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Summary

A complete chart of cis-regulatory elements and their dynamic activity is necessary to understand 

the transcriptional basis of differentiation and function of an organ system. We generated matched 

epigenome and transcriptome measurements in 86 primary cell-types that span the mouse immune 

system and its differentiation cascades. This breadth of data enables variance components analysis 

which suggests that genes fall into two distinct classes, controlled by either enhancer- or promoter-

driven logic, and multiple regression that connects genes to the enhancers that regulate them. 

Relating transcription factor (TF) expression to the genome-wide accessibility of their binding 

motifs classifies them as predominantly openers or closers of local chromatin accessibility, 

pinpointing specific cis-regulatory elements where binding of given TFs is likely functionally 

relevant, validated by ChIP-seq. Overall, this cis-regulatory atlas provides a trove of information 

on transcriptional regulation through immune differentiation, and a foundational scaffold to define 

key regulatory events throughout the immunological genome.

Graphical Abstract

In Brief

A cis-regulatory map of the mouse immune system illuminates gene expression patterns and 

regulatory logic across 86 primary cell types and pairs immune transcription factors with cell type-

specific regulatory elements.
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INTRODUCTION

The establishment and maintenance of a cell’s transcriptional identity is largely driven by 

the specific activity of cis-regulatory elements: promoters at which initiation complexes are 

assembled around RNA Polymerase II (Pol-II), or distal enhancer elements that facilitate 

Pol-II loading and/or release from poised configuration. The time- and location-specific 

expression of a gene in differentiated states results from the combined activity of the several 

enhancers that control it, each of which may have a different regulatory logic, driven by the 

combinatorial activity of transcription factors (TFs) and chromatin remodelers. How 

enhancer activity is coordinated and integrated to define related, but functionally distinct, 

cell-types remains elusive, leaving two main questions: How do cis-regulatory landscapes 

vary between lineage-related cell-types to promote cellular identity? How do changes in the 

activity of cis-regulatory elements program the differentiation cascade of cell lineages? The 

mouse immune system represents an excellent setting to interrogate the interplay between 

epigenome and transcription: major cell states are well characterized, discrete cell 

populations can be readily purified, and the differentiation from common progenitors is well 

established, through pathways that can be parsed up to ten successive steps (Hardy and 

Hayakawa, 2001; Rothenberg, 2014), such that it is possible to address these questions and 

interrogate transitional stages at high granularity.

Previous large-scale efforts have profiled epigenomic differences across differentiation to 

reveal a highly diverse landscape of cis-regulatory element activity, point to master 

transcriptional regulators and key cis-regulatory elements (ENCODE Consortium, 2012; 

Roadmap Epigenomics, 2015). However, these have primarily involved cell lines in culture, 

or whole organs which mask regulatory heterogeneity. Few large scale programs have 

systematically paired epigenomic maps with gene expression measurements from primary 

cells, restricting the ability to infer the impact of epigenomic changes to functional 

consequences in gene expression. Other studies have focused on well-defined groups of cells 

ex vivo (Lavin et al., 2014; Yu et al., 2017), or run broader surveys of hematopoietic 

differentiation (Lara-Astiaso et al., 2014) but a cis-regulatory analysis that is both wide-

ranging and fine-grained has not been carried out.

Here, we use low input epigenomic and transcriptomic profiling to generate matched 

measurements in 86 unique immune cell populations that span the entire immune system of 

the mouse, from granulocytes to terminally differentiated plasma cells. This atlas of open 

chromatin regions (OCR) is both comprehensive, defining the cis-regulatory space in the 

quasi-entirety of immunocytes, and highly granular by scanning closely related cell-types. 

This breadth and unique coherence of these data allows us to infer the activity of cis-

regulatory elements and assign to many TFs specific locations in shaping the unique 

transcriptome of each cell-type, and reveal generally applicable insights on the relative roles 

of promoters and enhancers in differentiated gene expression.

RESULTS

We generated matched ATAC-seq and RNA-seq data for 86 immune cell populations, 

representing lymphoid and myeloid hematopoietic lineages, along with key stromal cell 
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populations (Fig. 1A, Table S1). Lymphocytes included very granular differentiation 

cascades along the T and B lineages; myeloid cells included neutrophil (GN), macrophage 

(MF), monocyte (Mo) and dendritic cell (DC) populations stemming from either embryonic 

yolk sac or adult bone marrow precursors and sampled from different tissues (Guilliams et 

al., 2014). These cells were purified across 11 ImmGen participating laboratories, in 

biological duplicates (Table S1).

The sorted cells were jointly processed for expression profiling by low-input RNA-seq, and 

for chromatin accessibility analysis by fast-ATAC-seq (Corces et al., 2016), a simplified 

version of the original protocol (Buenrostro et al., 2013) which increases the proportion of 

reads within OCRs and allows lower cell inputs (10,000 cells), important here given the 

rarity of many immune cell-types (transitional stem/progenitor cell stages or innate-like 

lymphocytes (ILCs) could be analyzed). Rigorous quality control steps ensured data 

homogeneity (thresholds on mapped paired ends, on the enrichment of reads mapping to 

transcription start sites, and on depth-adjusted inter-replicate correlation). We obtained high 

quality ATAC-seq profiles for 86 cell-types (Table S1; only mast cells failed, likely from 

interference by heparin). To determine the full atlas of open chromatin across the immune 

system, we first called OCRs in individual datasets with usual thresholds (MACS FDR 

0.01), supplemented by additional OCRs identified by merging reads from related cell-types. 

We thus identified 512,595 OCRs (FDR 0.01), whose activity index was normalized across 

cell-types by quantile normalization (Table S2). We then parsed 14,292 OCRs connected to 

transcriptional startsites (TSS, RefSeq) vs 498,303 mapping to more distal locations 

(hereafter “distal enhancers” (DE), acknowledging that not all are necessarily true enhancers 

in the functional sense).

The results, a virtually complete perspective on accessible chromatin across immune 

lineages, present a fascinating portrait of enhancer and promoter activity (Fig. 1, ImmGen 

Chromatin databrowser). Several match known immunogenomics, but others were novel and 

unexpected. For example, many of the OCRs detected in the Cd8 locus correspond to (and 

help position) the enhancer elements mapped in classic studies of T cell differentiation 

(Issuree et al., 2017): some OCRs are active prior to transcription (E-8II), others only in 

mature CD8+ T cells (E8-VI) (Fig. 1B). We also identified previously unknown elements: 

Cd8 expression in DCs coincides with a novel OCR specific to CD8+ classic DCs (cDCs) 

and another solely active in plasmacytoid DCs (pDCs) (Fig. 1B). The difference in 

regulatory strategies among DCs was also visible in many other loci, e.g. the defining Itgax 
locus (encodes CD11c; Fig. S2). Another example was the activity of the Spi1 enhancer 

(encodes PU.1), which extinguished as expected at the DN2a-DN2b transition, coincident 

with commitment to T cell fate (Yui and Rothenberg, 2014)

To visualize the genome-wide diversity of OCR activity across immune cell-types, we used a 

tSNE algorithm to project every OCR into a 2-dimensional space, revealing distinct 

substructures in the data and its variability (Gini index, Fig. 1C). OCRs particularly active in 

a lineage naturally tended to cluster, as shown for progenitors and DCs. Interestingly, many 

of the OCRs mapping to TSS regions clustered together in an eccentric region of low 

variability, suggesting a degree of conformity within promoters as a group (many others did 

scatter throughout, though, denoting some cell-type specificity). As detailed below, we 
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mapped the TF binding motifs associated with each OCR. OCRs associated with the 

structural factor CTCF, an essential anchor of chromatin loops, mapped homogeneously to a 

central region of limited variability. This pattern is consistent with the notion that 

topological domains and loops are conserved between cell lineages, even if their 

transcriptional activity differs (Dixon et al., 2016; Hnisz et al., 2016).

Expression variance explained by chromatin accessibility

Our extensive data provide an opportunity to determine, on a large scale, the relationship 

between chromatin accessibility and gene expression. In keeping with previous reports 

(Corces et al., 2016), cell/cell correlation matrices computed from chromatin accessibility at 

DE OCRs yielded sharper distinctions between differentiated cell-types than those drawn 

from expression profiles (Fig. 2A). Furthermore, DE OCRs showed more discrimination 

between cell-types than TSS OCRs, consistent with the isolation and limited variance of 

TSS OCRs on the tSNE plots (Fig. 1C).

Packaging and accessibility of DNA in chromatin are the first level of control on gene 

expression in differentiated cells, setting patterns that are secondarily modified by splicing 

or differential mRNA stability. We sought to determine how much differences in chromatin 

accessibility can explain differences in expression of individual genes. Variance component 

models, such as those used in genome-wide association and eQTL studies (Chen et al., 2016; 

Ye et al., 2014), can identify quantitative variables associated with relatedness between 

observations by explicitly modeling sample covariance as random effects. Here, we applied 

an analogous concept using variance component models to quantify the proportion of 

variation in gene expression that could be attributed to covariance in chromatin accessibility. 

For each of the 15,600 expressed genes, we fit a set of variance components models, 

including both TSS OCR covariance and DE OCR covariance in the model, to attribute the 

expression levels variance of each gene to either promoter or enhancer covariance patterns. 

For clarification, these relationships are not between a gene and the accessibility of its own 

promoter or enhancers, but to the overall status of all enhancers or promoters. For most the 

genes, more than 90% of the expression variation could be explained, confirming that gene 

expression generally follows chromatin accessibility (Fig. S3A, Table S3A). These results 

were robust with respect to the number of OCRs used in computing covariance matrices, as 

assessed by iterative downsampling of the OCR sets (Fig. S3B). Strikingly, this analysis 

revealed two distinct groups of genes (Fig 2B): one for whom >99.0% of the expression 

variance could be best explained by TSS OCR covariance (943 genes, including Cdca3, 
Hprt); and a larger group (4,409 genes, including known lineage specifying genes like Pax5 
or Foxp3) best explained by DE OCR covariance (DE OCRs mapping to gene bodies or to 

extragenic regions behaved identically). This observation suggests a dichotomy between sets 

of active genes, whose expression follows an “enhancer logic” or a “promoter logic”. These 

sets differed significantly in their range and variability of expression (higher and less 

variable for the TSS-logic set) but not in GC content (Fig. S3C), with a surfeit of 

housekeeping and cell cycle-related genes in the TSS-logic group (Table S3B–D).

This dichotomy suggested fundamentally different modes of transcriptional regulation, and 

we hypothesized that these groups may coopt different sets of TFs. We compared the 
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enrichment of TF-binding motifs in the −1kb>TSS region of the two gene sets (a span which 

would encompass the promoter and some proximal enhancers). Members of the ETS/ELK 

family were more associated with TSS-logic genes, while members of the KLF family were 

over-represented in the promoters of genes of the DE-logic group (Fig. 2C, Table S3E). 

Altogether, these results suggest that gene expression in differentiated mouse immunocytes 

is cued by global patterns of chromatin covariation, but follow two different modes.

Cis regulation of gene expression: linking enhancers to genes

One of the recurring difficulties in mapping enhancer elements is in establishing the link 

between a regulatory element and the gene(s) it regulates. Although enhancers often map 

inside or within a few kb of genes they regulate, and “closest gene” is often taken as a rough 

proxy to hypothesize an enhancer’s target, there are documented instances of enhancers 

mapping megabases away from their target gene (Bahr et al., 2018). We hypothesized that 

correlation across cell-types between the accessibility of an enhancer and the expression of a 

given gene denotes a functional connection, a determination facilitated by the unique breadth 

and granularity of the present data. For illustration, such a correlation could be detected 

between the expression of Samd3 and accessibility of an OCR located 1,320 bp upstream of 

its TSS (Fig. 3A). This correlation extended genome-wide (Fig. 3B, Table S3F). By globally 

assessing accessibility/expression correlation we identified at least one significantly 

associated cis OCR within a 1Mb window from the TSS for 7,444 of the 15,601 expressed 

genes (Bonferroni p<0.05). Predictably, the remaining genes that were not associated with a 

cis OCR were enriched in the set of TSS logic genes identified above (p<10−20). These 

correlated OCRs preferentially mapped in the close vicinity of the correlated gene (50% of 

best correlated OCRs are within 13Kb of the gene’s TSS), in essence vindicating the usual 

approach, with an exponentially decaying relationship between distance and correlation (Fig. 

3C). Given this observation, to reduce the number of spurious associations, we restricted our 

further analysis to 334,879 OCRs that fall within 100 Kb of some TSS. In many instances, 

each gene was associated with several significantly correlated cis OCRs (Fig. 3D), including 

some highly complex regions with multiple associations such as the Il7r locus, correlated to 

21 nearby OCRs (Fig. 3E). For these genes with multiple correlated OCRs, the OCRs tended 

to be correlated to each other (64% of the OCRs correlated with one gene were themselves 

correlated (at Bonferroni p<0.05)). These multiple OCRs likely represent repeated regions 

that operate with the same regulatory controls.

In other instances, genes were surrounded by OCRs with clearly different patterns of 

activity. An anecdotal but striking example was noted upstream of Rag1-Rag2, where two 

distinct OCRs are activated in tight connection with the appearance of Rag transcripts in 

either B or T cells (Fig. 3F), suggesting that T and B lineages have different solutions to 

tightly control B or T expression. We thus sought to broadly identify sets of independent 
OCRs for each target gene, using the ability of stepwise regression to identify independent 

explanatory variables. For a substantial number of genes (n=493), two or more independent 

signals were identified in the 100 Kb regions (Fig. S2D, Table S3G). These “secondary” 

OCRs may contain cell-specific regulatory elements to fine tune expression in different 

lineages. For example in the Tyrobp locus (encodes DAP12), the regression identified a 

second OCR associated with expression in the B cell lineage, and a third active in NK cells 
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(Fig. 3G). Around Cd28, an OCR whose range of activity includes plasma cells [likely 

related to CD28 function there (Delogu et al., 2006)] is complemented by another OCR 

uniquely active in T cells (Fig. 3H).

Timing of OCR activation during lymphocyte differentiation

We then investigated more closely the changes in OCR activity that accompany T and B 

lymphocyte differentiation, attempting to track changes in regulatory elements that underlie 

these multistep cascades. At the two main cell-specific loci in the T lineage, Cd4 and Cd8, 

classic analyses have mapped a number of functionally important enhancer elements 

(Issuree et al., 2017). As noted above, several of the OCRs at the Cd8 locus showed activity 

in the differentiation series prior to the appearance of Cd8a transcripts (i.e. E8-I and E8-II in 

DN3 and DN4). OCRs were also found at several known enhancer elements of Cd4, with the 

expected timing of activation [e.g. E4T, E4p and E4D (Issuree et al., 2017); Fig. S4A]. The 

S4 silencer was accessible in mature CD8+ T cells, indicating that silencing here is likely an 

ongoing process. Several hitherto unrecognized elements were also observed (red labels in 

Fig. S4A), whose function begs to be elucidated: an OCR very close to the S4 silencer and 

specifically active in CD4+ cells, several OCRs active in cDC or pDCs.

To consider more generally how OCR opening relates to changing gene expression, we 

selected a broad set of transcripts that are stably induced or extinguished during T 

differentiation, most at the point of T cell fate commitment (DN2a/DN2b, (Yui and 

Rothenberg, 2014), or at CD4+CD8+ “double-positives” (DPs) (Fig. 4A). Aggregating DE 

OCR accessibility in a 10 kb window around the TSS (but excluding TSS OCRs, and 

constitutively accessible DE OCRs) showed that this aggregate accessibility largely tracked 

with gene expression (Fig. 4B); in contrast, there was little relation with accessibility at 

these genes’ TSS (not shown). Thus, the T cell differentiation cascade also seems to follow 

an enhancer-driven logic, rather than a TSS-driven one. Bolstering the significance of these 

correlated OCRs was that they showed significant enrichment in binding motifs for TFs 

known to be involved in controlling T differentiation (Fig. S4B), such as Tcf12(HEB), Lef1, 

Tcf7(TCF-1), Tcf3(E2A), and Zbtb7b (ThPOK).

We then investigated the dynamics of OCR activation, asking whether the early enhancer 

activation relative to transcription observed with several Cd8 enhancers is a general rule. We 

compared the differentiation stage at which a given gene’s mRNA level, or the accessibility 

at its most correlated OCR, reach 50% of their maxima (and conversely drop to 50% or their 

initial max for repressed loci). Strongly skewed patterns were observed, wherein OCRs 

mainly became open before the onset of transcription (Fig. 4C). Genes whose expression 

increased sharply at the DP stage already had active enhancers after the DN2a>DN2b 

transition, while activation of expression at the time of positive selection to T4 single-

positives was foretold by activation of their enhancers in late DN stages. Thus, consistent 

with prior observations in early B and myeloid differentiation (Mercer et al., 2011), turning 

on enhancers precedes the actual activation of the loci, at several steps in T cell 

differentiation.
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Trans regulation: TF effects on chromatin accessibility

Paired epigenomic and transcriptomic data across a large set of cell-types provides a 

powerful opportunity to relate epigenomic variation to the activity of specific TFs, by 

correlating the activity of an OCR to the TF binding sites (TFBS) it contains. To identify 

cell- and lineage-specific TFs that may influence chromatin accessibility, we first mapped 

TFBS present in each of the 334,879 robust OCRs (curated TFBS list from CisBP, per Schep 

et al., 2017; Table S4 for TF motifs associated to each OCR at p<0.1). We compared the 

aggregate accessibility in each cell-type of all OCRs containing a given motif, relative to a 

background set of OCRs matched in %GC and average accessibility, (Schep et al., 2017). 

This deviation analysis, which yields a “TFBS accessibility score” for each TF motif in each 

cell, identified 76 TF motifs significantly associated with chromatin accessibility differences 

(Fig. 5A).

TFs of the same family tend to bind the same or similar motifs (e.g. Gata family members all 

bind the canonical Gata motif). To disambiguate the relationship between the accessibility of 

a motif and the actual TFs that binds it, we compared the TFBS accessibility score to the 

expression of the corresponding TFs. For some like Pax5, the key regulator of B cell 

differentiation, there was a simple correlation between expression of the TF and the 

accessibility of its motif (Fig. 5B). For Tbx21 (encodes T-Bet, Fig. 5C) the relationship was 

less linear, the motif only becoming accessible at the highest expression levels, possibly 

denoting dose-dependence, cofactor requirement, or competitive displacement effects. This 

analysis also identified several repressive relationships: Pbx1, a negative regulator of stem 

cell differentiation (Ficara et al., 2008), and Zbtb7b, the classic repressor of the CD8-lineage 

transcriptome in CD4+ T cells (Wang et al., 2008) both showed decreased accessibility of 

their motif at higher TF expression (Fig. 5D, E). In other cases, by calculating the similarity 

of the TF motifs used, we defined pairs of TFs that cooperate to modulate the accessibility 

of target enhancers. For instance, the hematopoietic regulator Bcl11a correlated positively 

with accessibility of the Bcl11a motif, but Bcl11b, which shuts down the B or myeloid 

differentiation potential in early thymic progenitors, negatively correlated with accessibility 

(Fig. 5F).

Such correlations between accessibility and expression were generalized to all TFs with 

associated TFBS accessibility scores (Fig. 5G), identifying 61 activators and 18 repressors 

(Table S5) confirmed by .permutation analysis (Fig. S5A). The expression of these 

chromatin accessibility regulators (Fig. 5H) paints a uniquely rich portrait of immune cell 

differentiation, with regulators which appear to act individually (EOMES, Pax5) and are 

uniquely correlated to activity of OCRs that contain their motifs, and regulators that operate 

interchangeably to regulate a common motif such as RUNX1/2/3, which all promote 

accessibility of the Runx motif. Some TFs are expected to be refractory to such an analysis 

and showed no such correlation: FoxP3 because of its binding to previously open elements 

(Samstein et al., 2012), Nfatc1 because its regulation is based in intracellular localization 

rather than abundance, Stat1 because the present dataset may poorly capture its rapid 

induction. With this reservation, this integrated approach enabled us to define some of the 

key TFs which positively or negatively shape chromatin accessibility in immune cells.
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Transcriptional regulation in myeloid cells

Having broadly characterized the trans regulatory relationships between TFs and OCRs, we 

looked more specifically at OCR activity patterns in the myeloid compartment. Previous 

studies profiled the epigenomic state of tissue resident macrophages and other myeloid cells 

(Bornstein et al., 2014; Lavin et al., 2014), but the breadth of the present data provided 

additional perspective. Clustering of myeloid cells based on OCR activity grouped them 

largely according to lineage and tissue residency (Fig. 6A, Table S6). There was differential 

OCR activity between resident macrophages of different tissues, consistent with prior 

reports (Lavin et al., 2014). GN and pDCs were more distant from other myeloid lineages, 

somewhat unexpectedly for pDCs, as they are closely related with cDCs (Reizis et al., 

2011). Indeed, pDCs had a high number of distinct OCRs from cDCs and other myeloid 

cells, and pDCs were more similar to T cells for Cd8 OCRs (Fig. 1B), supporting the 

proposition that pDCs arise from a spectrum of progenitors with myeloid and lymphoid 

potential (Reizis et al., 2011).

A major question in myeloid biology is what factors drive the programs of closely related 

but functionally distinct cells. We used the TFBS resource described above to identify motifs 

enriched in OCRs uniquely active in certain cell types (Fig. 6B). Several enriched motifs 

corresponded to TFs with established roles. For example, the binding motif for Tcf4 

(encodes E2–2) was amongst the most enriched in pDCs, and E2–2 has an essential role in 

pDC biology (Cisse et al., 2008). Enrichment of critical tissue macrophage regulators was 

apparent: Gata6 in peritoneal cavity (PC) macrophages (Rosas et al., 2014), Mef2c in 

microglia (Deczkowska et al., 2017; Lavin et al., 2014). These served as useful validation, 

we also noted a number of novel associations that may warrant further investigation: Bach1 

in PC macrophages, Egr2 in alveolar macrophages, and Zeb1 in Neutrophils. The motif for 

Ehf, a gene with expression restricted mostly to cDCs and epithelial cells (Fig S6A), was 

enriched in cDC specific OCRs. This gene has roles in the regulation of inflammation and 

antigen transport in epithelial cells (Asai and Morrison, 2013; Fossum et al., 2017), and may 

have a similar function in cDCs.

CD4+ and CD8+ cDCs are developmentally and functionally related, yet have subtle but 

important differences in antigen presentation and in their transcriptomes (Miller et al., 

2012). We identified several thousand differential OCRs between them, with dissimilar 

enrichments in some TF motifs (Fig. 6C). The differentiation of CD8+ cDCs is dependent on 

Irf8 and Batf3 (Hildner et al., 2008; Tamura et al., 2005) and those motifs were 

correspondingly enriched in CD8+ DC OCRs. In contrast, CEBP family motifs were 

enriched in OCRs specific to CD4+ cDCs. Motifs enriched in CD103+CD11b− intestinal 

DCs, which are also Irf8-dependent (Ginhoux et al., 2009), were similar to those of CD8+ 

DCs (Fig S6B), including strong enrichments of transducers of type I IFN signaling Stat2 

and Irf9. The differential accessibility at steady-state of OCRs predicted to bind Stat2 and 

Irf9, suggests that Irf8-dependent cDCs may be specifically poised to respond to IFN-I. This 

type of signaling is specifically required by CD8+ and CD103+ DCs to promote cross 

presentation and an increased anti-viral state (Diamond et al., 2011; Helft et al., 2012).
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TFs that control OCR dynamics during lymphocyte differentiation

We applied the same powerful logic as for Fig. 5 of correlating the presence of a TF motif, 

the activity of the OCR, and the expression of the corresponding TF, to discover relevant 

sites of action for particular TFs in T and B lymphocyte differentiation. In Fig. 7A, we plot 

the activity of OCRs with the best score for the RORγ-binding. Clustering these OCRs 

based on ATAC-seq intensity identified 6 patterns of OCR accessibility. Among those, one 

cluster (cl3) exhibited a clear relationship to the expression of Rorc gene in thymic DPs (Fig. 

7A, Table S7A; p<10–4), and these OCRs coincided precisely with demonstrable RORγ 
binding from ChIP-seq data (Guo et al., 2016) (Fig. 7A, right). Another cluster (cl4) seemed 

to respond to RORγ in colonic T regulatory (Treg) cells; some of the specific OCRs fall in 

close proximity with genes that are differentially expressed in RORγ+ Tregs, such as Il23r 
(Table S7A). That different RORγ-binding OCRs are active in DP thymocytes and colonic 

RORγ+ Tregs is consistent with the notion that RORγ controls different transcriptional 

targets in a context-dependent manner (Sefik et al., 2015). The OCR clusters whose activity 

does not correlate with RORγ expression may correspond to false-positives from motif 

prediction, or to TFs that share the same binding motif. To validate the prediction that cl3 

represents OCRs whose accessibility depends on RORγ, we performed ATAC-seq in DPs 

from Rorc-deficient mice (Rorcgfp/gfp). Strikingly, almost all OCRs from the DP-specific cl3 

disappeared in RORγ–deficient DPs (Fig. 7B), while those of the uncorrelated cl6 were 

unaffected. Thus, RORγ seems to operate as a pioneer factor.

ThPOK (Zbtb7b) and Runx3 are key TFs for the branched differentiation of CD4+ and 

CD8+ T cells (Ellmeier and Taniuchi, 2014; Xiong and Bosselut, 2012). For Runx3, which 

is under dominant translation control, our approach would not be informative, but for 

ThPOK the correlative approach proved highly suggestive: accessibility of many of the 

OCRs that contain its cognate motif was curtailed in T cells in which ThPOK was present 

(Fig. 7C and Table S7B), especially those in cl2. This negative correlation (see also Fig. 5G) 

is consistent with the dominant suppressive function of ThPOK, suggesting that it shuts 

down the CD8+ T lineage program not only by inhibiting Runx3 expression but also by 

directly inhibiting a swath of enhancer elements.

Together with EBF1, Pax5 is the major TF defining B lymphocyte identity, essential for both 

early development and to maintain the function of mature B cells (Horcher et al., 2001; 

Medvedovic et al., 2011). It is expressed throughout B cell differentiation before being 

silenced in plasma cells (Shi et al., 2015). Pax5’s aggregated OCR scores directly correlate 

with its expression (Fig. 5B, validated by prior ChIP-seq data (Revilla-I-Domingo et al., 

2012)), but a clustered analysis of OCRs that contain its binding motif revealed a striking 

dynamic variation: OCRs in cl2 and cl3 became active at the proB.FrBC stage, only 

transiently for cl2, more stably for cl3. OCRs of cl5 only became active later, in germinal 

center stages after immune activation, before being extinguished in plasma cells concomitant 

with the loss of expression (Fig. 7D, Table S7C). These different behaviors of Pax5-binding 

OCRs are consistent with its context-specific activity (Revilla-I-Domingo et al., 2012).

FoxP3 is the key controller of Treg development and function (Ramsdell and Ziegler, 2014). 

It is not considered as a pioneer factor, but binds and modifies active enhancer elements 

(Samstein et al., 2012). With the unique landscape available here, we revisited the status of 
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FoxP3 binding sites across immunocyte differentiation. Among 2,000 high-confidence 

FoxP3-binding sites (Kitagawa et al., 2017; Kwon et al., 2017; Samstein et al., 2012) we 

identified 1,080 DE OCRs that were accessible in Tregs (Table S7D,E). Consistent with 

prior conclusions (Samstein et al., 2012), many of these DE OCRs (80%) were constitutively 

accessible, from stem cells onwards, and even in B or myeloid cells (Fig. 7E); all FoxP3-

binding OCRs that mapped to TSSs behaved similarly (Fig. S7A). Another set of FoxP3-

binding OCRs behaved more dynamically, only becoming active after the DP stage, 

suggesting control by thymic positive selection events. A small but distinct minority of these 

FoxP3-binding OCRs were Treg-specific (Fig. 7E, right), suggesting that FoxP3 opens these 

regions, alone or with other Treg determining cofactors. Interestingly, the constitutive and 

dynamic OCR sets were markedly distinguished by their associated histone marks [Fig. 7E, 

bottom; data from (Kitagawa et al., 2017)]. All were H3K27Ac-positive enhancer elements, 

but the active enhancer mark H3K4Me1 was much more prevalent among dynamic than 

constitutive OCRs (Fig 7E, bottom, Fig S7b). In addition, Nfkb(1/2)-binding motifs were 

specifically enriched in dynamic FoxP3 OCRs (Fig 7F), consistent with the role of NF-kB 

family members in Treg differentiation (Oh et al., 2017). Ets and Lef1 binding sites were 

enriched in both classes on OCRs, while Forkhead or Runx motifs were preferentially 

present in constitutive FoxP3-binding OCRs. Thus, these analyses reveal the existence of 

two classes of FoxP3-binding enhancer elements. One is constitutively open in many 

immunocytes, while the other is activated with final Treg differentiation, and seems to 

electively involve the NF-kB family of TFs. These examples highlight the power of these 

data to map OCRs that truly respond to a given TF and identify relevant binding sites (see 

immgen.org for a larger set of 300 TFs).

DISCUSSION

We profiled chromatin accessibility and gene expression in 90 cell types to generate a cis-

regulatory atlas that encompasses the entire span of lineages that compose the mouse 

immune system. The paired chromatin/transcriptome approach, the focus on immunocytes, 

and the unprecedented granularity of the data enabled us to move beyond an epigenomic 

roadmap, providing a platform to infer causal regulatory interactions. Besides providing a 

deep resource of great value to understand immunological differentiation and function, the 

data bring insights of broad relevance on the role and positions of enhancer elements, reveal 

a deep dichotomy within mammalian gene regulation, and illuminate the relation between 

transcription factor activity and chromatin configuration.

Establishing this “complete” landscape of 512,595 cis-regulatory elements was enabled by 

sampling a large repertoire of closely related cell types, borderline significance of an ATAC 

peak in one cell-type being bolstered by related cells. This fine mapping of cell state 

transitions enabled the analysis of regulatory interactions, which would not be possible with 

epigenomic data obtained from whole tissues, or from a partial sampling of specific cell-

types. We anticipate that future efforts with even finer parsing of some lineages, as well as 

single-cell approaches, may lead to an even more precise atlas. In the discussion and 

interpretation of the present data we have assumed that OCRs distant from known TSS are 

likely to be enhancer elements. While some OCRs may correspond to other structures (e.g. 

TSS of unrecognized transcriptional units, or non-enhancer structural elements), the 
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“rediscovery” of known enhancers in the vicinity of the Cd4 and Cd8 loci support the 

validity of this assumption.

We connected a number of OCRs to the expression of a nearby gene, based on the plausible 

assumption that such a correlation between accessibility of a cis-regulatory element and 

expression of a gene signifies a functional relationship. It has long been a conundrum to 

formally associate a cis-regulatory element with the gene(s) it might regulate. The “closest 

gene” is usually the default call, even though it is known that some enhancers can be 

effective from very long distances. The results of Fig. 3C give some support to this general 

notion, by showing that genes are mostly associated with enhancers within 20kb or less of 

their TSS. Indeed, the “closest gene” assignment is likely correct 90.2 % of the time (from 

Table S3F). Widespread redundancy was another aspect of enhancer activity revealed by this 

analysis, as most genes with an enhancer correlated to their expression actually had several 

correlated enhancers (Fig. 3E), themselves inter-connected. That enhancers are often 

repeated has been recognized from their first description (Banerji et al., 1981; Benoist and 

Chambon, 1981), and a recent study showed that 64% of D. melanogaster loci have 

redundant “shadow” enhancers (Cannavò et al., 2016). Redundancy may provide functional 

buffering and evolutionary flexibility and robustness (Hong et al., 2008; Osterwalder et al., 

2018), or allow fine-tuning of a gene’s transcription in slightly different stages or states, or 

be mechanistically more efficient, synergistic binding of the same TFs at closely spaced sites 

helping to stabilize an enhanceosome complex. Finally, we observed very few cases of 

silencer elements (defined as accessibility negatively correlated with expression of the target 

gene), suggesting that positive enhancement is the predominant mode of gene regulation in 

mammalian transcription.

We observed a striking partition between one set of genes whose activity seemed cued by the 

overall pattern of activity of all distal enhancers and another that was aligned to activity in 

promoter regions, with enrichment for different TFBS in the promoters of each class. There 

are precedents for such divergence. For instance, the housekeeping Hprt locus contains no 

discernible enhancer (Gasperini et al., 2017), and enhancer catalogs have generally shown 

them to be tissue-specific (Shen et al., 2012). This dichotomy may be related to the 

demonstration in Drosophila of enhancer/promoter specificities that distinguish 

housekeeping and differentiation-linked regulatory programs (Zabidi et al., 2015). More 

generally, it relates to the long-lasting debate on the differences between promoters and 

enhancers. Promoters are classically defined as sites that focus transcription initiation by 

recruiting Pol-II and basal transcription factors, while enhancers supercharge the promoters 

they target to increase the rate of transcription. But whether they truly represent different 

entities has been nuanced or challenged (Kim and Shiekhattar, 2015). The present results 

suggest that they do play fundamentally different roles in orchestrating transcription. .

Beyond establishing the rich landscape of cis-regulatory regions, the three-way correlation 

between activity of an OCR, the TF motifs it contains, and the expression of the TFs allows 

for accurate and pointwise predictions of how TFs orchestrate immunocyte differentiation 

and function. We note that this approach is blind to some classes of TFs: opportunistic TFs 

that exploit already accessible chromatin regions (e.g. FoxP3), those whose regulation is 

post-transcriptional, those controlled by modification or localization (STATs, NF-AT). Our 
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analyses accurately predicted TFs whose activity is associated with specific lineages and 

stages (Fig. 5), and which specific OCRs (and genes) are actually activated by these TFs 

(Fig. 7, S7), this on an unprecedented scale. These include well-known TFs for which 

existing ChIP-seq data provide valuable validation, but also TFs for which no such data were 

available (Gata2, Nfe2 or Eomes). Several of these profiles reveal a strong context 

dependence for TF action, e.g. for RORγ and Pax5, consistent with RORγ’s different 

footprint in Th17 vs colonic Tregs (Sefik et al., 2015), and with Pax5’s variable involvement 

along the B cell lineage (Revilla-I-Domingo et al., 2012), perhaps depend on cell-type 

specific post-translational modifications, co-factors or ligands.

The analysis also reveals that TFs can have either positive or negative consequence on 

accessibility of an OCR. The former is readily conceptualized (docking of the factor 

displacing nucleosomes and/or recruiting additional chromatin modifiers), the latter less so, 

since closing of the element would potentially hinder the TF from binding. Some “hit-and-

run” mechanism that instructs stable repressive histone marks or DNA methylation may be 

at play. It is generally thought that individual TFs can both activate or repress transcription, 

depending on local context. Our analyses (Fig. 5G) suggest that many TFs dominantly play 

either activating or repressive roles (since dual function would result in no correlation 

overall). TFs with negative correlation between expression and motif accessibility includes a 

Who’s Who of known repressors (Pbx1, Bcl11b, Zbtb7b). A majority of TFs, however, had 

positive effects on accessibility, prompting the speculation that opening of chromatin is the 

dominant mode of control for the unfolding of gene expression through immune cell 

differentiation. This coonclusion is consistent with observations that target activation by 

Pax5 and PU.1 correlated positively with DNA binding (Champhekar et al., 2015; Revilla-I-

Domingo et al., 2012). Mechanistically, PU.1 has recently been shown to indirectly repress 

genes in T cell progenitors via TF theft; recruiting partner TFs to its own directly activated 

genes and thus depleting them from their own targets (Hosokawa et al., 2018).

In conclusion, this resource provides an atlas of cis-regulatory elements that will be 

leveraged by the community to guide focused experiments to understand the regulation of a 

particular locus through immune function or disease. This cis-regulatory atlas may serve as 

an initial scaffold on which to systematically build, through complementary “multi-omics” 

strategies, additional knowledge towards a complete understanding of genomic regulation in 

immune cells.

STAR METHODS

Contact for reagent and resource sharing:

Further information and requests for resources and reagents should be directed to the Lead 

Contact, Christophe Benoist (cbdm@hms.harvard.edu).

Experimental model and subject details:

Mice—C57BL/6 mice were obtained from the Jackson Laboratory, as were B6.Rorctm2Litt 

(Jax7572), housed under SPF conditions (HMS IACUC protocol 02954). Young adult males 
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or females (as listed in Table S1) were used at 5–6 weeks of age. Rorc-deficient mice were 

generated in (+/− x +/−) crosses, and +/+ or +/− littermates were used as controls.

Method details:

ATAC-seq Data Generation—To ensure consistency in the data, the different immune 

cell populations were sorted and frozen in each participating laboratory, but all processing, 

library construction and sequencing were performed jointly in the ImmGen core lab. As a 

pilot for this multi-site program, all participating labs generated samples of total splenic 

CD19+ B cells, a readily sorted cell population (which led to some refinement of the 

procedure and provided a baseline of inter-replicate variance).

Mice were sacrificed and immunocytes were isolated to high purity by flow cytometry 

according to ImmGen SOP using the antibodies and gates indicated in Table S1, Fig S1A. 

two rounds of sorting were performed to collect 10,000 cells (exceptions for Cd34-LTHSC, 

Cd34+LTHSC and STHSC populations for which 677, 2483 and 3660 cells were sorted, 

respectively) in 1.5mL DNA lo-bind tubes (#022431021, Eppendorf) containing 100uL of 

BAMBANKER (serum-free cell freezing medium, No.302–14681, Wako). Cells were kept 

on ice at most 30 minutes and immediately stored at −80°C following a slow-freeze 

procedure; (cell freezing container with isopropyl alcohol at a rate of −1°C/minute with 

temperatures decreasing from 4°C to −80°C).

ATAC-seq libraries were prepared as previously reported (Corces et al., 2016) with the 

following modifications. Frozen cells were thawed, washed with 1mL of PBS containing 

protease inhibitors (Complete EDTA-free protease inhibitor cocktail, Roche Diagnostics, 

Basel, Switzerland) and cell pellets were resuspended in 10uL of Tn5 transposase mixture: 

1x Tagment DNA Buffer, 0.5uL Tagment DNA Enzyme (Nextera DNA Library Preparation 

Kit, Illumina) and 0.2mg/ml digitonin (#G9441, Promega) on ice. Cells were incubated at 

37°C for 30 minutes with agitation followed by DNA isolation using the MinElute Reaction 

Cleanup Kit (Qiagen, Hilden, Germany). Construction of ATAC-seq libraries included an 

initial round of PCR in a total volume of 50uL using the NEBNext High-Fidelity 2X PCR 

Master Mix (New England Biolabs, MA, USA) with primers (0.5uM each) from (Buenrostro 

et al., 2015) with the following thermal cycles: 5 minutes at 72°C, 30 seconds at 98 °C, 

followed by 7 cycles [98°C for 10 seconds, 63°C for 30 seconds and 72°C for 60 second s] 

and a final extension at 72°C for 5 minutes. PCR products were purified and size-selected 

using Agencourt AMPure XP beads (Beckman Coulter) (0.65x and 1.8x volume to remove 

long and short fragments respectively) and eluted in 18uL of EB (Qiagen). To avoid over 

amplification of libraries which result in GC bias, 2uL of the eluted DNA were subjected to 

qPCR (StepOnePlus Real-Time PCR System, Life Technologies) in a volume of 20uL using 

SYBR GreenI dye (final 0.6x SYBR GreenI, Life Technologies) and with the respective 

primers (1.25uM each), as performed in the first round of PCR. Following qPCR [30 

seconds at 98°C, followed b y 30 cycles (98°C for 10 seconds, 63°C for 30 seconds and 

72°C for 60 seconds)], amplifica tion curves were analyzed and the optimal number of PCR 

cycles for each sample were estimated with cycle thresholds reaching ¼ of the maximum. 

Upon selecting the cycle threshold, 12.5uL of the eluted DNA were subjected to a second 

round of PCR in a volume of 50uL with NEBNext High-fidelity 2x PCR master mix, 
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respective primers (1.25uM each) and the following thermal cycles: 30 seconds hot-start at 

98°C, followed by 7~13 cycles [98°C for 10 seconds, 63°C for 30 seconds and 72°C for 60 

seconds] and a final extension at 72°C for 5 minute s. The libraries were purified by 

Agencourt AMPure XP beads (x1.8 vol.), quantified by qPCR using Power SYBR Green 

PCR Master mix (ThermoFisher) and universal sequencing primers (P5_FW:

5’AATGATACGGCGACCACCGA and P7_RV:5’CAAGCAGAAGACGGCATACGA, 

0.2uM each) and pooled, which were sequenced as paired-end (38+37bp) on an Illumina 

NextSeq 500 instrument in high-output mode.

ATAC-seq Quantification and Normalization—After trimming adapter sequences and 

low quality reads using sickle1.2 (https://github.com/najoshi/sickle), short reads were 

mapped to mm10 reference genome using bowtie2 with the following options; -X 1000 –fr, 

while non-unique, ChrM mapping (0.1~20%, median=4.1%) and duplicated reads (7~69%, 

median=22%) were filtered out using samtools view -q 30 [samtools 0.1.19] and Picard 

Tools (Picard MarkDuplicates, http://broadinstitute.github.io/picard). The summary of 

ATAC-seq read statistics can be found in Table S1. Paired-end reads spanning less than 120 

bp were used for determining the peak summits in all populations using MACS2 functions 

(--call-summits) (https://github.com/taoliu/MACS). Open chromatin regions (OCR) of a 250 

bp width were centered on all summits selecting the peak summit with the most significant 

q-value, when compared with ATAC-seq signals in 332,233 regions. Formally, 2 to 181 

samples were grouped according to a hierarchical clustering with various cut-offs in order to 

achieve sequencing depth and estimate the peak summits for all populations. A window of 

250 bp was used onset based off centered summits similarly in the first step, which resulted 

in 518,845 ATAC-seq OCRs. As some OCRs can arise as sequencing-based artifacts 

(ENCODE Project Consortium, 2012) and may also share sequence homology with the 

mitochondrial genome, we removed possible artifact OCRs by filtering blacklisted genomic 

regions and chrM homologous regions (a blacklist was downloaded from: https://

sites.google.com/site/anshulkundaje/projects/blacklists).

ChrM homologous regions were identified by mapping short mitochondrial DNA sequences 

to the mouse nuclear chromosomes, consisting of 7,889 genomic regions in total. We report 

512,595 cumulative OCRs (ImmGenATAC1219.peak_1 ~ 512595) across our cis-regulatory 

atlas. For the analysis of TSS (transcriptional start sites) and DE (distal enhancers) 

connected OCRs, we designated these OCRs as TSS connected (i.e., OCRs of which summit 

is within 125bp upstream or downstream of TSS, as all OCRs are 250bp width centered on 

the summit) and all others as DE connected OCRs. 27,921 TSS positions were defined from 

UCSC annotation data on mm10 (http://hgdownload.cse.ucsc.edu/goldenPath/mm10/

database/refFlat.txt.gz, downloaded Jan. 2017). We employed the same reference data to 

assign close-by genes for each OCR as reported in Table S2.

To compute signal intensity in each OCR, reads mapped to the plus strand were shifted by 

+4 bp and reads mapped to the minus strand by −5 bp. Secondly, edges of fragments 

corresponding to paired reads were tested for OCR overlapping using BEDTools2.25.0 

[bedtools intersect (Quinlan and Hall, 2010)]. A fragment edge in an OCR was counted 

unless the other edge of the fragment mapped to the same OCR in order to avoid counting 

non-independent Tn5 insertion events. A pseudo count of 0.1 was added to edge counts in 
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peaks, log2-transformed and normalized by quantile normalization. For calculating the cell 

population mean, the quantile-normalized counts were converted back to linear scale and 

means of replicates were calculated (Table.S2A). Backgrounds were estimated based on the 

ATAC-seq signals of regions through random sampling with p-values for each OCR 

computed using a negative binominal distribution of the background in each sample. Data 

were also adjusted for multiple hypothesis testing using the Benjamini and Hochberg (BH) 

method. All population p-values are supplied in Table S2.

Replicates for each population were merged and paired reads spanning less than 120 bp 

regions were used to compute ATAC-seq pile-up traces for each population using MACS2, 

which were further normalized by quantile normalization across 25bp bins. To visualize the 

data, we used IGV (http://software.broadinstitute.org/software/igv/). The assembled data can 

be analyzed interactively on the USCS platform via the ImmGen Chromatin browser (http://

rstats.immgen.org/Chromatin/chromatin.html).

ATAC-seq QC—Data quality control analyses were performed for each sample and across 

the projects by: (1) counting the number of properly mapped paired ends, setting a threshold 

of 2,470,102 as acceptable across this project (range 2,470,102 to 16,029,540, median 

6,841,995). (2) computing signal enrichments around the TSS relative to genomewide 

average, a metric which identifies datasets with high signal to noise ratios (Corces et al., 

2017) (Table S1); a value > 3.9% was considered acceptable across this project (range 3.9% 

to 31.8%, median 12.5%). (3) Concordance between the two biological replicates. We 

selected, for each cell-type, a subset of OCRs in which the raw edge counts were >= 10 in at 

least one replicate, which was used to compute a Pearson correlation between the two 

replicates. The Pearson coefficient is sensitive to the total number of reads (as evidenced by 

the B cell pilot, Fig. S1B left). The samples retained for the analysis exhibited comparable 

inter replicates correlations to the trend estimated from B cell pilots (green line, Fig. S1B 

right).

RNA-seq—RNA-seq was performed with the standard ImmGen low-input protocol. A total 

of 1,000 cells were sorted directly into 5ul of lysis buffer (TCL Buffer (Qiagen) with 1% 2-

Mercaptoethanol). Smart-seq2 libraries were prepared as previously described (Picelli et al., 

2014) with slight modifications. Briefly, total RNA was captured and purified on RNAClean 

XP beads (Beckman Coulter). Polyadenylated mRNA was then selected using an anchored 

oligo(dT) primer (5′–AAGCAGTGGTATCAACGCAGAGTACT30VN-3′) and converted to 

cDNA via reverse transcription. First strand cDNA was subjected to limited PCR 

amplification followed by Tn5 transposon-based fragmentation using the Nextera XT DNA 

Library Preparation Kit (Illumina). Samples were then PCR amplified for 18 cycles using 

barcoded primers such that each sample carries a specific combination of eight base Illumina 

P5 and P7 barcodes for subsequent pooling and sequencing. Paired-end sequencing was 

performed on an Illumina NextSeq 500 using 2 × 25bp reads.

Low quality reads were trimmed using sickle1.2 and the adapter sequence with TrimGalore 

(version0.4.0,http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Short reads 

were then mapped to mm10 genome using hisat2 [version2.0.4 (https://ccb.jhu.edu/software/

hisat2/manual.shtml)] with --transcriptome-mapping-only --no-discordant options. 

Yoshida et al. Page 16

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://software.broadinstitute.org/software/igv/
http://rstats.immgen.org/Chromatin/chromatin.html
http://rstats.immgen.org/Chromatin/chromatin.html
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://ccb.jhu.edu/software/hisat2/manual.shtml
https://ccb.jhu.edu/software/hisat2/manual.shtml


Unmapped and low quality scoring (MAPQ<5) reads were removed using samtools. 

Moreover, duplicated reads were removed using the Picard MarkDuplicates function. 

Properly paired reads were selected by samtools view -f 0×02 and counted for each gene 

using htseq-count (version0.6.1) with -s no option and a GTF file from UCSC mm10 

refGene downloaded from UCSC table browser (https://genome.ucsc.edu/cgi-bin/hgTables). 

Genes with a minimum read count of 5 in all replicates of a population (17,535 genes) were 

retained. A pseudo count of 1 was added and log2-transformed prior to quantile 

normalization. Quantile-normalized counts were converted back to a linear scale and means 

of replicates were calculated for each population (Table S2C). The number of reads for each 

processing step can be found in Table S1B.

Quantification and statistical analysis:

Dimensionality Reduction and Visualization with t-SNE—To visualize the 334,879 

OCRs sampled from our collection of populations, we performed a t-Stochastic Neighbor 

Embedding of the OCR x cell-type count matrix. Specifically, we derived the top 25 

principal components from the 334,870 × 86 matrix using the implicitly restarted Lanczos 

bidiagonalization algorithm (irlba). Next, we embedded this high-dimensional chromatin 

accessibility landscape into a two-dimensional coordinate system using the Barnes-Hut 

implementation of t-SNE through the Rtsne package with default parameters (perplexity = 

30). Individuals peaks were assigned binary TF motif matches based on predicted binding 

affinities of the mm10 sequence and correspondingly colored (see below for motif matching 

analysis). For sample populations-based coloring, each peak was assigned a population with 

the maximum chromatin accessibility observed from the normalized counts matrix. Finally, 

for each peak in our data set, we computed the Gini Index over the populations, yielding a 

per-peak measure of “chromatin inequality” about the populations. The Gini Index for peak 

i, denoted Gi, was computed as:

Gi = j = 1
n

k = 1
n

xi, j − xi, k

2n
j = 1
n

xi, j

where xi,j represents an element in the the log2 normalized counts matrix for peak i and 

population j.

OCR Variance Component Analysis—We applied variance component models to 

characterize how patterns of chromatin covariance (Fig. 2a) explained observed gene 

expression variance within our sorted populations. As a variance components model 

assumes normally distributed noise, we utilized a variance stabilizing transformation 

proposed by Anscombe (Anscombe, 1948) to model the empirical a negative binomial 

distribution of RNA-seq count data. Specifically, for each gene (indexed by i), the vector of 

normalized gene expression counts per cell-type, Yi, was transformed into a new vector Y i′

from centering and scaling using Anscombe’s transformation:
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Yi′ =
Yi + 3/8

1/ϕ − 3/4 ,

where ϕ is the dispersion chosen so as to minimize the ratio of the dispersion of the residual 

standard deviation as implemented in the Varistran package (Harrison, P.F. The Journal of 

Open Source Software 2). With our transformed gene expression vector j, we then fit the 

following variance component model:

Yi′ N 0, Dσd
2 + Tσt

2 + Iσe
2 ,

where D and T are the sample-sample correlation matrices computed from the distal 

enhancers and transcription start site OCRs respectively (see Fig. 2a) and I is the identify 

matrix. Average information restricted likelihood estimation (AIREML) was used to 

estimate the values of the parameters of the variance component models, σd, σt, and σe. To 

then determine the proportion of the variance explained by each variance component, we 

generated a vector Vi, which by definition sums to 1:

Vi = 〈
σd

2

σd
2 + σt

2 + σe
2,

σt
2

σd
2 + σt

2 + σe
2,

σe
2

σd
2 + σt

2 + σe
2〉

Here, the proportion of the variance in expression for gene i explained by the DE logic 

would be represented by the first element in the Vi vector.

Associating OCRs with Target Genes—Data normalization and aggregation: We 

defined “expressed” genes as those with at least 10 reads in at least one cell population. 

Using this filter, we removed lowly expressed genes, and retained expression data for 15,601 

genes. This filtered gene expression data was then log transformed, quantile normalized, and 

averaged across replicates. Similarly, ATAC-seq data was filtered to exclude OCRs with low 

intensity (BH adjusted MACS2 p-value > 0.05). The intensities across the cell populations 

were log transformed, quantile normalized, and averaged across replicates. We excluded 

Stromal cells from this analysis: because of the large biological differences, data from this 

population has very different distributional properties compare to the others.

Association analysis: In simple association analysis, for each expressed gene, we identified 

all OCRs that are within 1Mb of the gene’s TSS. Then, for each gene and “cis” OCR pair, 

we computed the Pearson correlation coefficient and the associated p-value to quantify the 

association between activity (intensity) of the OCR and expression level of the gene across 

all 81 cell populations (samples). We used Bonferroni correction, to adjust the resulting p-

values. In addition, we used stepwise regression to identify independently associated OCRs 

nearby each gene. For each gene, we performed stepwise regression analysis with the gene 

expression level of a particular gene as outcome and the intensity of OCRs within 100Kb of 

the corresponding gene as the predictors. Similarly, we accounted for multiple testing using 

Bonferroni correction.
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Computing Aggregated OCR Scores—As demonstrated in Fig. 3C, we observed a 

“distance biased” relationship between OCR intensity and gene expression levels, whereby 

those cis OCR that are closer to TSSs are more strongly associated with gene expression 

levels. On the basis of this observation, we constructed an aggregated OCR score for each 

gene as the inverse weighted sum of OCR intensities within 100Kb of its TSS. More 

specifically, for a given gene, each OCR within 100Kb of the gene’s TSS was given a weight 

1/d where d is the absolute distance (in bp) between the gene’s TSS and the center of the 

OCR.

Annotating OCRs with motifs—To annotate OCRs with putative transcription factor 

binding motifs, we used the motifmatchr package as part of the chromVAR suite of tools 

(Schep et al., 2017). Motifs were defined from a set of curated mouse position weight 

matrices (PWMs) from the cisBP database (http://cisbp.ccbr.utoronto.ca/) publicly available 

at (https://github.com/buenrostrolab/chromVARmotifs). For each OCR and motif pair, we 

determined a binary annotation for compatibility of the motif PWM in the mm10 reference 

sequence from the OCR. Specifically, our background nucleotide frequency was the total 

nucleotide content over all OCRs, and a motif match was called for sequences with a p-value 

< 5×10^−6. Note that these choices are identical the defaults provided in the motifmatchr 

package.

Associating Aggregated Motif Scores with Transcription Factor Expression—
Deviation scores, referred to as “TFBS accessibility scores” throughout the text, were 

calculated using chromVAR with the default parameters (Schep et al., 2017) and the 

chromVAR motif database “mouse_pwms_v2”. To compute the correlation between scores 

and TF expression we excluded epithelial cells whose patterns were too divergent, then 

filtered TFs for motif-TF expression pairs, wherein the maximum TF expression in a 

measured cell type was greater than 4 (log2 scale), resulting in 430 TFs (see Table S5G for 

the full list of TF motif and expression pairs). To calculate correlation between deviation 

scores and TF expression, log2 transformed gene expression counts were correlated 

(Pearson) to raw deviation scores. To calculate the statistical significance of the correlation 

two permutation tests were performed: we either permuted the sample labels or the TF labels 

(100 permutations with replacement), P-values were calculated using a z-test comparing the 

observed TF motif-expression correlation coefficient to the permuted correlation coefficient. 

Reported values represent the max (least significant) of the two permutation approaches, TFs 

with P-values less than 0.1 are called as significant. Notably, we found the two permutation 

approaches provided correlated P-values however, permuting TFs labels generally provided 

less significant P-values.

To compute correlation for myeloid and lymphoid TFs, the same approach was repeated for 

samples identified as lymphoid (LTHSC.34-.BM; LTHSC.34+.BM; STHSC.150-.BM; 

MMP4.135+.BM; preT.DN1.Th; preT.DN2a.Th; preT.DN2b.Th; preT.DN3.Th; DN4.Th; 

T.ISP.Th; T.DP.Th; T.4.Th; T.4.Nve.Sp; Treg.4.25hi.Sp; Treg.4.FP3+.Nrplo.Co; T.8.Th; T.

8.Nve.Sp; T8.TN.P14.Sp; T8.TE.LCMV.d7.Sp; T8.MP.LCMV.d7.Sp; 

T8.Tcm.LCMV.d180.Sp; T8.Tem.LCMV.d180.Sp) or myeloid (Mo.6C+II-.Bl;Mo.6C-II-.Bl; 

MF.PC;MF.RP.Sp; MF.Alv.Lu;DC.103+11b-.SI; DC.103+11b+.SI; DC.4+.Sp;DC.8+.Sp; 
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MF.microglia.CNS; GN.BM;GN.Sp;DC.pDC.Sp; MF.226+II+480lo.PC; MF.ICAM

+480hi.PC) cell types.

Motif Enrichment in TSS—To determine motifs associated with DE-logic and TSS-logic 

genes identified from the variance components analysis (Fig. 2), we performed two Fisher 

Exact tests per-motif. For each of the 15,600 expressed genes, we determined all motif 

matches from the motif collection within 1kb upstream of the annotated TSS. We then 

determined which motifs were enriched in the set of 943 TSS-logic genes from a first set of 

Fisher Tests (y-axis Fig. 2C), or enriched in the set of 4,409 DE-logic genes in a second set 

of Fisher Tests (x-axis Fig. 2C).

To assess of motif enrichment in selected sets of OCRs in the myeloid and T cell lineages 

(Fig.6, Fig.S4) we employed a parametric test using motif frequency distributions calculated 

from GC-content matched background sets of OCRs, otherwise referred to as “chromVAR z-

test for motif enrichment”. First, after identifying OCRs to be tested (i.e. GN specific 

OCRs), 200 sets of GC-content matched OCRs were selected, using the 

‘getBackgroundPeaks’ function from chromVAR, out of the robust set of 334,879 OCRs in 

the study. Background frequency distributions for each motif were then calculated from the 

background OCR sets using the OCR to motif pairing described above. Signed P values 

were then determined by the probability of obtaining the test set motif frequency in the 

background distribution and multiplying by the sign of the direction of effect, assuming a 

normal probability distribution for the background.

Analysis of Myeloid Lineage—Myeloid clustering and peak selection: OCRs were 

filtered for only those detected in at least one myeloid cell sample (BH adjusted MACS2 p-

value < .05; 215,583 peaks). The filtered peak signals (log2 + 1) were used for hierarchical 

clustering with 1 – Pearson correlation distance values and average linkage between clusters. 

Cell groups were formed by performing a tree cut on the dendrogram at a distance height 

of .21. Sets of peaks for each cluster were then identified by looking either for peaks 

specifically detected in a given cell group and no other myeloid cell types or for peaks with a 

minimum log2 peak signal fold change greater than 2 of that group compared to all other 

myeloid cells.

Myeloid motif enrichment: chromVAR z-test motif enrichment was performed on the 

selected sets of peaks for each group. Only the top 15 or fewer motifs having an unadjusted 

log10 signed p-value greater than 5, and linear normalized gene counts greater than 100 in 

the population showing the enrichment were displayed in Fig. 6B. SI macrophages not 

displayed due to lack of sequencing data.

cDC comparisons: Peaks for CD4 and CD8 DCs were selected by looking for peaks that 

were detected in one subset and not the other (BH adjusted MACS2 p-value < .05), a 

minimum peak signal of 4, and a log2 peak signal fold change greater than 2 between the 

two cell types. chromVAR z-test motif enrichment was then run on these sets independently. 

The same analysis was run between the CD103+CD11b+ and CD103+CD11b− DC 

populations in the SI.
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Analysis of T Lineage—We identified 836 “T cell differentiation genes” whose 

expression varied the most during the T cell differentiation by combining the following 

groups: 1) 543 differential expressed genes by computing the mean and coefficient of 

variation from 12 cell populations along the T lineage ranging from MPP4.135+.BM to T.

4.Nve.Sp and T.8.Nve.Sp and fitting generalized linear model on mean and squared CV (top 

5% variable of the expressed genes); 2) 345 CD4 T cell related genes whose expression are 

significantly different between (MPP4 and STHSC) and (T.4.Th and T.4.Nve.Sp), (FC >=5 

or <=0.2, P.value <=0.05); and 3) 358 CD8 T cell related genes whose expression are 

significantly different between (MPP4 and STHSC) and (T.8.Th and T.8.Nve.Sp), (FC and 

P.value same as 2). Then, to examine the associated OCRs with these T cell genes, we 

targeted the most varied 1,232 OCRs within 10Kb from the TSS of these genes (TSS-OCRs 

were excluded and of 4,105 significant OCRs with P.value <=0.05 in at least one population. 

For the analysis of Fig. 5B, we excluded the constitutively open OCRs, and selected the 30% 

OCRs with highest variability through the T cell dataset (by fitting generalized linear model 

on mean vs squared CV of ATAC-seq signals).

For the analysis of OCR activation, we focused on the DE-OCRs with the highest positive 

correlation to each gene by computing Pearson’s correlation between ATAC-seq signal and 

the corresponding gene expression within 12 T cell populations spanning differentiation 

from MPP4.135+.BM to T.4.Nve.Sp populations (because some genes had no correlated 

OCR within 10 Kb, 429 genes were retained). We then determined the population in which 

ATAC-seq signal and gene expression exceeded a 50% maximum and fell below 50% of the 

maximum along T cell differentiation. Genes were counted for the respective timing of OCR 

and gene activation/inactivation and represented as bubble plots in Fig4B. Genes in which 

the expression was already maximum in MPP4.135+.BM progenitors were not considered in 

the analysis.

To relate TF expression and motif accessibility (Fig. 7A–C), OCRs containing a TF motif 

were selected from the table of significant OCRs (P.value <=0.05 in at least one population) 

and 1,000 OCRs with the highest motif score were clustered using k-means. For TF motifs 

where ChIP-seq data are available at the NCBI GEO database, raw data were downloaded 

(https://www.ncbi.nlm.nih.gov/geo/, SRR4431502 and SRR4431506 for RORγ and 

SRR499696 ~ SRR499708 for Pax5) with a corresponding control data and analyzed by 1) 

mapping to mm10 reference using bowtie2, 2) discarding reads of non-unique mapping 

(samtools view -q 30), 3) removing duplicated reads by Picard.MarkDuplicates, 4) counting 

number of reads overlapping the OCRs, 5) normalizing reads by RPM (reads per million 

mapped reads) and 6) computing ChIP-seq signal as fold changes (ChIP-seq samples /

control) after adding a pseudo count of 0.1.

FoxP3 Analysis—ChIP-seq datasets (Kitagawa et al., 2017), Database accession 

DRA003955) for H3K27Me3, H3K27Ac, H3K4Me1, H3K27Me3, Mediator and Smc1a 

(Cohesin) in Tregs were mapped to mm10 genome using bowtie. ChIP-seq peaks were 

called using HOMER (http://homer.ucsd.edu/homer/) with corresponding biological 

replicates and respective input controls. Additionally, H3K4Me1 ChIP-seq data was 

analyzed in the same manner for Tconv cells [(Placek et al., 2017), GSE69162]. A robust set 

of FoxP3 ChIP-seq binding sites were previously defined in Treg cells (Kwon et al., 2017). 
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Briefly, fastq files (GSE40684, DRA003955) were mapped to the mm10 reference genome 

using bowtie. FoxP3 peaks from both studies were called using HOMER findPeaks function 

with an FDR of 1% using the parameter (-style factor) and respective input background 

peaks. Intersection of FoxP3 peaks were derived from both data sets Intersection of FoxP3 

peaks were derived from both data sets using the BEDtools intersect function with a 50% 

reciprocal overlap requirement, yielding 5,047 robust FoxP3 peaks. Our analysis maps the 

cis-regulatory landscape during T cell differentiation for the top 2,000 FoxP3 ChIP-seq 

binding sites. FoxP3 peaks were parsed into promoter-proximal (920) and distal (1080) 

OCRs. Treg ChIP-seq histone mark and TF data were used to annotate all 2,000 FoxP3 

peaks by binarizing each chromatin feature as being absent or present in each respective 

FoxP3 peak. Distal FoxP3 peaks were ordered based on accessibility differences Treg/

LTHSC and Treg/DP. Distal FoxP3 OCRs were then parsed into constitutive (no differences 

in accessibility during T cell differentiation; 860 peaks) or dynamic (> 2 fold ATAC-seq 

signal in at least one cell type upstream of Tregs; 220 peaks). TF motif enrichment was 

performed on FoxP3 constitutive and distal OCRs using chromVAR functions.

Data availability:

The GEO accession number for the RNAseq and ATACseq data reported in this paper is 

GSE100738. Processed ATAC-seq data and called peaks can be found at: https://

sharehost.hms.harvard.edu/immgen/ImmGenATAC18_AllOCRsInfo.csv

Additional resources:

The data can be visualized in the UCSC genome browser, the link to these data can be found 

here: http://rstats.immgen.org/Chromatin/chromatin.html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

We thank M. Aryee, H. Finucane, R. Bosselut, A. Stark for valuable discussions. Immgen is supported by NIH 
R24-AI072073, BDB and SAR by R01AI113221 and T32AI007605.

REFERENCES

Anscombe FJ (1948). The Transformation of Poisson, Binomial and Negative-Binomial Data. 
Biometrika 35, 246–254.

Asai T, and Morrison SL (2013). The SRC family tyrosine kinase HCK and the ETS family 
transcription factors SPIB and EHF regulate transcytosis across a human follicle-associated 
epithelium model. J. Biol. Chem 288, 10395–10405. [PubMed: 23439650] 

Bahr C, von Paleske L, Uslu VV, Remeseiro S, Takayama N, Ng SW, Murison A, Langenfeld K, 
Petretich M, Scognamiglio R, et al. (2018). A Myc enhancer cluster regulates normal and leukaemic 
haematopoietic stem cell hierarchies. Nature 553, 515–520. [PubMed: 29342133] 

Banerji J, Rusconi S, and Schaffner W (1981). Expression of a beta-globin gene is enhanced by remote 
SV40 DNA sequences. Cell 27, 299–308. [PubMed: 6277502] 

Benoist C, and Chambon P (1981). In vivo sequence requirements of the SV40 early promotor region. 
Nature 290, 304–310. [PubMed: 6259538] 

Yoshida et al. Page 22

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://sharehost.hms.harvard.edu/immgen/ImmGenATAC18_AllOCRsInfo.csv
https://sharehost.hms.harvard.edu/immgen/ImmGenATAC18_AllOCRsInfo.csv
http://rstats.immgen.org/Chromatin/chromatin.html


Bornstein C, Winter D, Barnett-Itzhaki Z, David E, Kadri S, Garber M, and Amit I (2014). A negative 
feedback loop of transcription factors specifies alternative dendritic cell chromatin States. Mol. Cell 
56, 749–762. [PubMed: 25453760] 

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, and Greenleaf WJ (2013). Transposition of native 
chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and 
nucleosome position. Nat. Methods 10, 1213–1218. [PubMed: 24097267] 

Cannavò E, Khoueiry P, Garfield DA, Geeleher P, Zichner T, Gustafson EH, Ciglar L, Korbel JO, and 
Furlong EEM (2016). Shadow Enhancers Are Pervasive Features of Developmental Regulatory 
Networks. Curr. Biol 26, 38–51. [PubMed: 26687625] 

Champhekar A, Damle SS, Freedman G, Carotta S, Nutt SL, and Rothenberg EV (2015). Regulation of 
early T-lineage gene expression and developmental progression by the progenitor cell transcription 
factor PU.1. Genes Dev 29, 832–848. [PubMed: 25846797] 

Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yan Y, Kundu K, Ecker S, et 
al. (2016). Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. 
Cell 167, 1398–1414.e24. [PubMed: 27863251] 

Cisse B, Caton ML, Lehner M, Maeda T, Scheu S, Locksley R, Holmberg D, Zweier C, den Hollander 
NS, Kant SG, et al. (2008). Transcription factor E2–2 is an essential and specific regulator of 
plasmacytoid dendritic cell development. Cell 135, 37–48. [PubMed: 18854153] 

Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, Snyder MP, Pritchard JK, 
Kundaje A, Greenleaf WJ, et al. (2016). Lineage-specific and single-cell chromatin accessibility 
charts human hematopoiesis and leukemia evolution. Nat. Genet 48, 1193–1203. [PubMed: 
27526324] 

Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A, 
Singer O, David E, Winter DR, Smith LK, et al. (2017). Mef2C restrains microglial inflammatory 
response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun 8, 717. 
[PubMed: 28959042] 

Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, and Busslinger M (2006). Gene repression 
by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 
24, 269–281. [PubMed: 16546096] 

Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, Lee H, Arthur 
CD, White JM, Kalinke U, et al. (2011). Type I interferon is selectively required by dendritic cells 
for immune rejection of tumors. J. Exp. Med 208, 1989–2003. [PubMed: 21930769] 

Dixon JR, Gorkin DU, and Ren B (2016). Chromatin Domains: The Unit of Chromosome 
Organization. Mol. Cell 62, 668–680. [PubMed: 27259200] 

Ellmeier W, and Taniuchi I (2014). The role of BTB-zinc finger transcription factors during T cell 
development and in the regulation of T cell-mediated immunity. Curr. Top. Microbiol. Immunol 
381, 21–49. [PubMed: 24850219] 

ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human 
genome. Nature 489, 57–74. [PubMed: 22955616] 

Ficara F, Murphy MJ, Lin M, and Cleary ML (2008). Pbx1 regulates self-renewal of long-term 
hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2, 484–496. [PubMed: 
18462698] 

Fossum SL, Mutolo MJ, Tugores A, Ghosh S, Randell SH, Jones LC, Leir S-H, and Harris A (2017). 
Ets homologous factor (EHF) has critical roles in epithelial dysfunction in airway disease. J. Biol. 
Chem 292, 10938–10949. [PubMed: 28461336] 

Gasperini M, Findlay GM, McKenna A, Milbank JH, Lee C, Zhang MD, Cusanovich DA, and 
Shendure J (2017). CRISPR/Cas9-Mediated Scanning for Regulatory Elements Required for 
HPRT1 Expression via Thousands of Large, Programmed Genomic Deletions. Am. J. Hum. Genet 
101, 192–205. [PubMed: 28712454] 

Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, Price J, Yin N, Bromberg J, Lira 
SA, et al. (2009). The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med 
206, 3115–3130. [PubMed: 20008528] 

Yoshida et al. Page 23

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, and 
Yona S (2014). Dendritic cells, monocytes and macrophages: a unified nomenclature based on 
ontogeny. Nat. Rev. Immunol 14, 571–578. [PubMed: 25033907] 

Guo Y, MacIsaac KD, Chen Y, Miller RJ, Jain R, Joyce-Shaikh B, Ferguson H, Wang I-M, Cristescu 
R, Mudgett J, et al. (2016). Inhibition of RORγT Skews TCRα Gene Rearrangement and Limits T 
Cell Repertoire Diversity. Cell Rep 17, 3206–3218. [PubMed: 28009290] 

Hardy RR, and Hayakawa K (2001). B cell development pathways. Annu. Rev. Immunol 19, 595–621. 
[PubMed: 11244048] 

Helft J, Manicassamy B, Guermonprez P, Hashimoto D, Silvin A, Agudo J, Brown BD, Schmolke M, 
Miller JC, Leboeuf M, et al. (2012). Cross-presenting CD103+ dendritic cells are protected from 
influenza virus infection. J. Clin. Invest 122, 4037–4047. [PubMed: 23041628] 

Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml 
BU, Unanue ER, Diamond MS, et al. (2008). Batf3 deficiency reveals a critical role for CD8alpha
+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100. [PubMed: 19008445] 

Hnisz D, Day DS, and Young RA (2016). Insulated Neighborhoods: Structural and Functional Units of 
Mammalian Gene Control. Cell 167, 1188–1200. [PubMed: 27863240] 

Hong J-W, Hendrix DA, and Levine MS (2008). Shadow enhancers as a source of evolutionary 
novelty. Science 321, 1314. [PubMed: 18772429] 

Horcher M, Souabni A, and Busslinger M (2001). Pax5/BSAP maintains the identity of B cells in late 
B lymphopoiesis. Immunity 14, 779–790. [PubMed: 11420047] 

Hosokawa H, Ungerbäck J, Wang X, Matsumoto M, Nakayama KI, Cohen SM, Tanaka T, and 
Rothenberg EV (2018). Transcription Factor PU.1 Represses and Activates Gene Expression in 
Early T Cells by Redirecting Partner Transcription Factor Binding. Immunity 48, 1119–1134.e7. 
[PubMed: 29924977] 

Issuree PDA, Ng CP, and Littman DR (2017). Heritable Gene Regulation in the CD4:CD8 T Cell 
Lineage Choice. Front. Immunol 8, 291. [PubMed: 28382035] 

Kim T-K, and Shiekhattar R (2015). Architectural and Functional Commonalities between Enhancers 
and Promoters. Cell 162, 948–959. [PubMed: 26317464] 

Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R, Yasuda K, Motooka D, 
Nakamura S, Kondo M, et al. (2017). Guidance of regulatory T cell development by Satb1-
dependent super-enhancer establishment. Nat. Immunol 18, 173–183. [PubMed: 27992401] 

Kwon H-K, Chen H-M, Mathis D, and Benoist C (2017). Different molecular complexes that mediate 
transcriptional induction and repression by FoxP3. Nat. Immunol 18, 1238–1248. [PubMed: 
28892470] 

Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner 
A, Winter D, Jung S, et al. (2014). Immunogenetics. Chromatin state dynamics during blood 
formation. Science 345, 943–949. [PubMed: 25103404] 

Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, and Amit I (2014). 
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 
159, 1312–1326. [PubMed: 25480296] 

Medvedovic J, Ebert A, Tagoh H, and Busslinger M (2011). Pax5: a master regulator of B cell 
development and leukemogenesis. Adv. Immunol 111, 179–206. [PubMed: 21970955] 

Mercer EM, Lin YC, Benner C, Jhunjhunwala S, Dutkowski J, Flores M, Sigvardsson M, Ideker T, 
Glass CK, and Murre C (2011). Multilineage priming of enhancer repertoires precedes 
commitment to the B and myeloid cell lineages in hematopoietic progenitors. Immunity 35, 413–
425. [PubMed: 21903424] 

Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft 
J, et al. (2012). Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol 
13, 888–899. [PubMed: 22797772] 

Oh H, Grinberg-Bleyer Y, Liao W, Maloney D, Wang P, Wu Z, Wang J, Bhatt DM, Heise N, Schmid 
RM, et al. (2017). An NF-κB Transcription-Factor-Dependent Lineage-Specific Transcriptional 
Program Promotes Regulatory T Cell Identity and Function. Immunity 47, 450–465.e5. [PubMed: 
28889947] 

Yoshida et al. Page 24

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Osterwalder M, Barozzi I, Tissières V, Fukuda-Yuzawa Y, Mannion BJ, Afzal SY, Lee EA, Zhu Y, 
Plajzer-Frick I, Pickle CS, et al. (2018). Enhancer redundancy provides phenotypic robustness in 
mammalian development. Nature 554, 239–243. [PubMed: 29420474] 

Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, and Sandberg R (2014). Full-length 
RNA-seq from single cells using Smart-seq2. Nat. Protoc 9, 171–181. [PubMed: 24385147] 

Placek K, Hu G, Cui K, Zhang D, Ding Y, Lee J-E, Jang Y, Wang C, Konkel JE, Song J, et al. (2017). 
MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat. Immunol 
18, 1035–1045. [PubMed: 28759003] 

Quinlan AR, and Hall IM (2010). BEDTools: a flexible suite of utilities for comparing genomic 
features. Bioinformatics 26, 841–842. [PubMed: 20110278] 

Ramsdell F, and Ziegler SF (2014). FOXP3 and scurfy: how it all began. Nat. Rev. Immunol 14, 343–
349. [PubMed: 24722479] 

Reizis B, Bunin A, Ghosh HS, Lewis KL, and Sisirak V (2011). Plasmacytoid dendritic cells: recent 
progress and open questions. Annu. Rev. Immunol 29, 163–183. [PubMed: 21219184] 

Revilla-I-Domingo R, Bilic I, Vilagos B, Tagoh H, Ebert A, Tamir IM, Smeenk L, Trupke J, Sommer 
A, Jaritz M, et al. (2012). The B-cell identity factor Pax5 regulates distinct transcriptional 
programmes in early and late B lymphopoiesis. EMBO J 31, 3130–3146. [PubMed: 22669466] 

Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-
Moussavi A, Kheradpour P, Zhang Z, Wang J, et al. (2015). Integrative analysis of 111 reference 
human epigenomes. Nature 518, 317–330. [PubMed: 25693563] 

Rosas M, Davies LC, Giles PJ, Liao C-T, Kharfan B, Stone TC, O’Donnell VB, Fraser DJ, Jones SA, 
and Taylor PR (2014). The transcription factor Gata6 links tissue macrophage phenotype and 
proliferative renewal. Science 344, 645–648. [PubMed: 24762537] 

Rothenberg EV (2014). Transcriptional control of early T and B cell developmental choices. Annu. 
Rev. Immunol 32, 283–321. [PubMed: 24471430] 

Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A, Sandstrom R, Neph S, Sabo P, Kim JM, 
Liao W, et al. (2012). Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell 
lineage specification. Cell 151, 153–166. [PubMed: 23021222] 

Schep AN, Wu B, Buenrostro JD, and Greenleaf WJ (2017). chromVAR: inferring transcription-factor-
associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978. [PubMed: 
28825706] 

Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz-Lopez A, 
Lobera M, Yang J, et al. (2015). MUCOSAL IMMUNOLOGY. Individual intestinal symbionts 
induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997. [PubMed: 
26272906] 

Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, et 
al. (2012). A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120. 
[PubMed: 22763441] 

Shi W, Liao Y, Willis SN, Taubenheim N, Inouye M, Tarlinton DM, Smyth GK, Hodgkin PD, Nutt SL, 
and Corcoran LM (2015). Transcriptional profiling of mouse B cell terminal differentiation defines 
a signature for antibody-secreting plasma cells. Nat. Immunol 16, 663–673. [PubMed: 25894659] 

Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, O’Shea JJ, Singh H, and Ozato K (2005). IFN 
regulatory factor-4 and −8 govern dendritic cell subset development and their functional diversity. 
J. Immunol 174, 2573–2581. [PubMed: 15728463] 

Wang L, Wildt KF, Castro E, Xiong Y, Feigenbaum L, Tessarollo L, and Bosselut R (2008). The zinc 
finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T 
cells. Immunity 29, 876–887. [PubMed: 19062319] 

Xiong Y, and Bosselut R (2012). CD4-CD8 differentiation in the thymus: connecting circuits and 
building memories. Curr. Opin. Immunol 24, 139–145. [PubMed: 22387323] 

Ye CJ, Feng T, Kwon H-K, Raj T, Wilson MT, Asinovski N, McCabe C, Lee MH, Frohlich I, Paik H-I, 
et al. (2014). Intersection of population variation and autoimmunity genetics in human T cell 
activation. Science 345, 1254665. [PubMed: 25214635] 

Yoshida et al. Page 25

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, Pereira RM, Crotty S, Chang JT, Pipkin 
ME, et al. (2017). Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell 
differentiation. Nat. Immunol 18, 573–582. [PubMed: 28288100] 

Yui MA, and Rothenberg EV (2014). Developmental gene networks: a triathlon on the course to T cell 
identity. Nat. Rev. Immunol 14, 529–545. [PubMed: 25060579] 

Zabidi MA, Arnold CD, Schernhuber K, Pagani M, Rath M, Frank O, and Stark A (2015). Enhancer-
core-promoter specificity separates developmental and housekeeping gene regulation. Nature 518, 
556–559. [PubMed: 25517091] 

Yoshida et al. Page 26

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Atlas of 512,595 cis-regulatory elements active in 86 immunologic cell-types

• Two classes of loci, controlled by either promoter- or enhancer-driven logic

• Inference of enhancer elements that activate each gene across differentiation

• Context-specificity of enhancer activation by transcription factors
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Figure 1. Overview for the chromatin and RNA profiling of broad immune cell populations.
(A) Cell-types in this study shown in a differentiation tree, color-coded by lineage. Stromal 

cells, and myeloid cell-types known to derive from embryonic precursors, are shown 

unconnected to the HSC-derived tree. (B) Representative pile-up traces of ATAC-seq signals, 

all to the same scale, for three genomic regions: Spi1 (encodes PU.1); Cd8, with previously 

determined enhancer elements shown (E8I to E8VI, top, red arrows denote novel OCRs in 

cDCs); the Hprt promoter as a housekeeping gene. mRNA levels are indicated by barplots at 

the right of each locus; *: no matching RNA-seq data. (C) A t-SNE representation of all 

OCRs identified in this study. Top panel: the Gini index characterizes OCRs that are broadly 

accessible (blue) or cell-type specific (red); middle: OCRs specifically open in progenitors 

or dendritic cells; bottom: OCRs at TSS or that contain CTCF motifs. See Fig. S1.
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Figure 2. Integrated ATAC-RNA variance decomposition: parsing enhancer influence.
(A) Matrices of Pearson correlation between cell-types, based on ATAC signal intensity at 

all TSS-OCR, all DE OCRs, or mRNA levels in RNA-seq. Color-coding of cell-types at 

right per Fig. 1A. (B) Variance component decomposition of the mRNA expression for every 

gene (as column), in a variance component model that discretizes the explanatory power of 

DE- or TSS-OCRs (blue and green, respectively), the proportion of unexplained variance 

being shown in red. (C) Enrichment in TF-binding sequence motifs (signed -log10 p, Fisher 

test) in the promoter-proximal region (−1000 to +1 bp) of genes with DE-logic and TSS-

logic determinism (from 2B). See Fig. S2.
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Figure 3. Landscape of cis-regulation: associating genes with specific enhancers.
(A) Example of correlated mRNA expression (x-axis) and OCR accessibility (y-axis) at the 

Samd3 locus. (B) As in A, but correlation between expression and activity of a strongly 

associated DE-OCR for 1000 genes. (C) Distance distribution of DE-OCRs that are strongly 

correlated (Bonferroni p<0.05) to a given gene, relative to the gene’s TSS. (D) Number of 

significantly associated DE-OCRs for each gene. (E) Chromatin accessible landscape of the 

Il7r locus for all cell-types (histogram of expression at right). Red arcs correspond to 21 

OCRs that share significant correlation with Il7r expression; non Il7r associations are shown 

in black (height reflects association p-value). (F) ATAC-seq signal in the promoter and 

enhancer regions of Rag1 and Rag2 loci in B and T precursors (right: mRNA expression). 

Previously reported DNAse-I hypersensitivity sites are indicated below. *: newly identified 

OCRs. (G, H) Identification by multiple regression of OCRs that complementarily explain 
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the expression patterns of Tyrobp and Cd28; heatmaps denote accessibility at these OCRs; 

the bar histogram mRNA expression. See Fig. S3.
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Figure 4. Timing of OCR activation.
(A) Heatmap representing expression of 496 genes that vary most through T cell 

differentiation (ordered by k-means, color-coded relative to the 95th expression quantile). 

(B) Integrated accessibility of variable DE-OCR in the −10 kb>−250 bp region of these 

genes (order as in A). C: Timing of enhancer activation: for genes which are induced during 

T differentiation, the dots denote the cell-stage at which mRNA expression first reaches 50% 

of max (x-axis) vs the stage at which the best correlated OCR (from Fig. 3) first reaches 

50% of max accessibility. See Fig. S4.
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Figure 5. Regulators of chromatin accessibility.
(A) Transcription factor motif accessibility scores, TFs in rows (z-normalized), cell-types in 

columns (hierarchically clustered). (B–E) Relationship between the expression of a TF and 

its motif accessibility score for representative factors; each point represents a cell-type, 

color-coded per Fig. 1A. (F) Accessibility score of Bcl11a motifs (top; cells arranged per 

Fig. 1A) in relation to the expression of Bcl11a or Bcl11b (bottom). (G) Pearson coefficient 

and significance of correlations between TF motif score and TF expression (generalized 

from B–E); known regulators of immune cell development and function are highlighted in 

red. (H) Expression patterns of the TFs determined to significantly correlate with changes in 

chromatin accessibility (positive correlation: top block; negative: bottom). Side bars: motif 

variability and correlation coefficient. See Fig. S5.
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Figure 6. Regulatory factors in myeloid cells inferred from chromatin accessibility.
(A) Differential OCR signals across all steady-state myeloid cells (right: numbers of 

distinguishing OCRs; top: correlation tree). (B) TF motif enrichment scores (chromVAR z-

test) in myeloid group-specific OCRs from A, filtered for TF expression levels and statistical 

significance, with signed -log10 p values capped at 100 for display; bars shaded by TF 

mRNA expression. (C) Comparison of TF enrichment scores for OCRs accessible CD4+ and 

CD8+ cDCs, points are shaded according to the TF’s mRNA expression fold change 

between the two DC subsets. See Fig. S6.
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Figure 7. Dynamics of chromatin accessibilities on TF-motif containing OCRs along 
differentiation.
(A–D) Cell-type-dependent accessibility for OCRs that contain RORγ, Zbtb7b or Pax5 

motifs (top 1000 predicted OCRs, clustered by k-means; top: mRNA levels; right: TF motif 

scores and ChIP-seq signals averaged per cluster). (B) Normalized ATAC-seq intensity for 

OCRs that contain an RORγ-binding motif of cluster3 or cluster6 (from A), in immature DP 

thymocytes of Rorc-deficient mice or -positive littermates. (E) Chromatin accessibility for 

1080 DE-OCRs known to bind FoxP3 in ChIP-seq experiments. Distal OCRs are classified 

as constitutive or dynamic (2-fold higher signal in Tregs than in precursor cell-types). ChIP-

seq signal in these OCRs for Mediator, Cohesin, or histone marks in Tregs are shown below. 

(E) TF motif enrichment score in constitutive and dynamic FoxP3-binding OCRs. See Fig. 

S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD4 APC Thermo Fisher Scientific clone: RM4–5; cat#: 17–0042-81; lab: Brown

MHC II APC-eFluor780 Thermo Fisher Scientific clone: M5/114.15.2; cat#: 47–5321-82; lab: Brown

CD45 APC-eFluor780 Thermo Fisher Scientific clone: 30-F11m; cat#: 47–0451-82; lab: Brown

CD11c PE-Cy7 Thermo Fisher Scientific clone: N418; cat#: 25–0114-82; lab: Brown

MHC II eFluor450 Thermo Fisher Scientific clone: M5/114.15.2; cat#: 48–5321-82; lab: Brown

CD103 PE Thermo Fisher Scientific clone: 2E7; cat#: 12–1031-82; lab: Brown

CD64 APC Thermo Fisher Scientific clone: X54–5/7.1; cat#: 17–0641-82; lab: Brown

CD11b FITC Thermo Fisher Scientific clone: M1/70; cat#: 11–0112-82; lab: Brown

Siglec F PE Thermo Fisher Scientific clone: 1RNM44N; cat#: 12–1702-82; lab: Brown

CD11c PE-Cy7 Thermo Fisher Scientific clone: N418; cat#: 25–0114-82; lab: Brown

CD45 BV510 BD Biosciences clone: 30-F11; cat#: 563891; lab: Brown

CD8 PE Thermo Fisher Scientific clone: 53–6.7; cat#: 12–0081-82; lab: Brown

CD3 FITC Thermo Fisher Scientific clone: eBio500A2; cat#: 11–0033-82; lab: Brown

CD19 FITC Thermo Fisher Scientific clone: eBio1D3; cat#: 11–0193-82; lab: Brown

CD11c PE Thermo Fisher Scientific clone: N418; cat#: MA5–16878; lab: Brown

B220 eFluor450 Thermo Fisher Scientific clone: RA3–6B2; cat#: 48–0452-82; lab: Brown

PDCA1 APC Thermo Fisher Scientific clone: eBio927; cat#: 17–3172-82; lab: Brown

Siglec H PE-Cy7 Thermo Fisher Scientific clone: eBio440c; cat#: 25–0333-82; lab: Brown

cd45 PE-Cy7 Biolegend clone: 30F11; cat#: 103114; lab: Turley

Epcam PE-Cy7 Biolegend clone: G8.8; cat#: 118216; lab: Turley

Ter11 PE-Cy7 Biolegend clone: TER119; cat#: 116222; lab: Turley

CD21/35 FITC Biolegend clone: 7E9; cat#: 123407; lab: Turley

Madcam 488 Biolegend clone: MECA-367; cat#: 120708; lab: Turley

PDPN APC Biolegend clone: 8.1.1; cat#: 127410; lab: Turley

CD140a PE BD Pharmingen clone: APA5; cat#: 562776; lab: Turley

CD31 PE-Dazzle Biolegend clone: 390; cat#: 102430; lab: Turley

Calcein Blue Molecular Probes clone: NA; cat#: C1429; lab: Turley

Live/Dead Near-IR633 Molecular Probes clone: NA; cat#: L10119; lab: Turley

CD45.2 FITC Invitrogen clone: 104; cat#: 11–0454-85; lab: Goldrath

CD127 PE-Cy7 Invitrogen clone: A7R34; cat#: 25–1271-82; lab: Goldrath

CD8a APC-eFlour780 Invitrogen clone: GK1.5; cat#: 47–0041-82; lab: Goldrath

CD45.1 APC Invitrogen clone: A20; cat#: 17–0453-82; lab: Goldrath

KLRG1 E450 Invitrogen clone: 2F1; cat#: 48–5893-82; lab: Goldrath

CD44 PE-Cy7 Invitrogen clone: IM7; cat#: 25–0441-82; lab: Goldrath

CD62L APC BioLegend clone: MEL-14; cat#: 104412; lab: Goldrath

Rat anti-mouse CD4 PE-Cy7 BD Biosciences clone: RM4–5; cat#: 552775; lab: Kang
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REAGENT or RESOURCE SOURCE IDENTIFIER

Rat anti-mouse CD8a PE-Cy7 BD Biosciences clone: 53–6.7; cat#: 552877; lab: Kang

Hamster anti-mouse CD3e PerCP-Cy5.5 BD Biosciences clone: 145–2C11; cat#: 551163; lab: Kang

Hamster anti-mouse TCRd BV 421 Biolegend clone: GL3; cat#: 118120; lab: Kang

Hamster anti-mouse Vg2-FITC Biolegend clone: UC3–10A6; cat#: 137703; lab: Kang

Hamster anti-mouse Vg1.1-APC Biolegend clone: 2.11; cat#: 141108; lab: Kang

Rat anti-mouse CD24 APC-eFluor780 eBioscience clone: M1/69; cat#: 48–0242-82; lab: Kang

Rat anti-mouse Scart2 J. Kisielow clone: NA; cat#: NA; lab: Kang

Hamster anti-mouse CD27 PE eBioscience clone: LG.7F9; cat#: 12–0271-81; lab: Kang

CD19 eBioscience clone: MB19–1; cat#: NA; lab: Edy Kim

Ter119 eBioscience clone: TER119; cat#: NA; lab: Edy Kim

Ly6G/Gr1 eBioscience clone: A18; cat#: NA; lab: Edy Kim

CD8α eBioscience clone: 53/6.7; cat#: NA; lab: Edy Kim

TCRβ eBioscience clone: H58–597; cat#: NA; lab: Edy Kim

mCD1d tetramer PBS-57 APC NIH Tetramer Core Facility clone: NA; cat#: NA; lab: Edy Kim

CD3 FITC eBioscience clone: eBio500A2; cat#: 11–0033-82; lab: Merad

CD19 FITC eBioscience clone: eBio1D3; cat#: 11–0193-82; lab: Merad

CD8 PE BioLegend clone: 53–6.7; cat#: 100707; lab: Merad

CD4 APC BioLegend clone: GK1.5; cat#: 100411; lab: Merad

CD11c PE/Cy7 BioLegend clone: N418; cat#: 117317; lab: Merad

CD45 BV510 BioLegend clone: 30-F11; cat#: 103137; lab: Merad

MHCII APC/Cy7 BioLegend clone: M5/114.15.2; cat#: 107627; lab: Merad

PDCA1 APC eBioscience clone: ebio927; cat#: 17–3172-82; lab: Merad

B220 eF450 BioLegend clone: RA3–6B2; cat#: 103239; lab: Merad

Siglec H Pe/Cy7 eBioscience clone: ebio440c; cat#: 25–0333-82; lab: Merad

CD64 APC BioLegend clone: X54–5/7.1; cat#: 139305; lab: Merad

CD103 PE BioLegend clone: 2E7; cat#: 121405; lab: Merad

CD11b FITC BioLegend clone: M1/70; cat#: 101205; lab: Merad

Siglec F PE BD Biosciences clone: E50–2440; cat#: 552126; lab: Merad

CD4 UCSF Ab core clone: GK1.5; cat#: AM012; lab: Nabekura

CD5 UCSF Ab core clone: 53–7.3; cat#: AM018; lab: Nabekura

CD8a UCSF Ab core clone: 2.43; cat#: AM023; lab: Nabekura

CD19 UCSF Ab core clone: 1D3; cat#: AM005; lab: Nabekura

Gr-1 UCSF Ab core clone: RB6–8C5; cat#: AM051; lab: Nabekura

Ter110 UCSF Ab core clone: Ter119; cat#: AM030; lab: Nabekura

BioMag goat anti-rat IgG beads Qiagen clone: NA; cat#: 310107; lab: Nabekura

CD49b FITC BioLegend clone: DX5; cat#: 108906; lab: Nabekura

NK1.1 PerCP-Cy5.5 BioLegend clone: PK136; cat#: 108728; lab: Nabekura

CD3e PE-CY7 BioLegend clone: 145–2C11; cat#: 100320; lab: Nabekura

CD19 PE-CY7 BD Biosciences clone: 1D3; cat#: 552854; lab: Nabekura
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REAGENT or RESOURCE SOURCE IDENTIFIER

CD11b PE BD Biosciences clone: M1/70; cat#: 553311; lab: Nabekura

CD27 APC BioLegend clone: LG.3A10; cat#: 124212; lab: Nabekura

CD49a Biotin Miltenyi Biotec clone: REA493; cat#: 130–107-587; lab: Nabekura

CD127 Biotin BioLegend clone: A7R34; cat#: 135006; lab: Nabekura

CD51 Biotin BD Biosciences clone: RMV-7; cat#: 551380; lab: Nabekura

Streptavidin-BV421 BioLegend clone: NA; cat#: 405226; lab: Nabekura

Propidium Iodide Sigma-Aldrich clone: NA; cat#: P4170; lab: Nabekura

CD138 PECy7 BioLegend clone: 281–2; cat#: 142514; lab: Nutt

CD138 PE BDBiosciences clone: 281–2; cat#: 553714; lab: Nutt

CD38 Alexa fluor 680 in house clone: 90; cat#: NA; lab: Nutt

NK1.1 APC BD Biosciences clone: PK136; cat#: 550627; lab: Nutt

CD11b (MAC-1) Alexa fluor 647 in house clone: M1/70; cat#: NA; lab: Nutt

TCRb APC eBioscience clone: H57–597; cat#: 17–5961-83; lab: Nutt

TCRb PE BD Biosciences clone: H57–597; cat#: 553172; lab: Nutt

MHC-II APC-eFluor780 eBioscience clone: M5/114.15.2; cat#: 47–5321-82; lab: Nutt

Gr-1 (Ly-6G) PE in house clone: RB6–8C5; cat#: NA; lab: Nutt

B220 (CD45R) FITC in house clone: RA3–6B2; cat#: NA; lab: Nutt

CD95 (Fas) PECy7 BD Biosciences clone: Jo2; cat#: 557653; lab: Nutt

CXCR4 BV421 BD Biosciences clone: 2B11; cat#: 585522; lab: Nutt

CD86 BV605 BD Biosciences clone: GL1; cat#: 563055; lab: Nutt

IgM APC-eFluor780 eBioscience clone: II/41; cat#: 47–5790-82; lab: Nutt

IgD APC-eFluor780 eBioscience clone: 11–26C; cat#: 47–5993-80; lab: Nutt

IgG BV421 BioLegend clone: Poly4053; cat#: 405317; lab: Nutt

CD117 PE-Cy7 BioLegend clone: 2B8; cat#: 105814; lab: Benoist

CD11b PerCPcy5.5 BioLegend clone: M1/70; cat#: 101228; lab: Benoist

CD11b PE BioLegend clone: M1/70; cat#: 101208; lab: Benoist

CD11C A700 BioLegend clone: N418; cat#: 117320; lab: Benoist

CD11c APC-Cy7 BioLegend clone: N418; cat#: 117324; lab: Benoist

CD19 APC-ef780 eBiosciences clone: 1D3; cat#: 47–0193-82; lab: Benoist

CD19 PE-TR eBiosciences clone: 1D3; cat#: 61–0193-82; lab: Benoist

CD19 PE-Cy7 BioLegend clone: 1D3; cat#: 115520; lab: Benoist

CD19 APC-Cy7 BioLegend clone: 1D3; cat#: 115530; lab: Benoist

CD24 Fitc BioLegend clone: M1/69; cat#: 101806; lab: Benoist

CD25 APC BioLegend clone: PC61; cat#: 101910; lab: Benoist

CD25 PE BioLegend clone: PC61; cat#: 101904; lab: Benoist

CD28 Bio BioLegend clone: E18; cat#: 102104; lab: Benoist

CD4 APC eBiosciences clone: RM4–5; cat#: 17–0042-82; lab: Benoist

CD4 PE eBiosciences clone: RM4–5; cat#: 12–0042-82; lab: Benoist

CD44 Fitc BioLegend clone: IM7; cat#: 103022; lab: Benoist
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CD45 PE CF594 BioLegend clone: 30 F11; cat#: 562420; lab: Benoist

CD45 APC-Cy7 BioLegend clone: 30 F11; cat#: 103116; lab: Benoist

CD45R P.B. BioLegend clone: RA3 6B2; cat#: 193227; lab: Benoist

CD62L PE-Cy7 BioLegend clone: MEL14; cat#: 104418; lab: Benoist

CD69 A700 BioLegend clone: H1.2F3; cat#: 104539; lab: Benoist

CD8 A700 BioLegend clone: 53 6.7; cat#: 100730; lab: Benoist

CD8 PE-Cy7 BioLegend clone: 53 6.7; cat#: 100722; lab: Benoist

CD8 APC BioLegend clone: 53 6.7; cat#: 100712; lab: Benoist

EpCAM APC BioLegend clone: G8.8; cat#: 118214; lab: Benoist

F4/80 APC-Cy7 BioLegend clone: BM8; cat#: 123118; lab: Benoist

F4/80 PE-Cy7 BioLegend clone: BM8; cat#: 123114; lab: Benoist

F4/80 PE BioLegend clone: BM8; cat#: 123110; lab: Benoist

Ly6G/Gr1 APC-ef780 eBiosciences clone: RB6 8C5; cat#: 47–5931-82; lab: Benoist

Ly6G/Gr1 APC-Cy7 BioLegend clone: RB6 8C5; cat#: 108424; lab: Benoist

Ly6G/Gr1 APC BioLegend clone: RB6 8C5; cat#: 108412; lab: Benoist

ICAM2/CD102 Fitc eBiosciences clone: mlC2/4; cat#: 11–1029-42; lab: Benoist

IgM Fitc eBiosciences
clone: eB121 15F9; cat#: 11–5890-82; lab: 
Benoist

Ly51 PE BioLegend clone: 6C3; cat#: 108308; lab: Benoist

MHCII Fitc BioLegend clone: M5/114; cat#: 107606; lab: Benoist

NK1.1 APC-Cy7 BioLegend clone: PK136; cat#: 108710; lab: Benoist

NK1.1 APC BioLegend clone: PK136; cat#: 108724; lab: Benoist

Nrp1 APC BioLegend clone: 3E12; cat#: 145206; lab: Benoist

TCRb ef450 eBiosciences clone: H57 597; cat#: 47–5961-82; lab: Benoist

TCRb PE-Cy7 BioLegend clone: H57 597; cat#: 109222; lab: Benoist

TCRb P.B. BioLegend clone: H57 597; cat#: 109226; lab: Benoist

TCRb PerCPcy5.5 BioLegend clone: H57 597; cat#: 109228; lab: Benoist

TCRgd PerCPcy5.5 BioLegend clone: GL3; cat#: 118118; lab: Benoist

Ter119 APC-ef780 eBiosciences clone: Ter119; cat#: 47–5921-82; lab: Benoist

Ter119 APC-Cy7 BioLegend clone: Ter119; cat#: 116223; lab: Benoist

CD45-APC-cy7 Biolegend clone: NA; cat#: NA; lab: Colonna

CD3-FITC Biolegend clone: NA; cat#: NA; lab: Colonna

CD19-FITC eBioscience clone: NA; cat#: NA; lab: Colonna

THy1.2-APC eBioscience clone: NA; cat#: NA; lab: Colonna

TCRb-PE Pharmingen/BD clone: NA; cat#: NA; lab: Colonna

KLRG1-PE Biolegend clone: NA; cat#: NA; lab: Colonna

CD5-PE Biolegend clone: NA; cat#: NA; lab: Colonna

CCR6-BV421 Pharmingen/BD clone: NA; cat#: NA; lab: Colonna

NKp46-biotin Colonna Lab clone: NA; cat#: NA; lab: Colonna

CD3-PercP-Cy5.5 eBioscience clone: NA; cat#: NA; lab: Colonna
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CD19-PercP-Cy5.5 ebioscience clone: NA; cat#: NA; lab: Colonna

NK1.1-PercP-Cy5.5 Biolegend clone: NA; cat#: NA; lab: Colonna

SCA1-PacBlue Biolegend clone: NA; cat#: NA; lab: Colonna

CD127-FITC eBioscience clone: NA; cat#: NA; lab: Colonna

KLRG1-APC eBioscience clone: NA; cat#: NA; lab: Colonna

ST2-biotin eBioscience clone: NA; cat#: NA; lab: Colonna

SAV-PE-Cy7 eBioscience clone: NA; cat#: NA; lab: Colonna

CD3e PE eBioscience
clone: 145–2C11; cat#: 12–0031-82; lab: 
Randolph

CD3e PECy7 eBioscience
clone: 145–2C11; cat#: 25–0031-82; lab: 
Randolph

CD11b APCCy7 Biolegend clone: M1/70; cat#: 101226; lab: Randolph

CD19 PE Biolegend clone: 6D5; cat#: 115508; lab: Randolph

CD45 PB Biolegend clone: 30-F11; cat#: 103126; lab: Randolph

CD64 APC BD Biosciences clone: X54–5/7.1; cat#: 558539; lab: Randolph

CD102 (ICAM2) Alexa 488 eBioscience clone: 3C4; cat#: 53–1021-82; lab: Randolph

CD115 PE eBioscience clone: AFS98; cat#: 12–1152-82; lab: Randolph

CD115 APC eBioscience clone: AFS98; cat#: 17–1152-82; lab: Randolph

CD206 FITC Biolegend clone: C068C2; cat#: 141704; lab: Randolph

CD226 PE Biolegend clone: 1000000; cat#: 128806; lab: Randolph

B220 PECy7 eBioscience
clone: RA3–6B2; cat#: 25–0452-82; lab: 
Randolph

Ly6C BV421 Biolegend clone: HK1.4; cat#: 128032; lab: Randolph

Ly6G PE BD Biosciences clone: 1A8; cat#: 553128; lab: Randolph

Ly6G PE-Cy7 BD Biosciences clone: 1A8; cat#: 560601; lab: Randolph

F4/80 FITC Biolegend clone: BM8; cat#: 123108; lab: Randolph

F4/80 PE-Cy7 Biolegend clone: BM8; cat#: 123114; lab: Randolph

MHCII (I-A/I-E) PB Biolegend clone: M5/114.15.2; cat#: 107620; lab: Randolph

MerTK PECy7 eBioscience
clone: DSSMMER; cat#: 25–5751-82; lab: 
Randolph

CD3 Biotin Biolegend clone: 145–2C11; cat#: 100304; lab: Wagers

CD4 Biotin Biolegend clone: GK1.5; cat#: 100404; lab: Wagers

CD5 Biotin ebioscience clone: 53–7.3; cat#: 12–0051-85; lab: Wagers

CD8 Biotin Biolegend clone: 53–6.7; cat#: 100704; lab: Wagers

CD19 Biotin Biolegend clone: 6D5; cat#: 115504; lab: Wagers

B220 Biotin Biolegend clone: RA3–6B2; cat#: 103204; lab: Wagers

GR-1 Biotin ebioscience clone: RB6–8C5; cat#: 13–5931-82; lab: Wagers

Mac-1 Biotin ebioscience clone: M1/70; cat#: 13–0112-85; lab: Wagers

Ter-119 Biotin Biolegend clone: TER-119; cat#: 116204; lab: Wagers

Streptavidin Pacific Orange Thermo Fisher clone: NA; cat#: S32365; lab: Wagers

Sca-1 PECy7 Biolegend clone: D7; cat#: 108113; lab: Wagers
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c-Kit APC ebioscience clone: 2B8; cat#: 17–1171-83; lab: Wagers

CD48 APCCy7 Biolegend clone: HM48–1; cat#: 103431; lab: Wagers

CD150 PE Biolegend clone: TC15–12F12.2; cat#: 115904; lab: Wagers

CD34 FITC ebioscience clone: RAM34; cat#: 11–0341-85; lab: Wagers

Flk2 PEcf594 BD biosciences clone: A2F10.1; cat#: 562537; lab: Wagers

Bacterial and Virus Strains

NA

Biological Samples

Sorted cell populations This paper Table S1 and http://www.immgen.org/
ImmGenATAC1219Sorts.S1A.pdf

Chemicals, Peptides, and Recombinant Proteins

NA

Critical Commercial Assays

Nextera DNA Library Preparation Kit Illumina FC-121–1030

Deposited Data

Raw sequencing data This paper GEO: GSE100738

Experimental Models: Cell Lines

NA
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Experimental Models: Organisms/Strains

C57BL/6 mice Jackson Laboratory Jax0664

B6.Rorctm2Litt Jackson Laboratory Jax7572

Foxp3-ires-gfp reporter mice Bettelli E et.al, 2006 PubMed: 16648838

Oligonucleotides

NA

Recombinant DNA

NA

Software and Algorithms

Genome mm10 http://
hgdownload.cse.ucsc.edu/
goldenpath/mm10/bigZips/
mm10.2bit

mm10

Transcription start sites http://
hgdownload.cse.ucsc.edu/
goldenPath/mm10/
database/refFlat.txt.gz

downloaded Jan. 2017

Blacklisted regions http://mitra.stanford.edu/
kundaje/akundaje/release/
blacklists/mm10-mouse/
mm10.blacklist.bed.gz

NA

RNAseq GTF file https://genome.ucsc.edu/
cgi-bin/hgTables

NA

Genome conservation scores http://
hgdownload.cse.ucsc.edu/
goldenpath/mm10/
phastCons60way/
mm10.60way.phastCons.b
w

NA

sickle1.2 (Version 1.33) Joshi NA, Fass JN. (2011) https://github.com/najoshi/sickle

TrimGalore version 0.4.0 http://
www.bioinformatics.babra
ham.ac.uk/projects/
trim_galore/

Krueger, 2015

Bowtie2 http://bowtie-
bio.sourceforge.net/
bowtie2/index.shtml

Langmead and Salzberg, 2012

Samtools 0.1.19 http://
samtools.sourceforge.net

Li et al., 2009

Picard Tools http://
broadinstitute.github.io/
picard/

NA

hisat2 version 2.0.4 https://ccb.jhu.edu/
software/hisat2/
manual.shtml

Kim et al., 2015
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Htseq version 0.6.1 https://htseq.readthedocs.io Anders et al., 2015

Gaston version 1.5.3 https://cran.r-
project.org/web/packages/
gaston/index.html

Dandine-Ro and Perdry, 2015

IGV http://
software.broadinstitute.org/
software/igv/

Robinson et al. 2011

MACS2 https://github.com/taoliu/
MACS/wiki

Zhang et al., 2008

BEDTools https://
bedtools.readthedocs.io/en/
latest/

Quinlan and Hall, 2010

HOMER http://homer.ucsd.edu/
homer/

Heinz et al., 2010

chromVAR https://bioconductor.org/
packages/release/bioc/
html/chromVAR.html

Schep et al., 2017

chromVARmotifs version 0.2.0 https://github.com/
buenrostrolab/
chromVARmotifs

Schep et al., 2017

Other

H3K4Me1 ChIP-seq Placek et al., 2017 GSE69162

FoxP3 ChIP-seq Samstein et al., 2012 GSE40684

FoxP3, H3K27Ac, H3K4Me1/3, 
Mediator, Cohesin ChIP-seq

Kitagawa et al., 2017 DRA003955

PAX5 ChIPseq Revilla-I-Domingo R et.al, 
2012

GSE38046

RORγ ChIPseq Yanxia Guo et.al, 2016 GSE88916
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