain by not 
only lessening inflammation and oxidative stress but 
also by increasing neurotrophic factors and neuronal 
plasticity.[28]

Prebiotics are nondigestible food materials that are 
fermented by gut microbiota, thereby selectively 
enhancing the growth and activity of these microbes, 
as well as promoting the production of SCFA.[23] On the 
other hand, probiotics are living microorganisms that, 
when consumed in adequate quantities, provide health 
benefits to the host.[29]

The most commonly used prebiotics are fructo‑ 
oligosaccharides (FOS), such as agave inulin.[23] Agave 
inulin selectively stimulates the growth and activity of 
Enterococcus faecium, a probiotic that has been observed 
to reduce concentrations of pro‑inflammatory cytokines 
in the gut and to indirectly promote butyrate synthesis 
by cross‑feeding butyrate‑producing bacteria.[30]

Testing the Effects of Microbiota 
Supplementation on the Memory of 

Middle‑aged Rats

With past evidence supporting the idea that elevated 
butyrate production by healthy gut microbiota can both 
reduce neuroinflammation and increase BDNF levels 
and synaptic plasticity,[17,21,22] Romo‑Araiza et  al. were 
prompted to test whether altering gut microbiota would 
significantly impact memory and cognition.[1] To assess 
the effects of probiotic and prebiotic supplementation on 
spatial and associative memory, they utilized a model 
of middle‑aged rats.[1]

Their test paradigm consisted of Sprague‑Dawley 
male rats that were assigned randomly to four 
conditions  (n  =  13 per condition), henceforward 
referred to as the control (water), probiotic (E. faecium), 
prebiotic (agave inulin), and symbiotic (E. faecium + agave 
inulin) groups.[1] Treatments were administered daily 
by oral gavage over a 5‑week period.[1] Performance 
in the Morris water maze  (MWM) and Pavlovian 
autoshaping tests evaluated spatial and associative 
memory, respectively.[1] Following euthanasia of the 
rats, hippocampi were extracted, and application of the 
enzyme‑linked immunosorbent assay analyzed tissue 
concentrations of cytokines (IL‑1β and TNF‑α), BDNF, 
and γ‑aminobutyric acid.[1] Butyrate levels were also 
analyzed in feces.[1] Finally, physiological responses 
were compared in hippocampal tissue samples from the 
control and symbiotic groups (n = 8 per group).[1]

Symbiotic Supplementation Leads to 
Improvement in Spatial Memory

Although no significant improvement in the Pavlovian 
autoshaping tests was observed for any condition, the 
symbiotic group performed significantly better in the 
MWM  (P  <  0.01).[1] Significantly higher quantities of 
BDNF and butyrate (P < 0.0001) and significantly lower 
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quantities of pro‑inflammatory cytokines (P < 0.01) were 
found in the symbiotic group.[1] The decline in IL‑1β, in 
particular, correlated with superior performance in the 
MWM (P < 0.05).[1] Thus, these results corroborated the 
prevailing outlook that inflammation of the brain and 
a deficiency of BDNF are associated with age‑related 
cognitive impairment.[1]

Multiple Pathways for Anti‑inflammation

Neuroinflammation occurs as a consequence of chronic 
system inflammation, which is known to be linked 
to aging; neuroinflammation is further related to 
the incidence of MCI.[1,31,32] When pro‑inflammatory 
cytokines, particularly IL‑1β, are overexpressed, a 
significant impact on spatial memory tasks, as well as 
a correlation with dementia and delirium, has been 
observed.[31] Elevated levels of IL‑1β also negatively 
influence late‑phase LTP generation and may thereby 
impair memory consolidation.[32]

Cytokine concentrations in peripheral regions of 
the brain also apparently affect working memory, 
as changes in neural activity have been linked to 
systemic inflammation with high levels of IL‑1β, 
which can irreversibly depolarize the membrane and 
cause proconvulsive activity and neuronal death.[32] 
The common conclusion between the aforementioned 
findings and the study by Romo‑Araiza et  al. is that 
perpetual and progressive inflammation within 
the brain exerts deleterious effects upon cognitive 
function.[1,31,32] The latter demonstrated that reducing 
neuroinflammation can be an effective therapeutic 
strategy for preventing cognitive decline, and it also 
provided evidence that symbiotic therapy leads 
to decreased concentrations of pro‑inflammatory 
molecules IL‑1β and TNF‑α in the hippocampus.[1] In 
addition, the principally investigated study showed a 
marked correlation between reduced cytokine levels and 
superior performance in spatial memory and learning 
tests.[1] Various pathways may have been affected to 
induce the overall anti‑inflammatory effect, although the 
data indicated that the symbiotic treatment enhanced 
the production of butyrate, a SCFA, which, along with 
stimulating BDNF secretion, exert anti‑inflammatory 
effects by binding to the G protein‑coupled receptor 
43  (GPR43) on mononuclear cells and by modulating 
the synthesis of inflammatory cytokines.[1,26,33]

Even in the absence of the probiotic, agave inulin 
may have also acted as an anti‑inflammatory agent by 
inhibiting the expression of GPR43.[1,34] Inulin can likely 
function as a signal in immunomodulation by mimicking 
pathogen‑associated molecular patterns and ligand 
binding to toll‑like receptors  (TLRs).[34] The result is 
increased concentrations of anti‑inflammatory cytokines, 

such as IL‑10, in human peripheral blood monocytes.[34] 
Activation of AMP‑activated kinase (AMPK) may also be 
triggered by inulin; AMPK further regulates TLR4 and 
inflammatory processes by inhibiting the transcription 
factor NF‑κβ.[35] Thus, in the experiment currently 
investigated, any of the above anti‑inflammatory 
mechanisms may have contributed to the enhancement 
of cognitive function in the symbiotic group.[1] However, 
the observed increase in hippocampal levels of BDNF 
was likely also responsible for improvements in memory 
and learning.[1]

The Importance of Brain‑derived 
Neurotrophic Factor and the Multipurpose 

Role of Butyrate

Expression of the gene bdnf IV is apparently essential for 
long‑term memory formation, as BDNF must be present 
to stimulate hippocampal–neocortical interactions before 
and during (first 24 h) the consolidation of memories.[36] 
BDNF levels have been demonstrated to respond to 
changes in microbiota, as one study found that mice 
treated with antibiotics developed dysbiosis and had 
diminished hippocampal concentrations of BDNF.[37] 
Both probiotics and prebiotics have been observed to 
increase BDNF levels in the hippocampus, and the 
probiotic Bifidobacterium longum, in particular, has been 
linked to elevated levels of this neurotrophic factor.[1,38] 
Inulin, a prebiotic FOS, also plays a significant role by 
stimulating both the transcription of bdnf IV and the 
synthesis of N-methyl-D-aspartate receptor subunit 
(a subunit of the NMDAR) in the dentate gyrus.[39]

Regarding the previously mentioned studies, higher 
levels of BDNF induced by probiotic and prebiotic 
supplementation were primarily associated with 
the secretion of butyrate  (or other SCFA) by butyric 
acid‑producing bacteria, such as Clostridium butyricum.[40] 
C. butyricum has been observed to counteract cognitive 
decline and histopathological alterations in the CA1 
region of the hippocampus in vascular dementia mice, 
which reported increases in both hippocampal BDNF 
and fecal butyrate concentrations.[40] Butyrate can 
also act as an anti‑inflammatory agent by inhibiting 
NF‑κβ ,  which thereby regulates inflammatory 
cytokines including but not limited to IL‑1β, TNF‑α, 
and IL‑6.[22] IL‑1β, specifically, has been observed to 
disrupt BDNF signaling, suggesting that the decline 
in cytokine concentrations allows BDNF levels to rise, 
a relationship consistent with results for the symbiotic 
group in the principal study under review.[1,41] Although 
only fecal butyrate concentrations were analyzed in 
the study by Romo‑Araiza et al., the introduction of 
butyric acid‑producing bacteria into microbiota has 
been linked to higher quantities of butyrate in the 
brain as well.[1,33,40]



Heyck and Ibarra: Microbiota and memory

Brain Circulation ‑ Volume 5, Issue 3, July‑September 2019	 127

Electrophysiological Testing of 
Hippocampal Tissue

Finally, the symbiotic treatment evidently altered the 
passive properties of CA1 pyramidal cells and increased 
the N-methyl-D-aspartate/α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid ratio.[1] The symbiotic 
group also reported more vigorous LTP (P < 0.01).[1]

It seems that the enhanced cognitive performance and 
electrophysiological responses of the symbiotic‑treated 
rats was the combined effect of both anti‑inflammatory 
mechanisms and BDNF secretion.[1] In the study, 
improvements in spatial memory were observed in 
both the prebiotic and probiotic groups in comparison 
to the control, although only the relative progress 
made by the symbiotic group was deemed statistically 
significant.[1] On the other hand, while the symbiotic 
group also reported the best performance in associative 
memory, no significant increase was achieved by any 
of the treatment groups, perhaps because associative 
memory is a function of the cerebellum as well as the 
hippocampus.[1,42] Moreover, the hippocampus has been 
identified as considerably more susceptible to age‑related 
deterioration than most other structures of the brain, 
potentially explaining why spatial memory may be more 
noticeably responsive to treatment than is associative 
memory.[1]

Testing of hippocampal tissue also obtained better 
electrophysiological outcomes for the symbiotic 
group.[1] The activation of NMDA receptors mediates the 
induction of hippocampal LTP, which, in turn, is required 
to compile and store long‑term spatial memories.[1,14,16] 
Because expression of the functional subunits of NMDA 
receptors declines with aging,[43] deficient induction 
of LTP in the hippocampus can result and negatively 
impact spatial learning capacity.[44] Thus, maintaining 
adequate production and function of NMDA receptors 
represents a viable approach to reducing the onset of 
MCI.[1]

As expected, upregulation of the NMDA receptor in 
hippocampal tissue of the symbiotic group correlated 
with enhanced LTP induction relative to that of the 
control.[1] In regard to the relationship between BDNF 
and NMDA receptors, there has been previous evidence 
to suggest that activation of the latter molecule triggers 
the production and secretion of the neurotrophic 
factor, which, in turn, interacts with those same NMDA 
receptors to increase excitatory synaptic transmission in 
the cortex and hippocampus.[45,46] BDNF has also been 
associated with generating and preserving LTP in the 
CA1 region of the hippocampus.[47,48] In the study of 
primary interest, substantially elevated hippocampal 
levels of BDNF in rats of the symbiotic group were 

concomitant with their significantly better performance 
in the spatial memory test.[1] Accordingly, their superior 
electrophysiological response results may have been an 
observed effect of heightened BDNF concentrations.[1]

Conclusions

The overall results of the above examined study 
by Romo‑Araiza et  al. indicated that symbiotic 
supplementation could help counteract age‑related 
memory loss, and it provided evidence to corroborate the 
prevailing outlook that inflammation of the brain and a 
deficiency of BDNF, a neurotrophic factor important to 
memory and learning, are associated with age‑related 
cognitive impairment.[1] Their findings showed that, 
consumed together at least, probiotics and prebiotics 
have the capacity to promote BDNF secretion and 
downregulate the production of pro‑inflammatory 
cytokines within the hippocampus.[1] This study elucidates 
a significant connection between gut microbiota and 
brain function, as treatment with symbiotics resulted 
in an observed improvement in neural plasticity and 
thus memory and learning in middle‑aged rats.[1] 
Furthermore, these conclusions highlight the potential 
of symbiotic supplementation as a clinical therapy to 
treat MCI by counteracting the decline in cognition and 
memory associated with aging.[1]

The aforementioned benefits to anti‑inflammation and 
neurogenesis suggest that symbiotic supplementation 
may have far‑reaching applications in regard to the 
treatment of neurological diseases [Figure 1]. Along with 
helping to combat MCI and other neurodegenerative 
disorders linked to aging, other SCFAs may positively 
impact the brain–gut axis in cases of ischemic stroke.[19] 
Secondary neuronal death following ischemic stroke 
has been associated with heightened inflammatory 
responses in the brain,[49‑51] and activation of microglia 
by the latter can lead to the release of pro‑inflammatory 

Figure 1: Prebiotics, probiotics, microbiota, and cognitive function. Treatment with 
prebiotics and probiotics may alter the gut microbiota leading to enhance cognitive 

function in middle‑aged rats
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mediators that promote the permeabilization of 
the blood–brain barrier  (BBB) and the physical and 
biochemical barrier that separates circulating blood from 
the brain and thereby regulates cerebral homeostasis.[52,53] 
Neuroinflammation following incidence of ischemic 
stroke likely contributes to progressive dysfunction of 
the BBB that can further increase the likelihood of future 
brain injury and cognitive impairment.[52,53] However, 
neuroinflammation can be evidently counteracted by the 
action of SCFAs (butyrate in the study by Romo‑Araiza 
et  al. and sodium butyrate in the study by Park and 
Sohrabji), which can be metabolized by the action of 
probiotics and prebiotics.[1,19]

Increasing the levels of the neurotrophic factor BDNF 
through symbiotic treatment could also be affected 
in conjunction with regenerative medicine – stem cell 
therapy – in future studies to test if neurogenesis and 
thus poststroke cognitive function are enhanced as a 
result.[54‑56]
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