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We describe a novel mechanism by which network oscillations
can arise from reciprocal inhibitory connections between two
entirely passive neurons. The model was inspired by the acti-
vation of the gastric mill rhythm in the crab stomatogastric
ganglion by the modulatory commissural ganglion neuron 1
(MCN1), but it is studied here in general terms. One model
neuron has a linear current–voltage (I–V) curve with a low (L)
resting potential, and the second model neuron has a linear
current–voltage curve with a high (H) resting potential. The
inhibitory connections between them are graded. There is an
extrinsic modulatory excitatory input to the L neuron, and the L

neuron presynaptically inhibits the modulatory neuron. Activa-
tion of the extrinsic modulatory neuron elicits stable network
oscillations in which the L and H neurons are active in alterna-
tion. The oscillations arise because the graded reciprocal syn-
apses create the equivalent of a negative-slope conductance
region in the I–V curves for the cells. Geometrical methods are
used to analyze the properties of and the mechanism underly-
ing these network oscillations.

Key words: neural oscillators; central pattern generators;
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The mechanisms by which reciprocal inhibition among neurons
give rise to network oscillations have been studied extensively
both experimentally and theoretically (Marder and Calabrese,
1996; Stein et al., 1997). This network module has long been
thought to be critical in the generation of rhythmic motor patterns
(Brown, 1914; Perkel and Mulloney, 1974; Miller and Selverston,
1982a,b; Satterlie, 1985; Friesen, 1994; Calabrese, 1995). In some
cases, the reciprocally inhibitory connections are thought to occur
between neurons that are nearly identical, as in bilateral circuits
that subserve left–right alternation (Arbas and Calabrese, 1987).
In other cases, reciprocally inhibitory connections occur between
functional antagonists such as flexors and extensors (Brown,
1914; Pearson and Ramirez, 1990) or other kinds of nonidentical
neurons (Miller and Selverston, 1982b).

There has been a significant amount of theoretical work on
half-center oscillators in which the neurons are essentially iden-
tical and the connections symmetric (Perkel and Mulloney, 1974;
Wang and Rinzel, 1992, 1993; Skinner et al., 1994; Van Vreeswijk
et al., 1994; Nadim et al., 1995; Olsen et al., 1995; Sharp et al.,
1996; Rowat and Selverston, 1997). In the cases studied, the
component neurons had some intrinsic excitability, either because
they were themselves oscillatory or had properties such as post-
inhibitory rebound that were important in the production of the
oscillation. In this paper we demonstrate that two reciprocally

inhibitory, entirely passive and nonidentical neurons can produce
stable network oscillations, provided that the synaptic connec-
tions between them are graded, and that they receive an asym-
metric extrinsic drive. This work is an outcome of our interest in
providing a heuristic simplification and mathematical understand-
ing of a recent detailed compartmental model (Nadim et al.,
1998) of the activation of the gastric mill rhythm of the crab
Cancer borealis by the modulatory commissural neuron 1
(MCN1).

At the center of the MCN1-activated gastric mill rhythm
(Coleman et al., 1995) are two neurons: the lateral gastric (LG)
neuron and interneuron 1 (Int1). These two neurons reciprocally
inhibit each other. In the absence of MCN1 stimulation, the LG
neuron is not active but maintains a relatively hyperpolarized
membrane potential, whereas Int1 is spontaneously active.
MCN1 provides a slow, modulatory, excitatory drive to the LG
neuron, which helps to depolarize it to threshold. When LG fires,
it inhibits Int1, which then stops firing. The LG neuron also
presynaptically inhibits the terminals of MCN1, so that when LG
is active, the excitatory modulatory drive is removed until LG
falls below its threshold, thus releasing both Int1 and the presyn-
aptic terminals of MCN1 and completing the cycle. In this sce-
nario, MCN1 plays the role of “balancing the asymmetry” of the
half-center composed of the reciprocally coupled LG and Int1
neurons.

To understand better the operation of this circuit, Nadim et al.
(1998) constructed a detailed compartmental model. This model
suggested that the asymmetric half-center oscillation between LG
and Int1 is controlled by the properties of both the slow modu-
latory excitation from MCN1 to LG and the fast rhythmic inhi-
bition from anterior burster (AB) to Int1 (Marder et al., 1998;
Nadim et al., 1998). The model used in Nadim et al. (1998) is
60-dimensional, with each neuron having several compartments.
It provided significant new insights into the role of a fast oscillator
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in controlling the period of a slower network oscillator (Nadim et
al., 1998) and gave rise to a series of experiments that essentially
confirmed the major findings of the detailed model (Marder et al.,
1999; M. Bartos, Y. Manor, F. Nadim, E. Marder, M. Nusbaum,
unpublished observations). In this paper we show that the key
features of the detailed model are captured in a three-
dimensional model that allows mathematical analysis of the
mechanisms that give rise to the slow oscillations.

MATERIALS AND METHODS
In this paper we describe a reduced version of the LG/Int1/MCN1
network that retains the essential features of the compartmental model of
Nadim et al. (1998). These features include the reciprocally inhibitory
connections of LG and Int1, the MCN1 excitation of LG, the LG
presynaptic inhibition of MCN1, and the AB inhibition of Int1. Figure
1 A shows a detailed schematic circuit of the compartmental model,
together with voltage traces of LG and Int1 during a gastric mill rhythm.

To simplify the circuit, we model LG and Int1 as two passive neurons,
one neuron with a low (L) resting membrane potential (260 mV) and the
other with high (H) resting membrane potential (110 mV). The modu-
latory neuron provides a slow excitation (s) to L. This slow excitation is
controlled by the membrane potential of L via presynaptic inhibition.
This circuit and the resulting oscillation are shown in Figure 1 B. The
mechanism that we describe depends only on graded, not spike-
mediated, synaptic transmission. Therefore we consider only the slow
envelopes of the LG and Int1 oscillations shown in Figure 1 A, not the

fast spiking activity of these cells. The electrical coupling between
MCN1 and LG that helps sustain the LG burst (Coleman et al., 1995) is
ignored. In the reduced model presented in this paper, the LG burst
duration is accounted for by the interaction between L and s. We also
assume that the fast excitatory input from MCN1 to Int1 is not
significant.

Our model is a three-dimensional dynamical system. The three vari-
ables are VL , the membrane potential of L, VH , the membrane potential
of H, and s, the strength of the excitatory input to L. The effect of AB is
added to the circuit as a periodic input (P), and the consequences are
discussed. Figure 1C shows a schematic drawing of the circuit and the
voltage traces when P is added.

Equations describing the reciprocally inhibitory pair. We first consider
the subcircuit formed by L and H, leaving out the M excitation and the
periodic input from P. The membrane potentials of L and H are given by
first-order differential equations, each with a unique equilibrium point.
For simplicity, the membrane capacitances of the two cells are set to 1.
The equations of the coupled L/H circuit have the form:

dVL

dt
5 fL~VL! 1 g#H3 L mH3 L~VH!~EH3 L 2 VL!, (1)

dVH

dt
5 fH~VH! 1 g#L3H mL3H~VL!~EL3H 2 VH!. (2)

The parameters of the reciprocally inhibitory synapses are EH3L and
EL3H (the reversal potentials); g#H3L and g#L3H (the maximal conduc-
tances); and mH3L and mL3H (the gating functions). Because these

Figure 1. Simplifying a compartmental
model of the MCN1-elicited gastric mill
rhythm. A, Schematic representation
showing the compartmental model (lef t)
and voltage traces of the model Int1 and
the LG neuron when the model MCN1
is stimulated at 15 Hz. [Adapted from
Nadim et al. (1998).]) B, The circuit in A
is simplified to a pair of passive neurons
L and H connected via graded reciprocal
inhibition. L has a low resting potential
and H has a high resting potential. L
receives a slow modulatory excitation s
that is presynaptically gated by L. Also
shown are the voltage traces of L and H.
C, Same circuit as in B, but with an
additional periodic inhibition P (repre-
senting the AB neuron in A) to H.
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synapses are relatively fast, we define mH3L and mL3H as instantaneous
functions of the membrane potential:

mH3 L~V! 5 S1 1 exp
vH3 L 2 V

kH3 L
D21

, (3)

mL3H~V! 5 S1 1 exp
vL3H 2 V

kL3H
D21

. (4)

These functions are plotted in Figure 2 B,C. The functions fH (VH ) and
fL (VL ) represent the intrinsic properties of H and L, respectively. We
assume that the intrinsic dynamics of H and L are purely passive:

fL~V! 5 gleak,L~Eleak,L 2 V!

fH~V! 5 gleak,H~Eleak,H 2 V!, (5)

where gleak,L , gleak,H , Eleak,L , and Eleak,H are the conductances and rever-
sal potentials of the leak currents in L and H, respectively. In the
biological MCN1-elicited gastric mill circuit, without the slow excitation,
L rests at a low potential whereas H fires tonically with a high baseline
potential (Coleman et al., 1995). We model this asymmetry by setting
Eleak,L to a low value, e.g., 260 mV, and Eleak,H at a high value, e.g.,
110 mV.

Setting the right-hand side of Equation 1 to 0 and solving for VL , we
obtain the following formula for the L nullcline:

VL 5 N# L~VH! 5
gleak,L Eleak,L 1 g#H3 L mH3 L~VH! EH3 L

gleak,L 1 g#H3 L mH3 L~VH!
. (6)

N# L is a sigmoidal function of VH: when VH is low, mH3L(VH ) is close to
0 and N# L saturates to Eleak,L. When VH is large, mH3L(VH ) is close to 1
and N# L saturates at an average between Eleak,L and EH3L, weighted by
the respective leak and synaptic conductances. The slope between these
two saturated portions of the nullcline is proportional to the degree of
gradation of the H to L synapse. Setting the right-hand side of Equation
2 to 0 and solving for VH , we obtain the following formula for the H
nullcline:

VH 5 NH~VL! 5
gleak,H Eleak,H 1 g#L3H mL3H~VL! EL3H

gleak,H 1 g#L3H mL3H~VL!
. (7)

NH is a sigmoidal function of VL.
Adding the slow modulatory excitation. We now introduce the slow

chemical excitation (s) of L. In our model, this excitation is completely
controlled by the voltage of L: when VL is above some threshold VT , the
excitation decays, and when VL is below VT , the excitation grows. The
slow excitation s is therefore governed by the following equation:

ds
dt

5 H ~1 2 s!/tr VL # VT

2s/tf VL . VT, (8)

where tr , tf . 0. When VL , VT , s builds up toward 1 with time constant
tr. When VL . VT , s decays toward 0 with time constant tf. The excitation
produces an additional term in Equation 1, so that now the network is
described by Equations 2, 8, and:

dVL

dt
5 fL~VL! 1 g#H3 L mH3 L~VH!~EH3 L 2 VL! 1 g# ss~Es 2 VL!,

(9)

where g#s is the maximal conductance and Es is the reversal potential of
the excitatory input. Setting the right-hand side of Equation 9 to 0 and
solving for VL , we obtain a new formula for the L nullcline:

VL 5 NL~VH! 5
gleak,L Eleak,L 1 g#H3 L mH3 L~VH! EH3 L 1 gssEs

gleak,L 1 g#H3 L mH3 L~VH! 1 gs
.

(10)

Adding the fast input f rom P. When P is added to the circuit, the network
is described by Equations 8, 9 and:

dVH

dt
5 fH~VH! 1 g#L3H mL3H~VL!~EL3H 2 VH! 1 gP3H~t!~EP3H 2 VH!,

(11)

where the conductance of the P to H synapse gP3H is a non-negative
periodic function of t, and EP3H is the reversal potential of the P to H
synapse. At the peak of the P input (g#P3H), the H nullcline is given by the
formula:

VH 5 ÑH~VL! 5
gleak,H Eleak,H 1 g#L3H mL3H~VL! EL3H 1 g#P3H EP3H

gleak,H 1 g#L3H mL3H~VL! 1 g#P3H
.

(12)

We will sometimes use NH , NL , or ÑH to denote the graphs of the
respective formulae in the VL–VH space.

The physiolog ical interpretation of nullclines in the VL–VH phase plane.
In the absence of periodic input P, and for a fixed value of s, the VL–VH
phase plane is used to describe the relationship between the membrane
potentials of H and L at any time. The L and H nullclines are the sets of
points in the phase plane where dVL /dt and dVH /dt, respectively, are
zero. Another view, more intuitive to some physiologists, is that the H
nullcline at any value of VL is where VH would settle if L were voltage-
clamped at that value of VL. When H is at a membrane potential higher
than the H nullcline, VH decays toward NH. VH rises toward NH when H
is at a membrane potential lower than the H nullcline. NH thus divides
the VL–VH phase plane into two parts: above NH , where dVH /dt , 0, and
below NH , where dVH /dt . 0. Similarly, the L nullcline at any value of VH
is where VL would settle if H were voltage-clamped at that VH value. NL
divides the VL–VH phase plane into two parts: to the left of NL , where
dVL /dt . 0, and to the right of NL , where dVH /dt , 0.

The intersections of the two nullclines are equilibrium points at which
both dVL /dt and dVH /dt are zero. An equilibrium point may be stable—
after any local perturbation, the membrane potential of the perturbed
cell will return toward the same equilibrium point; or the equilibrium
point may be unstable—in this case, a small perturbation results in a
large change in the membrane potential. In the phase plane, the stability
of these equilibrium points can be determined by direction of the vectors
(dVH /dt, dVL /dt) in the vicinity of that point. In some figures we show
this vector field using small arrows.

By solving the differential equations for VH and VL we obtain VH(t) and
VL(t). The trajectory in the VH–VL phase plane is obtained by plotting the
(VH , VL ) values for all times t. For fixed s, the nullclines NH and NL are
fixed curves in the VH–VL plane. In the full system (given by Equations
2, 8, and 9), s changes slowly, producing a family of curves NL that change
slowly (NH is independent of s). Thus, the intersections of these curves
also change slowly in time, creating “quasi-static” equilibrium points.

Construction of the current–voltage curves of the reciprocally inhibitory
pair. One can get additional information from the current–voltage ( I–V)
relationships of the neurons H and L. We first describe the derivation of
the I–V curve for L. For simplicity, we consider the case without the fast
periodic input. The total current IL flowing into L is given by 2dVL /dt.
From Equation 9, this quantity depends on two fast variables, namely the
membrane potentials of both cells, VL and VH. We view the slow variable
s as a parameter. To construct the I–V curve of L, we must reduce the
two-variable expression in Equation 9 to a single-variable function of VL.
Because the reciprocal synaptic currents between H and L are relatively
fast, we can assume, for each value of VL and s, that VH adjusts quickly
to its steady state. At steady state, NH (the H nullcline) gives an expres-
sion for VH in terms of VL (see Equation 7). In Equation 9, we can
substitute NH for VH and obtain a term that depends on VL only:

dVL

dt
5 fL~VL! 1 g#H3 L mH3 L~NH~VL!!~EH3 L 2 VL! 1 g# ss~Es 2 VL!.

The negative of the right-hand side of this expression gives IL as a
function of VL and is used to plot the family of I–V curves of L,
dependent on s. Using similar arguments, we can derive an expression for
the family of I–V curves of H. In this case, we use Equation 10 instead of
Equation 9.

All numerical simulations were performed with the software XPPAUT
by B. Ermentrout (available at ftp://ftp.math.pitt.edu/pub/bardware).

Model parameters. The simulations for Figures 1 B, 2, 5, 7, and 8 were
performed using the following parameter values: g#H3L 5 5 mS/cm 2,
g#L3H 5 2 mS/cm 2, EH3L 5 280 mV, EL3H 5 280 mV, vH3L 5 230
mV, vL3H 5 230 mV, kH3L 5 4 mV, kL3H 5 4 mV, Eleak,L 5 260 mV,
Eleak,H 5 10 mV, gleak,L 5 1 mS/cm 2, gleak,H 5 0.75 mS/cm 2, VT 5 230
mV, g#s 5 3 mS/cm 2, Es 5 230 mV, tr 5 tf 5 4 sec. The simulations for
Figures 1C and 11 used the additional parameters g#P3H 5 0.9 mS/cm 2
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and EP3H 5 260 mV, and gP3H(t) is a half-sine function of t with
period 5 1 sec and duty-cycle 5 0.5.

RESULTS
Figure 2 illustrates oscillations that result from reciprocal inhibi-
tion between two passive neurons with different resting mem-
brane potentials, provided that the L cell receives a slow excita-
tion. Figure 2A shows the voltage traces of the two cells, L and H,
together with s (the slow excitation of L), mL3H (the activation of
the L to H inhibition), and mH3L (the activation of the H to L
inhibition). Figure 2B,C plots the synaptic transfer functions (Eq.
3, 4) of the L to H and H to L synapses, respectively. When the
two cells are uncoupled (left section), they remain at their re-
spective resting potentials: L at a low potential and H at a high
potential. In the middle section, L receives an excitatory input.
This input depolarizes L but does not produce oscillations. In the
right section, the reciprocal synapses between L and H are intro-
duced and the two cells oscillate in antiphase. At the onset of the
H plateau, mH3L increases rapidly to 1, and mL3H decreases
rapidly to 0. At the onset of the L plateau, the reverse happens.
During the H plateau s grows slowly, and during the L plateau s
decays slowly. It is the rates of growth and decay of s that
determine the durations of the plateaus, and therefore the period
of the oscillations.

We first describe how graded reciprocal inhibition gives rise to
a state equivalent to excitability. Two complementary methods
are used. The first method uses the I–V curves in the pair of
neurons, because these are more familiar to many electrophysi-
ologists. Subsequently we use phase plane analysis, because this is
a mathematically compact formalism to elucidate the mechanism
of oscillation in this system.

Reciprocally inhibitory graded synapses produce
excitability: I–V curves
In this section we use the I–V curves of the pair of neurons to
show how inhibitory graded synapses between two passive cells
can produce a state equivalent to excitability. The inhibitory
graded synapses create a region of negative slope conductance in
the I–V curves of the two cells. In physiological terms, the nega-
tive slope in the I–V curves is tantamount to membrane excitabil-
ity. For either cell, this region of negative slope conductance can
produce regenerative dynamics, provided that the membrane
potential is brought into this region. We show that this shift in the
membrane potential can be obtained by an excitatory input to one
of the cells. We treat the excitatory input s as a parameter: the
effects of the reciprocal synapses on the I–V curves at three
representative values of s are discussed.

We start by describing the I–V curves of the two passive cells

Figure 2. Slow modulatory excitation can balance an
asymmetric half-center to produce oscillations. A, The
top two traces are the voltages of the two cells H and L.
Also shown are the slow modulatory excitation s to L,
the activation of the L to H inhibition mL3H, and the
activation of the H to L inhibition mH3L. These traces
start on the lef t with the two cells isolated, and s is held
at 0. At the time indicated by the first arrow, s is
activated. At the time indicated by the second arrow,
the reciprocal inhibitory synapses are activated. Shown
in the VL trace is the threshold voltage VT for presyn-
aptic inhibition of s by L. B, The synaptic transfer
function for the H to L inhibition. C, The synaptic
transfer function for the L to H inhibition. The vertical
dotted line shows the threshold voltage VT for presyn-
aptic inhibition of s by L.
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when uncoupled. In Figure 3A the I–V curves of the L neuron and
H are plotted for three different values of excitatory input into L
(s 5 0, 0.5, and 1) when there are no synaptic connections
between L and H. The two I–V curves are plotted together. The
zero points on the I–V curves are the resting potentials of the
cells. Because both cells are passive, the I–V curves are linear.
Without the excitatory input s, the resting potential of the L
neuron (marked by ‚) is low, whereas the resting potential of H
(marked by ƒ) is high (Fig. 3A, lef t panel). With a larger excita-
tory input s, the I–V curve of L becomes steeper, and the resting
potential of L becomes larger (Fig. 3A, middle and right panels).
Because there is no slow excitation to H, the I–V curve of H is not
affected.

Figure 3B shows the I–V curves of L and H when the recipro-
cally inhibitory synaptic connections between these two cells are
included. We first describe the case in which there is no excitatory
input to L (Fig. 3B, lef t panel). At rest, H is at a voltage greater
than its threshold for transmitter release. When L is at low
membrane potentials, H will release transmitter, so the L I–V
curve has a steeper slope, reflecting this additional conductance.
When L is at a higher membrane potential, where it inhibits H,
the H to L synapse is turned off, so the L conductance is identical
to its value in Figure 3A (lef t panel). The transition between the
two regions of the I–V curves creates the negative slope conduc-
tance. Both reciprocally inhibitory synapses are therefore respon-
sible for producing the cubic shape, or negative slope conduc-
tance region, in the I–V curve of L. In contrast with the I–V curve
of L, the I–V curve of H is not affected by the reciprocal synapses
and remains linear. This linearity comes from the fact that in the
absence of excitatory input, L is never at a membrane potential
where it can inhibit H. This will be clarified in the discussion of
Figure 4B (lef t panel) below.

With a larger s, the excitatory (inward) current into L shifts the
I–V curve of L downward (Fig. 3B, middle and right traces). When
VH is low, this excitatory drive may allow L to depolarize enough

to activate the L to H synapse. The activation of the L to H
synapse generates an inhibitory (outward) synaptic current from
L to H that causes the I–V curve of H to shift upward. The L to
H synapse affects only a portion of the I–V curve of H, namely the
portion where VH is small enough to allow the L to H synapse to
be active. Therefore, when s is large enough, the I–V curve of H
assumes a cubic shape.

Excitability in terms of nullclines
In Figure 4A, we show the VL–VH phase planes corresponding to
the panels of Figure 3A. The nullclines NL and NH are obtained
from Equations 7 and 10 by setting the right-hand side to 0 when
the maximal conductances of the reciprocal synapses are also set
to 0. Because H receives no synaptic input from L, NH is inde-
pendent of VL and is a horizontal line at the H resting potential.
Similarly, NL is independent of VH and is a vertical line. This
vertical line is the average of the resting potential of L and the
reversal potential (Es ) of the excitatory input s, weighted by their
respective conductances. When s 5 0, the vertical line is at the L
resting potential (Fig. 4A, lef t panel). With larger values of s, the
vertical line shifts to the right toward Es (Fig. 4A, middle and right
panels). At the intersection of NL and NH , both VL and VH are at
steady state. The steady-state points (E) shown in Figure 4A are
stable, as schematically indicated by the directions of the vector
fields (arrows) around the fixed points (see figure legend for
explanation).

In Figure 4B, we plot the H and L nullclines (from Equations
7 and 10) in the VL–VH phase plane, for the cases corresponding
to the I–V curves plotted in Figure 3B. We first describe the shape
of NH (same in all three panels of Fig. 4B). At any value of VL,
NH depends on the H resting potential, the reversal potential of
the L to H synapse, and their corresponding conductances. When
VL is small, the L to H synapse is off, and NH lies at H resting
potential. As VL increases, the L to H synapse activates, and NH

gets closer to the reversal potential of the L to H synapse. The

Figure 3. Reciprocal graded inhibi-
tion produces a region of negative
slope conductance in the I–V curves.
To obtain steady-state I–V curves, s
was treated as a parameter. The I–V
curves of L (solid line) and H (dashed
line) are shown for three values of s (0,
0.5, and 1) in the absence ( A) and
presence ( B) of the reciprocal inhibi-
tory synapses. The resting potentials
of L (marked by ‚) and H (marked by
ƒ) are shown in A.
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sigmoidal shape of NH reflects the shape of the gating function of
the L to H synapse. Similarly NL assumes a sigmoidal shape lying
between the resting potential of L and the reversal potential of
the H to L synapse. NL depends on s, and changes are shown in
Figure 4B.

Now consider the case where there is no excitatory input into L
(Fig. 4B, lef t panel). Because the resting potential of L is close to
the reversal potential of the H to L synapse, NL spans a small
range of VL. As a consequence, at steady state VL is restricted to
values for which NH lies near its maximum, the resting potential
of H. Hence, for the whole range of VH, the synapse from L to H
is off. This explains the linearity of the I–V curve of H in Figure
3B (lef t panel).

From Equation 10, NL depends on the conductances and re-
versal potentials of L and the inputs to L. When s becomes larger,
the relative “weight” of the reversal potential of the excitatory
input increases. Because this reversal potential is more positive
than both the L resting potential and the reversal potential of the
H to L synapse, NL moves to the right. Moreover, when VH is low
(and therefore the inhibitory input from the H to L synapse is
small), s has a larger relative contribution, and NL is stretched
more to the right.

The intersections of NL and NH represent steady states for a
fixed value of s. When s 5 0 (no excitation to L), the two nullclines
intersect at a high VH and a low VL (Fig. 4B, lef t panel). When s
is at its maximal possible value of 1 (maximal excitation to L), the
two nullclines intersect at a low VH and a high VL (Fig. 4B, right
panel). The intermediate case s 5 0.5 is shown in Figure 4B
(middle panel). In this case, the two nullclines intersect at three

points. In such a case, the middle intersection (f) is an unstable
steady state (saddle point). All other intersections (E) are stable.
The stability of the steady states can be seen from the local vector
field, as shown schematically in Figure 4B (arrows in the panels).

Dynamics of the L/H/s oscillation when L and H
are passive
The oscillation in the L/H/s system comes about because s, gated
by the voltage of L, varies slowly. The analysis of the oscillation
can be performed using either the I–V curves or the nullclines in
the VH–VL phase plane. Although reasoning with the I–V curves
is more intuitive to some physiologists, constructing the I–V
curves requires an extra step in which one voltage is computed in
terms of the other and the current value of s (see Materials and
Methods). An advantage of nullclines is that they are directly
computable from Equations 2 and 9. Thus, with nullclines, it is
easier to be explicit about the effect of changing parameters such
as degree of gradation of synapses and ionic conductances. More-
over, the I–V curves describe the behavior of the cells in steady
state based on the assumption that VH adjusts instantaneously as
VL changes and vice versa. This assumption is only an approxi-
mation to the full dynamics of VH and VL captured in the
phase-plane analysis. For these reasons, we shall use the phase-
plane analysis to describe the oscillations in the full system.

We start by describing one cycle of the model oscillation in the
case where L and H have passive intrinsic properties. Figure 5A
shows VH, VL , and s in the time domain. The presynaptic inhi-
bition of s by L is all-or-none. The white line denotes the thresh-
old VT for presynaptic inhibition of s by L. The slow excitatory

Figure 4. Graded inhibition pro-
duces sigmoidal nullclines in the
VL–VH phase plane. To plot the L
nullcline (NL ) and the H nullcline
(NH ) in the VL–VH phase plane, s was
treated as a parameter. NL (solid line)
and NH (dashed line) are shown for
three values of s (0, 0.5, and 1) in the
absence (A) and presence (B) of
the reciprocal inhibitory synapses. The
resting potentials of L (marked by ‚)
and H (marked by ƒ) are shown in A.
The intersections of NL and NH are
steady states, and the arrows indicate
the vector fields in the vicinity of these
steady states. The direction of the vec-
tor field indicates whether the steady
state is stable (E) or unstable (f).
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input s grows when VL is below VT and decays otherwise (Equa-
tion 8). Figure 5B–G illustrates the phase plane at six represen-
tative times during the oscillation. These times are marked in
Figure 5A. In each of the panels (B–G), we show the L nullcline

(solid curve) and the H nullcline (dashed curve). We also show the
complete trajectory of the oscillation (dotted curve; same in all
panels) in the VL–VH phase plane. In each of the panels (B–G)
the white circle marks the point on the trajectory at the corre-

Figure 5. Analysis of one cycle of the oscillation using phase planes. A, Top, middle, and bottom traces show the voltage traces of H and L and the
modulatory excitation s. The dotted line superimposed on the voltage trace of L is the threshold VT for presynaptic inhibition of the excitatory input. B–G
show the VL–VH phase plane at the six representative times marked in A. The corresponding values of s are marked in each panel. The intersection of
the L nullcline (solid line) and H nullcline (dashed line) is the quasi-steady state (E) for the indicated value of s. In each panel, the arrow pointing toward
the quasi-steady state of the next representative time ( ) indicates the movement of the phase point along the trajectory (dotted line; same in B–G).
Vertical white line indicates the threshold VT.

Manor et al. • Balancing a Network Oscillator J. Neurosci., April 1, 1999, 19(7):2765–2779 2771



spondingly labeled time in A. We refer to this point in B–G as the
phase point. The gray circle marks the phase point at the next
indicated time. A single arrow indicates the motion of the phase
point along the trajectory from the white to the gray circle.
Double arrows in D and G indicate fast transitions between L
plateau and H plateau. The vertical white line denotes the thresh-
old VT.

In Figure 5B,C, the phase point follows the quasi-steady state,
with VH decreasing from a high value and VL increasing from a
low value. The slow movement of the phase point corresponds to
the H plateau. In panels B–D, VL is below VT and s increases,
causing the L nullcline to shift to the right. In D, the L nullcline
separates from the H nullcline at the phase point. At this time the
quasi-steady state is lost through a saddle-node bifurcation. Im-
mediately after this time, the phase point jumps to the only
remaining quasi-steady state (D, bottom right). This is the begin-
ning of the L plateau and the termination of the H plateau. This
fast transition occurs because, away from the quasi-steady states,
dVL/dt and dVH/dt are large in magnitude. During this transition
VL jumps above VT, and L turns the modulatory excitation off. At
this time s starts to decay, causing the L nullcline to shift to the
left (E–G). The slow movement through the quasi-steady state
shown in E corresponds to the movement along the L plateau. In
G, the L nullcline separates from the H nullcline, and the bottom
right quasi-steady state is lost through a saddle-node bifurcation.
The phase point jumps to the top left quasi-steady state. This is
the beginning of the H plateau and the termination of the L
plateau. During this transition VL falls below VT and turns the
modulatory excitation on. The L nullcline configuration returns to
that of B, and the cycle repeats.

A necessary condition for sustained oscillations
For the oscillation mechanism described above to work, the slow
modulatory excitation s must grow during the H plateau and
decay during the L plateau. During the H plateau, VL must be
below VT, otherwise s will stop growing. Similarly, during the L
plateau, VL must be above VT, otherwise s will stop decaying.
Therefore, the threshold VT for presynaptic inhibition of s by L
must lie between the two values of VL, just before the onset and
just before the termination of the L plateau. This condition can be
formulated as a geometrical condition on the nullclines in the
VL–VH phase plane.

In the VL–VH phase plane there are two values of s (Fig. 5,D,G)
for which the L nullcline is tangent to the H nullcline. These two
values of s define the two saddle-node bifurcation points. The two
corresponding phase planes are shown again in Figure 6. VBLeft

and VBRight (marked by dotted drop lines) are the values of VL at
the two bifurcation points. These two values are, respectively, the
voltages of L just before the onset and just before the termination
of the L plateau. The top left quasi-steady state (Fig. 5D) may be
lost only when VBLeft is below VT. Otherwise the voltage of L
reaches VT, where s stops growing, and the L plateau does not
occur. The bottom right quasi-steady state (Fig. 5G) may be lost
only when VBRight is above VT. Otherwise the voltage of L reaches
VT where s stops decaying, and the L plateau does not terminate.
Therefore, oscillations occur only if VT (indicated by the white line
in Fig. 6) is strictly between VBLeft and VBRight. Note that this is
the only restriction on VT. As long as this requirement is satisfied,
the exact location of VT with respect to other voltage-related
factors (such as the synaptic transfer functions) does not affect
the oscillations.

We now discuss how several parameters affect the generation of
oscillations.

The effect of graded synaptic transmission
In this model, the reciprocally inhibitory synapses are graded.
The graded nature of these synapses gives rise to the sigmoidal
shape of the L and H nullclines (Fig. 4), and the cubic shape of the
I–V curves (Fig. 3). As discussed below, the sigmoidal shapes of
both nullclines are essential to the existence of oscillations. Be-
low, we discuss the effect of the slope (kH3L from Equation 3) of

Figure 6. The L nullcline (solid line) and H nullcline (dashed line) are
tangent at two distinct values of VL. A, The tangency on the top lef t branch
of the H nullcline defines the saddle-node bifurcation point that corre-
sponds to the onset of the L burst. B, The tangency on the bottom right
branch of the H nullcline defines the saddle-node bifurcation point that
corresponds to the termination of the L burst. A necessary condition for
oscillations is that the threshold VT (white line) for presynaptic inhibition
lies strictly between the VL values (VBLeft and VBRight ) at these two
tangency points.
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the activation curve of the H to L graded synapse. There is a
similar effect for the slope (kL3H from Equation 4) of the acti-
vation curve of the L to H synapse.

If the activation curve of the H to L synapse is too steep,
oscillations will not occur. Figure 7A shows how the voltage traces
of H and L are affected when the H to L synapse is abruptly
changed from graded to all-or-none. Shortly after the beginning
of an H plateau, at the time indicated by the vertical arrow, the H
to L synapse is made all-or-none by changing its activation curve
to a step function. As a result, the plateau of H is prolonged, and
as it terminates L starts its plateau. The L plateau, however, does
not terminate; instead, VL settles at VT and the oscillation dies.
Figure 7B–D shows the phase planes at the times indicated in A.
When the H to L synapse is not graded, the synapse is “off” below
vH3L (Equation 3) and “on” above vH3L, giving rise to a step-
like shape of the L nullcline (C, D). Because of the step-like shape
of the L nullcline, the left and right bifurcation values VBLeft and
VBRight (Fig. 6) are identical. Therefore there is no oscillation
because VT cannot be strictly between VBLeft and VBRight. The
trajectory will approach the stable fixed point at the intersection
of VT and the two nullclines (Fig. 7D).

If the activation curve of the H to L synapse is too shallow,
oscillations will also die. Figure 8A shows how the voltage traces
of H and L are affected when the slope of the gating function of
the H to L synapse is decreased. At the time indicated by the first
arrow, the slope of the gating function is reduced fivefold (see
Fig. 8 legend for values). The oscillations after this change be-
come fast and small in amplitude. A further twofold reduction of
the slope at the time indicated by the second arrow causes the
oscillation to die completely. Figure 8B–D shows the phase
planes at the times indicated in A. In B and C, the H and L
nullclines are shown at the L plateau termination. In the case

shown in B, the two bifurcation points are well separated and
oscillations occur as described in Figure 5. In C, because the slope
of the L nullcline is closer to that of the H nullcline, the two
bifurcation points are much closer to each other. Consequently,
oscillations still occur, but with small amplitude. In D, the L
nullcline is steeper than the H nullcline, and the two nullclines
always intersect in only one point. As a result, no bifurcation
points exist, and there is no oscillatory solution.

The effect of the strength of the reciprocally
inhibitory synapses
The growth of the slow modulatory excitation s is directly op-
posed by the H to L synapse; therefore, the stronger this synapse,
the longer the period. The decay of s interacts with the L to H
synapse by determining how long L will inhibit H. Therefore, if
the L to H synapse is stronger, s must decay longer before H can
escape the inhibition. These effects can be analyzed by examining
how changing the strength of the synapses affects the shape of the
nullclines.

Increasing the strength of the H to L synapse pulls the left (top)
branch of the L nullcline left toward EH3L (Fig. 9A). This
increase changes the shape of the L nullcline, and its effect is
similar to increasing the slope of the H to L activation curve
discussed above. This change in the shape of the L nullcline
results in a larger period because s has to grow to a larger value
before the onset of the L plateau occurs. This will affect mainly
the H plateau duration; to a smaller extent, the L plateau duration
also increases. The increase in the L plateau duration is limited,
because on the bottom right branch of the L nullcline s is initially
large, but exponentially decaying (see Equation 8), hence the
phase point traverses this piece of the L nullcline rapidly. If the H
to L synapse is made too strong and cannot be compensated for

Figure 7. Oscillations are disrupted
when the activation curve of one of the
reciprocal inhibitory synapses is too steep.
A, Voltage traces show the alternation of
activity in L and H. At the time indicated
by the vertical arrow, the H to L synapse is
made all-or-none by changing its activa-
tion curve to a step function. The dotted
line denotes the threshold VT for presyn-
aptic inhibition. B–D show the phase
planes at the three times marked in A.
Solid and dashed curves are the L and H
nullclines. The vertical white line indicates
the threshold VT.
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by the growth of s, the bifurcation that allows the onset of the L
plateau will not occur, and the oscillation will be disrupted.

Similarly, increasing the strength of the L to H synapse pulls
the bottom (right) branch of the H nullcline down toward EL3H

(Fig. 9B) and has an effect similar to increasing the slope of the
activation curve of the L to H synapse. This change in the shape
of the H nullcline hinders the termination of the L plateau,
because s has to decay to a smaller value before the onset of the
H plateau. However, this effect is small, and increasing the
maximal conductance of the L to H synapse never disrupts
the oscillation. In the extreme case where this maximal conduc-
tance is very large compared with the leak conductance of H, the
bottom right branch of the H nullcline reaches the reversal
potential of the L to H synapse, but the L plateau still terminates
because the decay of s still shifts the L nullcline to the left until it
becomes tangent to the H nullcline (see Fig. 5).

The effect of the strength and time constant of the
excitatory input s
Decreasing the maximal conductance gs of the excitatory input to
L has an effect that is similar to increasing the maximal conduc-
tance of the H to L synapse. If gs is too small, the L nullcline does
not move enough to the right for the bifurcation and the transi-
tion to L plateau to occur. In this case the oscillations are
disrupted. If gs is decreased, but not to the extent that the
bifurcation is prevented, the period of oscillation will increase,
mainly by increasing the H plateau duration. Note that changing
the time constants for the growth and decay of s will change the
period of oscillation in a linear manner. This linear relation is a
simple consequence of the fact that Equation 8 is linear on either
side of VT.

The effect of fast periodic inhibition to H
Up to this point we have described the mechanism of oscillation
in an asymmetric pair of reciprocally inhibiting neurons, balanced
by a slow excitatory modulation. In the model of MCN1-activated
gastric mill rhythm that inspired this work (Nadim et al., 1998),
we found that this gastric mill rhythm is strongly influenced by a
periodic inhibitory input to Int1, the neuron represented by H.
We therefore ask how the mechanism of oscillation and geometry
of the phase plane, as described above, is affected by the presence
of a periodic input P to H.

The input of P to H is fast, inhibitory and periodic. When P is
added to the circuit, the network is described by Equations 8, 9,
and 11. Figure 10A shows the H nullclines NH, when the P input
is at 0, and ÑH, when the P input is at its peak value. ÑH depends
on the conductances and reversal potentials of H and all of its
synaptic inputs (Equation 12). When VL is low, the L to H synapse
is off and the effect of the P input on ÑH is relatively large.
Therefore, the P input lowers the left branch of the H nullcline
more than the right branch. This in turn implies that during an L
plateau, when the phase point is on the bottom right branch of the
H nullcline, the input from P can be effectively ignored.

We start with an L/H/s network that is not oscillatory when no
P input is present. Figure 10B (top H nullcline) shows such an
example, where VT lies to the left of the left bifurcation point (E).
This case corresponds to a stable steady state in the three-
dimensional system, with H at a high membrane potential and L
at a low membrane potential. When the P input is added, the H
nullcline swings periodically between the two limits shown in
Figure 10A. When the phase point is on the top left branch of the
H nullcline, during one such periodic swing, the intersection

Figure 8. Oscillations are disrupted when the acti-
vation curve of one of the reciprocal inhibitory syn-
apses is too shallow. A, Voltage traces show the
alternation of activity in L and H. At the time
indicated by the first vertical arrow, the activation
curve of the H to L synapse is made fivefold shal-
lower. At the time indicated by the second vertical
arrow, the activation curve of the H to L synapse is
made less steep by a factor of two. B–D show the
phase planes at the three times marked in A. Solid
and dashed curves are the L and H nullclines. The
vertical white line indicates the threshold VT.
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between the two nullclines disappears through a saddle-node
bifurcation (Fig. 10B, E). Thus, the P input allows a transition to
an L plateau, even before reaching its maximum (bottom H
nullcline). This transition is sufficient to produce an oscillatory
solution in the system.

Figure 11A shows VH, VL, and s in the time domain. In B–E,
we show the phase planes at the times indicated in A. In each
panel, the white circle denotes the position of the phase point
along the trajectory. In B, the phase point is at the quasi-steady
state (the intersection of the two nullclines). The periodic input
from P moves the H nullcline down rapidly, back and forth
between the two limits shown as dashed curves. The trajectory
follows this nullcline as shown by the dotted curve. As s grows,
the L nullcline moves to the right. In C, the top left quasi-steady
state is lost during a P input (through a saddle-node bifurcation),
and the phase point jumps to the bottom right quasi-steady state.
At this time, s starts to decay, and the L nullcline moves to the left
(D). In E the bottom right quasi-steady state is lost, and the phase
point jumps back to the top left quasi-steady state, completing the
cycle. Note that the P input does not contribute to the loss of
the bottom right quasi-steady state. In fact, the P input hinders
the termination of the L plateau, although to a very small extent.

We mentioned earlier that oscillations are disrupted if either of
the reciprocal synapses is all-or-none. However, in the presence
of the P input, oscillations are still possible when either one of the
synapses is all-or-none and the other is graded. We will discuss
the case in which the L to H synapse is all-or-none (and the H
nullcline is step-like) and the H to L synapse is graded (and the
L nullcline is sigmoidal). The discussion of the other case is
similar. As discussed in Figure 6, when one of the two synapses is
all-or-none, the two saddle-node bifurcations values VBLeft and
VBRight are identical. Recall that the decay of s will result in the
termination of the L plateau only if VT is to the left of VBRight. In
general, the transition to an L plateau onset occurs when the two
nullclines separate, causing the top left intersection point to
disappear. However, when the L to H synapse is all-or-none, the
growth of s is not sufficient to separate the two nullclines, because

Figure 9. The effect of strength of the reciprocally inhibitory synapses on
the nullclines. A, Increasing the strength of the H to L synapse pulls the
top lef t branch of the L nullcline (solid line) toward the reversal potential
(dotted line) of the H to L synapse. B, Increasing the strength of the L to
H synapse pulls the bottom right branch of the H nullcline (dashed line)
toward the reversal potential (dotted line) of the L to H synapse.

Figure 10. The effect of fast periodic inhibition to H on the nullclines. A,
The H nullcline (dashed line) is shown in the absence of the inhibition (P)
and in the presence of maximal inhibition. This inhibition pulls the top lef t
branch of the H nullcline toward the reversal potential (dotted line) of the
P to H synapse. B, The periodic inhibition of H by P swings the H
nullcline back and forth between the two limits shown in A. The L
nullcline is not affected. At some intermediate value of the P input, the
two nullclines become tangent, producing a saddle-node bifurcation point
(E). The vertical white line indicates the threshold VT for presynaptic
inhibition of s by L.
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VT is to the left of VBLeft (because VBLeft 5 VBRight ; see the
section entitled A necessary condition for oscillations). In the
presence of the P input, the left branch of the H nullcline is
periodically shifted downward (as shown in Fig. 10B). This pro-

vides an alternative way for separating the two nullclines, allow-
ing an L plateau onset. Note that the growth of s corresponds to
accumulating excitatory input in L, whereas the P input corre-
sponds to removing inhibition from L. The L plateau onset in the

Figure 11. Analysis of one cycle of the oscillation in the presence of the periodic P input. A, Top, middle, and bottom traces show the voltage traces of
H and L and the modulatory excitation s. B–E show the VL–VH phase plane at the four representative times marked in A. In each panel, the two dashed
curves show the H nullcline when the periodic input P is at zero and at its maximum. The solid line is the L nullcline, and E denotes the position of the
phase point at that time. In each panel, the arrow indicates the movement of the phase point along the trajectory (shown by the dotted line up to the next
representative time). The vertical white line indicates the threshold VT for presynaptic inhibition of s by L.
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presence of the P input is caused by this periodic removal of
inhibition.

The P input can also be added to an L/H/s network that is
already oscillatory, with minimal changes in the description of
Figure 11. Moreover, whether or not the L/H/s network is oscil-
latory, the input from P determines the timing of the transition
from H plateau to L plateau. The control of the timing of this
transition by P leads to the frequency control mechanism (F.
Nadim, S. Epstein, Y. Manor, J. Ritt, E. Marder, and N. Kopell,
unpublished observations).

DISCUSSION
Symmetric and asymmetric half-centers
Reciprocal inhibition is a common circuit element in the nervous
system. Brown (1914) coined the term “half-center” oscillator to
capture the notion that reciprocal inhibition between functional
antagonists in motor systems could account for the repeating
patterns of alternating activity between flexors and extensors.
Brown (1914) understood that mechanisms for producing the
transitions between activity in the two halves of the circuit were
required. In Brown’s work, and whenever reciprocal inhibition is
found between different classes of neurons, the two sides of the
half-center are, by definition, not identical. In contrast, reciprocal
inhibition also subserves left–right alternation in many motor
systems. For example, in the leech heartbeat system, the kernel of
the central pattern-generating network is formed by two, appar-
ently identical neurons that form reciprocal inhibitory connec-
tions (Calabrese, 1995; Marder and Calabrese, 1996).

There have been a number of theoretical studies on the factors
that control the behavior of half-center oscillators when the two
neurons that form them are identical (Perkel and Mulloney, 1974;
Wang and Rinzel, 1992; Skinner et al., 1993, 1994; Van Vreeswijk
et al., 1994; Nadim et al., 1995; Olsen et al., 1995; White et al.,
1998). However, almost no theoretical work has been done on the
problem of how to produce stable alternating bursts of activity
from reciprocally inhibitory neurons with different intrinsic mem-
brane properties. This is particularly striking because many, if not
most, cases of reciprocal inhibition occur between neurons that
are not likely to have identical properties.

Several workers have noted the necessity of “balancing the
excitability” of the two sides of the half-center to produce rhyth-
mic alternating bursts. For example, Miller and Selverston
(1982b) were able to produce stable half-center-like oscillations
from the reciprocally inhibitory lateral pyloric and pyloric dilator
neurons of the stomatogastric ganglion by injecting current into
one of them. Sharp et al. (1996) used the dynamic clamp to
construct stable half-center activity with gastric mill neurons of
the stomatogastric ganglion and sometimes found it necessary to
set the leakage current to balance the two neurons (A. Sharp,
F. K. Skinner, and E. Marder, unpublished observations). In a
similar situation, Gramoll et al. (1994) demonstrated that a leak
current controls a switch from the peristaltic to the synchronous
activation in the leech heartbeat system.

In this paper we describe mechanisms by which modulatory and
synaptic inputs compensate for the asymmetries in the membrane
properties of two neurons so that they can fire in alternating
bursts in a half-center mechanism (Fig. 12). One take-home
message of our work is that synaptic inputs can form or activate
a functional network by bringing the two neuronal elements into
the balance needed for stable alternation.

In Figure 12 we show several different circuit configurations
that can produce half-center alternations from asymmetric neu-

rons: one tonically firing neuron, H, and one quiescent neuron, L.
In Figure 12A we show a circuit in which there is an inhibitory
synapse from L to H. In the absence of external input, this circuit
will not oscillate. However, a periodic excitatory input to L will
entrain the two cells to fire in alternation at that period. Provided
that the inhibitory synapse between the two cells is fast relative to
the period of the excitatory input, this circuit will faithfully follow
rapid changes in the input period. Alternatively, if the excitatory
input to L is not periodic but is presynaptically gated by L, the
circuit can still produce antiphase oscillations. In this case, the
period of oscillations will be determined by the time constants of
growth and decay of the excitation.

In Figure 12B, the H neuron makes an inhibitory synapse onto
the L neuron. This circuit will not oscillate in the absence of
external drive, but it can produce oscillations if H receives exter-
nal periodic or presynaptically gated inhibition.

In both cases described (shown in Figure 12A,B), there is no
reciprocity between the L and H cells. Hence, the circuit is not
very robust; in particular, an input (modulatory or other) to the
postsynaptic cell (H in A or L in B) may disrupt the antiphase
oscillations. A natural extension of these two elemental circuits is
an asymmetric pair of reciprocally inhibitory neurons such as the
one described in this paper (Fig. 12C). In this circuit external
inhibition of H and external excitation of L synergistically com-
bine to produce robust alternations that can be frequency-
modulated over a large range.

Mathematical analysis
Although a detailed model of this network exists (Nadim et al.,
1998), the small network we present shows with greater clarity the

Figure 12. Schematic drawing showing circuit configurations that can be
driven to produce half-center oscillations from asymmetric neurons. The
basic circuit consists of two neurons that in the absence of extrinsic input
(A–C, lef t column) are quiescent (L) and tonically active (H ). A, Circuit
with a single inhibitory synapse from L to H. An excitatory input to L that
is either periodic (white z) or presynaptically gated by L ( gray z)
produces antiphase oscillations. B, Circuit with a single inhibitory synapse
from H to L. An inhibitory input to H that is either periodic (white z) or
presynaptically gated by H ( gray z) produces antiphase oscillations. C,
Circuit with reciprocally inhibitory synapse between L and H. An exci-
tatory input to L that is presynaptically gated by L and a periodic
inhibitory input to H work synergistically to produce antiphase
oscillations.
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origin of the oscillation and some of its properties, notably what
controls the frequency and how the oscillation depends on pa-
rameters such as synaptic conductances.

We exploit the fact that the three-dimensional system (Equa-
tions 2, 8, and 9) has two fast variables and one slow variable; the
value of the slow variable (the excitation) determines the values of
the voltages to which the two cells rapidly equilibrate. The sepa-
ration of fast and slow time scales is a fundamental tool for
analysis of large classes of equations. Our analysis uses methods
described in Rinzel and Ermentrout (1998), in which slowly
changing parameters can produce sharp changes in system
behavior.

The analysis of oscillations in the network was performed in
terms of a family of slowly moving nullclines in the phase space of
the two voltages, with the amount of excitation to the low cell L
as a parameter. The construction of the periodic solution can also
be made using a family of I–V curves for each of the cells. As
stated in Results, the formulas for the I–V curves are derived
using the nullclines, so the explicit formulas are more complicated
and therefore less transparent for understanding how changes of
parameters change behavior. Other descriptions can also be used.
For example, we (F. Nadim, S. Epstein, Y. Manor, J. Ritt, E.
Marder, and N. Kopell, unpublished observations) have analyzed
the effect of the fast forcing on this three-dimensional oscillator,
and we reduced the oscillator to a two-dimensional model whose
variables are the amount of excitation and the voltage of the
low cell.

Graded transmission can produce network oscillations
from passive neurons
A novel finding described in this paper is that two entirely passive
neurons can generate oscillatory network activity when they are
connected by graded reciprocal inhibitory synapses and receive a
periodic input. The terms “escape” and “release” were intro-
duced by Wang and Rinzel (1992) to describe how the transitions
in a half-center formed from excitable cells occur. In a release,
the transition is determined by the properties of the active neu-
ron, and in an escape it is determined by the properties of the
inactive neuron. In the simplest case, release transitions occur
when the active neuron falls below a voltage threshold sustaining
its burst, and an escape occurs when the inactive neuron crosses
a voltage threshold for burst initiation. Both of these transitions
occur because one of the neurons crosses a voltage threshold
independent of the properties of the other neuron. However, in
the case studied here, in which neither neuron has intrinsic
excitability, the concepts of escape and release are not useful,
because the transitions do not occur because either of the neurons
crosses a voltage threshold. Rather, it is the reciprocal inhibition
that constructs the network excitability, and therefore neither cell
has an individual voltage threshold that can provide a transition
independent of the network.

Here we have studied two kinds of periodic inputs: a fast
synaptic inhibition and a slow modulatory excitation that is con-
verted to a periodic input by its presynaptic inhibition by the
network. The graded activation of synaptic transmission creates a
negative conductance region in the I–V curve that allows the
oscillation to occur. The range and shape of the negative conduc-
tance region in the I–V curve are determined by the steepness of
both synaptic activation curves and the strength of both synapses.

In the absence of the fast periodic input, the period of the
half-center oscillation depends linearly on the rates of growth and
decay of the slow modulatory excitation. The strength and steep-

ness of the reciprocal inhibitory synapses also affect the period,
but in a nonlinear manner. As discussed in detail in Results,
increasing the steepness of activation or the strength of the
inhibitory synapses prolongs the period of the oscillation. The
latter effect was also seen by Sharp et al. (1996). The same
relationships persist in the presence of the fast periodic input, but
the fast input gates the transition time of one phase of the
half-center oscillation.

When there is a periodic input (Fig. 12C), the network will
oscillate if one of the synapses is not graded, as was the case in
Nadim et al. (1998). Moreover, in the absence of a periodic input,
both synapses can be spike-mediated, provided that the durations
of the spike-mediated IPSPs are of the same order of magnitude
as the mean interspike interval during the burst, and either the
synapse shows depression or the presynaptic neuron has spike
rate adaptation. Either of these spike-mediated mechanisms is the
functional equivalent of the graded synapses studied here, when
considered on a time scale that averages over spikes.

Much of this analysis will hold for the case in which the
asymmetric neurons are not passive but have excitable mem-
branes. We have shown that a necessary condition for oscillations
is that the threshold for presynaptic inhibition of the modulatory
input is within a finite voltage interval. In some cases, intrinsic
neuronal excitability may make the network oscillations more
robust by widening this voltage interval. This will occur if the
intrinsic excitability enlarges the negative conductance region of
the I–V curve produced by the graded synapses. In other cases,
the intrinsic voltage-dependent membrane conductances of the
neurons may attenuate the negative conductance region of the
I–V curve and therefore decrease the stability of the network
oscillations.

Activation of an asymmetric half-center is an example
of circuit reconfiguration
The asymmetric half-centers studied here do not function in the
absence of their modulatory or synaptic drive. Therefore, al-
though the circuit may be anatomically present, it will not be
functional until enabled by the appropriate modulatory inputs
that act to balance the well poised but inactive networks. In the
case of MCN1 activation of the gastric mill rhythm, a slow
modulatory excitation is the mechanism by which the half-center
is balanced (Coleman et al., 1995). However, one can imagine a
host of modulatory mechanisms (Harris-Warrick et al., 1992;
Marder and Calabrese, 1996) that could bring the two sides of a
half-center network close enough into balance to allow the circuit
to work. In summary, we provide here an analysis of several
mechanisms relevant to the activation of rhythmic alternation in
half-center oscillators formed by nonidentical elements. The chal-
lenge in biological terms is to understand the cellular mechanisms
by which modulatory substances and synaptic inputs achieve the
right balancing act.
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