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Abstract

Disruption in redox signaling and control of cellular processes has emerged as a key player in 

many pathologies including neurodegeneration. As protein aggregations are a common hallmark 

of several neuronal pathologies, a firm understanding of the interplay between redox signaling, 

oxidative and free radical stress, and proteinopathies is required to sort out the complex 

mechanisms in these diseases. Fortunately, models of toxicant-induced neurodegeneration can be 

utilized to evaluate and report mechanistic alterations in the proteostasis network (PN). The 

epidemiological links between environmental toxicants and neurological disease gives further 

credence into characterizing the toxicant-mediated PN disruptions observed in these conditions. 

Reviewed here are examples of mechanistic interaction between oxidative or free radical stress and 

PN alterations. Additionally, investigations into toxicant-mediated PN disruptions, specifically 

focusing on environmental metals and pesticides, are discussed. Finally, we emphasize the need to 

distinguish whether the presence of protein aggregations are contributory to phenotypes related to 

neurodegeneration, or if they are a byproduct of PN deficiencies.
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1. Introduction

Preservation of a healthy proteome is crucial for cellular and organismal physiology, which 

is why organisms have developed a sophisticated system responsible for protein quality 

control called the proteostasis network (PN). The major goals of the PN are proper protein 

synthesis, correct protein folding into functional structures, and degradation of misfolded 

and damaged peptides1-3. Dysfunction within the PN has the ability to propagate protein 
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misfolding and aggregate formation. Interestingly, PN collapse is associated with the 

molecular events involved in the pathology of several disorders such as diabetes4-10, 

aging2,11-13 and is a major feature of neurodegenerative diseases like Parkinson’s disease 

(PD), Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS) (Table 1).

Similar to protein aggregation, cellular redox imbalance and free radical damage are also 

hallmarks of neurodegeneration14-19. Several environmental toxicants are associated with 

neurodegeneration, with converging mechanisms including mitochondrial dysfunction, ROS 

production and disruptions in compartmental redox signaling and control19-24. Of great 

importance to this review, protein folding, autophagy and proteasomal activity can all be 

modulated through thiol redox signaling and control mechanisms25-31. These observations 

highlight the significance of the interplay between the proteome and redox homeostasis.

Although redox regulation of the PN is an emerging topic that has not been fully explored, 

recent studies have yielded significant information. The cell displays several examples of PN 

tuning or disruption through redox reactions25,29,31-34. This review aims to evaluate 

mechanisms participating in the cross-talk between these networks of pathways, as well as 

the relationship between PN disruption and redox imbalance from a toxicological 

perspective.

2. Redox Regulation of the Proteostasis Network

2.1 The Proteostasis Network

Preserving proper production, function and integrity of the cellular proteome is absolutely 

necessary for cell survival, since proteins participate in nearly every cellular process35. For 

this reason, organisms have developed a highly dynamic set of pathways called the PN, 

which promotes vigilant protein quality control and favors proteome homeostasis13,36. The 

PN is primarily composed of molecular pathways that regulate translation, folding and 

degradation of proteins2. Several other secondary but essential molecular circuitries, like the 

unfolded protein response (UPR)37, participate in the PN and provide its necessary dynamic 

nature and its ability to respond during stresses. Protein synthesis requires precise translation 

by the ribosome38, while molecular chaperones aid in co-translational folding35. Accurate 

control of unstable folding intermediates and misfolded proteins is necessary for a healthy 

proteome and is also regulated by chaperones systems1. Degradation of misfolded or 

defective individual peptides happens through proteasomal degradation39, while autophagy 

is responsible for bulk protein and aggregate clearance40. This section of the review aims to 

provide an overview of the PN and present examples of redox regulation of PN components.

2.2 Radical and Non-radical Damage to Proteins

In the cellular milieu, the proteome is constantly under an overwhelming quantity of 

stresses41 and oxidative stress is a well-characterized example of a condition which can 

facilitate protein damage42–44. Oxidative stress is a process characterized by disruption of 

cellular redox homeostasis and production of radical and non-radical molecules45. Free 

radical species (e.g. superoxide, hydroxyl radical) occur naturally in the cell as metabolic 

by-products46. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) can 
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attack the protein backbone to inhibit function and promote fragmentation of the polypeptide 

chain, which can result in protein unfolding 42,47,48. Amino acid residues, like histidine, 

leucine, methionine and aromatic amino-acids phenylalanine, tyrosine, and tryptophan, can 

undergo oxidative modifications that can lead to protein crosslinking, and aggregation49. 

Perhaps the most vital signaling disruption due to oxidative stress is within the cysteine-

based thiol redox proteome50,51. These critical residues are involved in redox-regulated 

control of several cellular functions52,53, and their oxidation/reduction states are regulated 

through activity of glutathione (GSH) and thioredoxin (Trx) systems. Non-radical (NR) 

oxidant molecules (e.g. peroxides, aldehydes, epoxides) are also produced in the cell and 

have the ability to oxidize thiols independently of free radical presence54. Oxidation and 

modification of critical thiol entities can produce cellular redox imbalance to disrupt thiol 

redox signaling. Pathological conditions, such as neurodegenerative diseases (AD, PD, HD, 

ALS), are characterized by increased generation of free radicals and non-radicals55,56. Also, 

general oxidative injury can induce lipid peroxidation and reactive aldehyde production, 

which can also promote protein damage through adduct formation and favor protein 

misfolding57-59.

Oxidative damage to components of the PN, such as chaperones, is of great importance to 

this review. Proper protein folding is regulated by molecular chaperones1,13,36 and their 

function is an important cell defense to prevent aggregation and abrogate pathogenesis. 

Direct oxidation or adduct formation of sensitive chaperone thiols can result in inhibition of 

chaperone function and diminish cellular protein quality control60-62. Ethanol toxicity is a 

great example of how oxidative damage to members of the chaperone family can impede 

protein folding63,64. Also, incubation of PC12 neuronal cells with the highly reactive 

peroxynitrite can promote tyrosine nitration of the chaperone heat shock protein 90 (Hsp90) 

and promote motor neuron death65. Another important component of chaperone function is 

sufficient levels of adenosine triphosphate (ATP)66, as many chaperones employ ATP 

hydrolysis to facilitate folding35. Therefore, energy deficits as a result of xenobiotic-

mediated mitochondrial dysfunction can also affect protein folding.

2.3 Redox Control of Proteasomal Degradation

Protein degradation is a cornerstone of protein quality control, since removal of misfolded 

proteins prone to aggregation is critical to prevent disease pathogenesis67-69. To remove 

damaged and misfolded proteins, the cell employs the ubiquitin proteasome system (UPS) 

(for review:70,71). Briefly, misfolded or damaged proteins are labeled with ubiquitin by E1, 

E2 and E3 ubiquitin ligase enzymes72, which ‘flags’ these misfolded proteins for 

degradation through the proteasome39. The proteasome is a unique protein complex 

consisting of two regulatory subunits (19S) and one catalytic subunit (20S). As ubiquitin-

tagged proteins are introduced to the proteasome complex, ubiquitin is removed from tagged 

peptides by the regulatory subunits and then single polypeptides enter the 20S core where 

they are processed and cleaved by proteolytic subunits. In the presence of mild oxidative 

stress the activity of the proteasome is increased, since it is responsible for removal of 

proteins suffering from oxidative damage43,44. Increased intensity of redox imbalance can 

induce separation of the proteasomal subunits (20s, 19s), switching the mode of proteolytic 

degradation from Ub-dependent (ATP dependent) to Ub-independent (ATP independent), 
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resulting in degradation of oxidized proteins73. Once again, the importance of energy 

balance and ATP production in PN preservation is highlighted. However, oxidative stress 

after major oxidative insults can result in inhibition of proteasomal activity. As reviewed 

extensively by Pajares et al25, proteasomal subunits can be modified by post-translational 

modifications (PTMs) (S-glutathionylation, carbonylation, HNE-adduction) that are closely 

related to redox imbalance as they form as byproducts of oxidative damage30,74-76. S-

nitrosylation and S-glutathionylation can also modify critical thiols in ubiquitin-related 

enzymes responsible for protein ubiquitination, resulting in damaged proteins escaping 

protein quality mechanisms and disruption of cellular physiology77,78. The proteasome is 

also responsible for regulation and degradation of several transcription factors (e.g. Nrf2, 

NF-kB), which are extensively redox regulated. This is an important point as decreased 

proteolytic activity disturbs the regulatory capacity of these critical transcription factors, 

potentially leading to system dysregulation and promotion of pathology79-81. Finally, 

oxidative modification of the 26s proteasome is a common observation in aging70,82 and 

other neurological disorders83-86; therefore, from a toxicological perspective, the 

involvement of redox regulation of the proteasome can be of great mechanistic importance.

2.4 Redox Signaling in Autophagy

Autophagy is an essential molecular pathway involved in major cellular processes87-91, like 

immune function, aggregate clearance, and energy metabolism. There are three different 

forms of autophagy: 1) chaperone-mediated autophagy, in which the heat shock cognate 

(Hsc70) chaperone shuttles individual misfolded peptides to the lysosome, where they are 

degraded (reviewed here92); 2) microautophagy, in which the lysosomal membrane forms 

invaginations that sequester cytosolic material for degradation (reviewed here 93), and 3) 

macroautophagy (hereby referred as autophagy), which is the bulk protein degradation 

pathway of the cell40. The process of autophagy is mainly regulated by the mTOR complex, 

a central regulator of cell metabolism that functions as a sensor for cellular nutrient and 

energy levels11,94. At basal conditions, mTOR is activated by several metabolic signals and 

inhibits autophagy. Under stresses like amino acid depletion or protein aggregate formation, 

mTOR is inhibited and autophagy is activated. During autophagy, cytosolic material, e.g. 

protein aggregates, organelles, lipids, is engulfed by a double membrane vesicle called the 

autophagosome and is transported to the lysosome to undergo degradation (for review:
28,89,95). Autophagy is vital for preserving cellular physiology and its importance is 

highlighted by the fact that autophagic clearance of mitochondria (mitophagy) is the only 

known procedure that promotes mitochondrial turnover28. Additionally, dysfunction of 

autophagy is a common observation in neurodegenerative diseases96 and impaired 

autophagic clearance promotes protein aggregation of pathological proteins (Table 1). Also, 

autophagy is involved in the removal of oxidized macromolecules33,97-99 and dysfunctional 

autophagy can result in ROS/RNS production100-102. The interplay between autophagy and 

thiol redox signaling has not been investigated thoroughly, but it has been reported that ROS 

and RNS can induce autophagy by inhibiting mTOR103-105. For example, a validated redox 

switch critical for autophagosome formation includes oxidation of an important Cys residue 

near the catalytic site of Atg4 family members29. Atg4 proteins possess cysteine protease 

activity that aids in lipidation of LC3-I and delipidation of LC3-II106. Oxidation or mutation 

of Cys81 inhibits Atg4 activity, blocks autophagosome formation and restricts the cell from 
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using autophagy. Another convergence point of autophagy and thiol redox signaling involves 

the p62-Nrf2-Keap1 axis. The autophagy receptor p62 binds ubiquitinated molecules to form 

the autophagosome cargo107, and reports show that p62 can modulate antioxidant responses 

by binding Keap1108-111, which is a major regulator of antioxidant defense79,112-114. 

Dysfunctional p62 clearance results in p62 accumulation, possibly leading to increased 

Keap1 sequestration and subsequent Nrf2 over-activation, which is associated with cancer 

pathology115-117. These few examples indicate that exploration of mechanisms governing 

cross-talk between autophagy and thiol redox signaling can be of great interest and can be 

used in toxicology to decipher xenobiotic-mediated mechanisms of pathogenesis.

2.5 Endoplasmic Reticulum Stress and Disulfide Bond Formation

The endoplasmic reticulum (ER) serves as a hub for nascent peptide folding, since to-be-

secreted proteins enter the ER co-translationally to fold into their proper three-dimensional 

form118. Disturbance of ER physiology can inhibit protein folding, propagate aggregation 

and activate the UPR 119,120. This event results in activation of three ER-transmembrane 

proteins (IRE-1a, PERK, ATF6a) that inhibit translation and transcriptionally activate 

protein degradation pathways as a defense mechanism. UPR also induces expression of 

folding facilitators, e.g. chaperones, to help the cell cope with the increased load of 

misfolded proteins121. Toxicologically, the inability of the cell to defend against prolonged 

ER stress can eventually result in cell death122. Many xenobiotics that exert toxicity through 

ER stress have been identified123-125 and examples of thiol redox regulation of the UPR are 

common 32,105,126,127. This is because a major process in protein folding is the disulfide 

bond formation that takes place solely in the ER128. Additionally, the formation of 

intermolecular or intramolecular disulfide bonds between cysteine residues is important for 

protein stability62. Protein disulfide isomerase (PDI) oxidoreductases work as a disulfide 

donor by promoting cysteine oxidation of candidate peptides123,129. PDI is also responsible 

for disulfide bond isomerization in proteins, a rather important process regarding protein 

folding and its disruption can instigate misfolding. Due to the importance of structural 

disulfide bonds, reducing factors like dithiothreitol (DTT) can cause ER stress through 

breaking disulfide bonds and modulation of protein folding124,130. Also, PTMs of cysteines 

in the active site of PDI can inhibit its function123,131 and might be involved in 

neurodegeneration, since PDI levels are increased in brains of patients suffering from 

neurological disorders128,132-134. In general, UPR dysfunction or over-activation is involved 

in several neurodegenerative disorders and exploration of ER stress induction through 

several toxicants can provide valuable information regarding development of pathology.

3. Toxicants That Impact the PN via Redox Interactions

With the emergence of PN disruption as a hallmark for multiple pathologies, 

characterization of toxicants, either from epidemiological studies or research models, has led 

to better understanding of disease mechanisms. Table 2 represents a snapshot of toxicants 

that impact the PN and a brief description of pathways/protein targets that are disrupted. It 

should become apparent that common themes exist between toxicants and across the classic 

modes of PN dysfunction, such as the profound effect of environmental toxicants (heavy 

metals, pesticides) in all defined categories. Also, it is important to note that there are many 
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converging mechanisms and crosstalk (signaling, ROS) among defined PN disruptions. For 

the focus of this review, we will discuss metals and pesticides, and their impact on the redox 

control of the PN as it relates to neurotoxicology.

A review by Farina et al does well to describe the vital role of metals in biochemical 

reactions, as well as the implications of environmental exposure to certain metals associated 

with oxidative stress and neurodegeneration135. Mechanisms of toxicity including Fenton 

chemistry, selenium inactivation, direct oxidation of cellular components (lipids, DNA, and 

proteins), and vital metal replacement impact all aspects of the PN, with redox disruption as 

a key player in neurodegeneration136,137. Specifically, several metals have been shown to 

impact the PN at multiple points or compartments (i.e. mitochondria/cytosol): Cadmium 

(Cd), Copper (Cu), Manganese (Mn), Arsenic (Ar), Mercury (Hg), and Lead (Pb)136,137.

Although evaluation of pesticide safety has led to regulation and control of human exposure, 

understanding of the toxicological impacts of chronic exposure to low levels of these 

compounds is still widely unknown. A recent review by Sabarwal et al describes pesticide 

exposure as well as the many toxic outcomes including cancer, neurodegenerative diseases 

(i.e. PD and AD), respiratory and reproductive disorders, and endocrine disruptions138. 

Similar to metals, certain pesticides have been found to be related to PN disruption in 

neurodegeneration, either through epidemiological studies or mechanistic research, such as 

those related to PD: rotenone, paraquat (PQ), and maneb (MB)139-141.

3.1 ROS Generation and Cellular Anti-oxidant Defense

As previously mentioned, oxidative and free radical damage of proteins has a widespread 

impact on the PN as well as the cellular defenses designed to maintain both protein function 

and redox state of the proteome. Mechanisms of toxicity throughout the PN disruptions 

listed below may be independent or resultant of toxicant-induced ROS generation. For 

example, Cu and iron (Fe) can undergo Fenton chemistry to directly produce hydroxyl 

radicals from hydrogen peroxide resulting in oxidative damage to lipids, DNA, and 

proteins142. While Cd does not participate in Fenton reactions, it does substitute itself in 

membrane and cytosolic metalloproteins (i.e. ferritin) leading to a higher abundance of 

unbound Cu and Fe to impart oxidative stress142-144. Cd exposure does cause ROS 

generation directly through other ROS species, however there are several ROS-independent 

mechanisms that contribute to overall oxidative and free radical damage and PN disruption. 

Additionally, exposure to Cd results in cysteine oxidation, thioredoxin oxidation, and 

significantly impacts the mitochondrial compartment far more than the cytoplasmic20,145. 

Another metal of particular interest is Mn and its relation to neurodegeneration involving 

ROS generation via increased mitochondrial respiration146. It has been proposed that Mn2+ 

exposure disrupts Ca2+ dynamics as well as directly impacts the electron transport chain 

(ETC) of the mitochondria146-148. Mn is also the metal component of the dithiocarbamate 

pesticide MB with similar associations to neurodegeneration through similar, but not 

identical pathways139. Regarding MB, it has been shown to directly inhibit complex III of 

the electron transport chain as well as impact mitochondrial membrane dynamics149,150. 

However, direct ROS production has not been consistently observed with MB exposure, 

which may be explained by Nrf2 activation and increase in cellular GSH151. In contrast, PQ, 
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used in a co-exposure model of PD with MB, causes ROS production without activation of 

the Nrf2 response, contributing to the complex interplay of oxidative mechanisms seen in 

PD151. For the remainder of this review, we will present both ROS-mediated and ROS 

independent mechanisms of PN disruption.

Another impact of environmental exposures involves the thiol-containing proteins involved 

in the cellular antioxidant response. Cd, Hg, and As have been shown to significantly impact 

of the redox states of Trx proteins without impacting the GSH/GSSG redox status145. The 

disruption of the Trx pathway can have a significant impact on not only the resolution of 

oxidative damage to proteins through the thiol redox proteome, but through aberrant 

signaling and control of many cellular functions, such as mitochondrial function, ATP 

production, and apoptosis20,152,153. As these metals do not undergo Fenton-type chemistry, 

this impact is proposed to be directly on free thiols, leading to apoptosis pathway induction 

and/or accumulation of damaged proteins. Furthermore, similar observations are observed in 

pesticide exposures that mimic neurodegenerative pathology151. MB and PQ have been 

shown to differentially carbonylate proteins within the cortex and striatum of mice154. While 

the direct reactivity of MB to protein thiols has been reported, the association between 

oxidation of thiols and neurodegenerative endpoints such as protein aggregation, ATP 

depletion, and mitochondrial function are still being investigated19,20,155.

3.2 ER Stress

Metal-induced ER stress is characterized by ROS generation, oxidation of protein thiols, 

oxidative damage, and the substitution of catalytic metals in enzymes (i.e. Cu/Zn SOD)156. 

Manganese (Mn), an essential nutrient and trace element, has also been shown to induce 

activation of ER stress-related proteins, like CHOP and eIF2α, as result of oxidative damage 

to proteins and induction of the UPR136. Furthermore, Mn has been linked to 

neurodegeneration via Mn-induced apoptosis of dopaminergic neurons in PD and 

manganism via ER stress and disrupted autophagy157. One such mechanism includes the 

abundance and activity of MnSOD, which has been shown to be altered by exogenous Mn 

exposure158,159. In addition, Zn has also shown induction of ER stress in hypothalamic 

neurons, with enhancement of toxicity with co-exposure to Cu160. Lead (Pb), a metal that is 

widely accepted to negatively impact IQ in children, has also been reported to cause ER 

stress leading to protein aggregation161.

In regards to pesticide-induced ER stress, a recent study published by Hossain et al reports 

the detrimental impact of deltamethrin, a pyrethroid pesticide, on SK-N-AS human 

neuroblastoma cells through induction of apoptosis via the UPR pathway 162. Their 

investigation lead to a description of deltamethrin mechanism involving calpain activation 

leading to CHOP/GADD153 induction as well as caspase-12 cleavage with following 

caspase cascade. Although pyrethroid compounds have been shown to induce ROS and 

oxidative damage, the unique calpain apoptosis pathway activated with deltamethrin presents 

the possibility of a non ROS-mediated ER stress mechanism163. Combined with 

epidemiological links of pyrethroid exposure to neurodegeneration, similar induction of 

calpain-mediated apoptosis via caspase-12 has been observed in neurodegenerative 

pathologies such as AD, ALS, and PD 164,165. There are also reported associations between 
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PQ and ER stress outcomes, however determination of direct interaction or indirect oxidative 

damage to proteins has yet to be made125. MB has also been shown to induce the ER stress 

pathways, potentially due to its ability to modify critical protein thiols19,86,166. Further, the 

environmental pollutant acrolein found in cigarette smoke has also shown induction of ER 

pathways as a result of damaged and misfolded proteins via oxidative adducts167.

3.3 Chaperones

As previously mentioned, molecular chaperones, such as the family of heat shock proteins 

(HSPs), are vital for not only the proper folding of native proteins, but as well as the UPR 

maintenance of misfolded and damaged proteins leading to recycling or disposal via 

chaperone-mediated autophagy. Induction of HSPs is not only a marker of pathological ER 

stress, but can be independently inhibited or altered by toxicant exposure as reported by 

several investigations168-170. Specifically, HSP70 and HSP40 have been observed to play a 

key role in PD pathology. While metals have been highly studied due to their association 

with proteinopathies of the brain, their direct effect on molecular chaperones are still widely 

unknown. Cd has been reported to induce protein aggregation through multiple mechanisms, 

one being direct binding and inhibition of unfoldases (DnaK, DnaJ, Hsp70, Hsp60, Hsp104) 

and ATP-driven proteases (Lon, ClpAB)171. Furthermore, silencing of Hsp70 ameliorated 

Cd-mediated apoptosis in SN56 neuroblastoma cell culture, possibly due to the modification 

of an allosteric redox switch on Hsp70172,173. With alterations in molecular chaperones 

presenting in multiple neurodegenerative diseases, it is no surprise that pesticides have 

shown similar alterations in HSP abundance and activity168. For instance, co-exposure of 

MB and PQ causes increased abundance of Hsp70 and Hsp90 in mice174. Investigations of 

other pesticides and human HSP modulation are rare, but chlorpyrifos and esfenvalerat have 

been shown to induce HSP expression in salmon175. Combination of toxicant-mediated 

alterations in native protein folding and UPR described above and disruptions in proper 

protein degradation and exocytosis creates this complex network of PN deficiencies 

observed in neurodegeneration.

It is important to note here the impact of oxidative stress and redox modifications on the 

signaling transduction pathways associated with Heat Shock Factor 1 (HSF-1), the 

transcriptional regulator of chaperone expression and heat shock response HSR. HSF-1 is 

heavily regulated through phosphorylation via protein kinase and phosphatase activity, 

enzymes shown to be modulated by ROS presence176-178. Increased cellular ROS can 

potentially dampen the HSR, allowing yet another indirect impact of general ROS on PN 

maintenance.

3.4 Proteasome and Autophagy

Proper function of the ubiquitin-proteasome pathway and removal of defective proteins are 

imperative to cellular defense against protein aggregation and maintenance of the proteome. 

Cu has been reported to directly inhibit proteasome activity and induce apoptosis in jurkat T 

cells and human breast cancer cells179. Additionally, As, Cd, and Pb showed inhibition of 

proteasomal activity in blood samples of a case-control investigation180. Similarly, the PD-

related pesticides rotenone and PQ also show direct inhibition of the catalytic 20S subunit of 
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the proteasome125,181. However, direct mechanistic links between thiol oxidation and 

proteasome inhibition by environmental toxicants have yet to be reported.

Metal-mediated alterations in autophagy have been highly reviewed in neurodegenerative 

diseases such as PD, AD, and HD182,183. For instance, Mn exposure in rats revealed 

dysfunctional lysosomes as well as quenched signaling for autophagy induction through 

mTOR/p70S6K pathway157,183. PQ and rotenone also have the ability to directly impact the 

autophagy machinery through alterations of chaperones involved in transport to the 

lysosome, mTOR signaling, and fusion of the lysosome with the autophagosome174,184. 

Furthermore, PQ has been shown to disrupt ubiquitin-dependent autophagy by reducing 

ubiquitin abundance with no reduction in mRNA185. Chlorpyrifos has also been reported to 

enhance LC3-II expression in a dose-dependent manner, with associations to mitochondrial 

dysfunction and apoptosis186. Again, a direct mechanistic link to protein thiol oxidation and 

toxicant-induced deficiencies in autophagy has yet to be made within neurotoxicology.

4. Toxicological Impact of Redox Stress and PN Dysfunction in 

Neurodegeneration: Separating Disrupted Signaling and Protein 

Aggregation

Two main pathways describe the major impacts of thiol redox homeostasis disruption on 

protein aggregation. First, alterations in protein thiols vital for the resolution and 

maintenance of oxidative damage to proteins will sensitize cells to ER stress and will 

exacerbate deficiencies in proper autophagy. Because of this, toxicants impacting these 

redox sensitive systems should display altered protein degradation and aggregation, as seen 

in rotenone-mediated alteration of α-synuclein metabolism181. However, it is vital to 

separate the impact of environmental exposures on redox signaling and the end result of 

protein aggregation, as many interventions target protein aggregations to alleviate pathology. 

The detrimental effect of protein aggregation on neuronal functions, such as synaptic 

transmission and autophagy, cannot be discounted, but may also represent a byproduct of 

upstream disruptions in PN control.

As mechanistic evaluation of toxicant models of neurodegeneration uncover more pathways 

altered in disease, focus must be made on the wide range of PN disruptions that can occur 

through modifications of the redox proteome via oxidative and free radical stress (Figure 1). 

Research performed with this focus will have the potential to find therapeutics that target 

protein aggregation in the earliest phases of its neurodegenerative phenotype and stop errant 

protein agglomerations whether as the cause or byproduct of pathology.
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Figure 1: Schematic overview of the possible PN disruptions through toxicant-mediated oxidative 
adduction, free radical damage, and non-radical modifications.
Briefly, toxicants can impact the PN via direct mechanisms, like redox cycling and direct 

oxidation of critical proteins involved in proteasomal degradation, autophagy, and heat 

shock protein chaperones. Additionally, the PN can be negatively impacted by toxicant 

exposure via toxicant-mediated mitochondrial dysfunction, which can impair ATP 

production and exacerbate ROS production.
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Table 1.

Neurodegenerative diseases and genes associated with proteostasis collapse.

Table 1

Disease Protein aggregate Responsible protein Disease genes References

Alzheimer’s disease Aβ Plaques Aβ peptide APP 91,187–189

Alzheimer’s diseasetauopathies Neurofibrillary tangles Tau MAPT 190

Parkinson’s disease Lewy bodies α-synuclein SNCA 132,191

Huntington’s disease Polyglutamine inclusion bodies Huntingtin HTT 90,192,193

ALS Superoxide dismutase 1 aggregate Superoxide dismutase 1 SOD1 194,195

ALS Stress granules TDP-43/FUS TARDBP/FUS 196

Creutzfeld-Jacob disease-Prion diseases Prion aggregates PrPSC PRNP 197,198
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Table 2.

Toxicants known to disrupt cellular proteostasis and mechanisms impacted.

Table 2

Toxicant Mechanism References

ER Stress

Acetaminophen ATF6, CHOP, Caspase-12 199–202

HIV drugs (i.e. Efavirenz, Lopinavir) CHOP, GRP78, eIF2α, XBP1S, ATF4 203–206

Type II diabetes drugs (i.e. troglitazone, 
ciglitazone) ERK, PPARγ, eIF2α, MAPK 207,208

Ethanol ATF4, CHOP, GRP78 209–212

Environmental Toxicants (acrolein) eIF2α, ATF3/4, CHOP 167

Chemical Toxicants (iodoacetamide, 
TBHP, menadione) Caspase-12, GRP94, GRP78 213,214

Metals (Cd, Cu, Fe, Zn, As, Mn) CHOP, GADD34, ATF4 160,215

Pesticides (i.e. deltamethrin, PQ, MB) CHOP, Caspase-12, GRP78 162,216–219

Protein Misfolding and 
Chaperones

Pesticides (Rotenone, PQ, MB, 
Chlorpyrifos) BiP, PDI, CHOP, ATF4, HSPs 84,168–170,174,175,220

Metals (Cd) HSPs, Metalloproteins 156,171

Proteasome Inhibition

PD Related Pesticides (Rotenone, PQ, 
MB)

Mitochondrial Dysfunction, 20S 
inhibition

85,174,181,221

Metals (Cu, Pb) Selenium inactivation, 20S inhibition 179,180,222–224

Pesticides (i.e. TPT) Direct Inhibition of Proteasome 225

Autophagy

Pesticides (Rotenone, PQ, MB, 
Chlorpyrifos)

acetylated α-tubulin, Atg7/12, MAPK, 
Parkin 174,184,186

Metals (Cd, Mn, Cu, Pb) mTOR/p70S6K, ERK, GSK-3β 157,182,183,226,227

Rapamycin, 3-MA, Chloroquine mTOR, PI3K, Ca++, Lysosome pH 228–230

ROS Generation

PD Related Pesticides (Rotenone, PQ, 
MB)

Mitochondrial Dysfunction, Redox
Signaling 151,231

Formaldehyde SOD1 232

Metals (Cd, Hg, As) Trx, GSH, NOX, Fenton Reaction, 
Mitochondrial Dysfunction

135,136,145,156,233–237
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