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Abstract

Male reproductive alterations found in animals and humans following in utero phthalate exposure 

include decreased anogenital distance (AGD) and other reproductive-tract malformations. The aim 

of this investigation was to conduct systematic reviews of human and animal evidence of the effect 

of in utero exposure to diethylhexyl phthalate (DEHP) on anogenital distance (AGD) in males. 

PubMed, Embase, and Toxline were searched for relevant human and experimental animal studies 

on August 15, 2016. Search results were screened for relevance, and studies that met the inclusion 

criteria were evaluated for quality and data extracted for analysis. Confidence in the human and 

animal bodies of evidence was assessed and hazard conclusions reached by integrating evidence 

streams. The search yielded 6 relevant human studies and 19 animal studies. Meta-analysis of 5 

human observational prospective cohort studies showed that increased maternal urinary 

concentrations of DEHP metabolites were associated with decreased AGD in boys (−4.07 [CI, 

−6.49 to −1.66] % decrease per log10 rise in DEHP metabolites). Meta-analysis and meta-

regression of the 19 experimental animal studies found reduced AGD with DEHP treatment, with 

a dose-response gradient, and with heterogeneity explained by species and strain. There is a 

moderate level of evidence from human investigations and a high level of data from animal studies 

that in utero exposure to DEHP decreases AGD. Based upon the available human and animal 

evidence, and consideration of mechanistic data, DEHP is presumed to be a reproductive hazard to 

humans on the basis of effects on AGD.
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Introduction

Phthalates are widely used in a variety of consumer products and human exposure to 

phthalates occurs following ingestion, dermal exposure, or inhalation (CDC 2009; Lioy et al. 

2015). Biomonitoring efforts performed by National Health and Nutrition Examination 

Survey (NHANES) and others generally rely on the measurement of urinary phthalate 

metabolite concentrations (Howdeshell et al. 2017; Johns et al. 2015). Phthalates cross the 

placenta (Fennell et al. 2004), and phthalates and their meta-bolites have been measured in 

amniotic fluid (Silva et al. 2004; Calafat et al. 2006; Huang et al. 2009). Transplacental 

phthalate delivery may lead to adverse developmental effects in animals and may exert 

similar effects in humans (Gray et al. 2000). In the rat, alterations in male reproductive-tract 

development are one of the most sensitive health outcomes of in utero phthalate exposure 

(CHAP 2014; NRC 2008). In rats, most phthalates with ester side chains containing 4–6 

carbon atoms are anti-androgenic, whereas some other phthalates (e.g., dimethyl and diethyl 

phthalate) are not anti-androgenic and were not found to adversely affect male reproductive 

tract development or function in rats (Furr et al. 2014; Gray et al. 2000).

Male reproductive alterations found in animals following in utero phthalate exposure have 

been referred to as “phthalate syndrome” and include decreased anogenital distance (AGD), 

decreased sperm count, cryptorchidism, hypospadias, infertility, and other reproductive tract 

malformations (Gray et al. 2000; NRC 2008). Androgen-dependent development of the male 
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reproductive tract and the androgen-dependence of AGD appear to be well conserved across 

mammals including humans (Hsieh et al. 2012; Jain and Singal 2013; Thankamony et al. 

2014). A hypothesized syndrome in individuals (“testicular dysgenesis syndrome”) shares 

some of the same endpoints as rat phthalate syndrome (NRC 2008; Skakkebaek 2002; 

Wohlfahrt-Veje, Main, and Skakkebaek 2009); however, the etiology of the proposed human 

syndrome remains unknown. The United States and the European Union have regulated the 

use of certain phthalates in children’s toys and childcare articles due to concerns about 

phthalate toxicity (Negev et al. 2018).

The review question and specific aims in the present systematic reviews (SRs) were 

developed and refined through a series of scoping and problem formulation steps. The 

present SR focused on in utero exposure to diethylhexyl phthalate (DEHP) and effects on 

AGD in male offspring because of the weight of the data available on DEHP versus other 

phthalates, as well as the availability of rat and human data. The present SR was designed to 

address whether in utero exposure to DEHP affected AGD in male offspring.

Methods

Prior SR activities with DEHP and AGD

This study is an offshoot of a National Academies of Sciences, Engineering, and Medicine 

(NASEM) report that applied SR methods in the evaluation of low dose endocrine effects 

(NASEM, 2017). The NASEM report included SRs of the human and animal evidence on 

the effects of in utero exposure to phthalates on male reproductive toxicity based on the 

following outcome measures: AGD; fetal testosterone levels; and incidence of hypospadias 

(NASEM 2017). The present study focuses on the portion of the NASEM report that 

evaluated the effect of DEHP on AGD.

Problem formulation and protocol development

Problem formulation approaches and protocols for the conduct of the SR were developed 

and peer reviewed in accordance with NASEM review practices. The protocols were based 

on the method developed by the National Toxicology Program’s Office of Health 

Assessment and Translation (OHAT) for conducting SR (hereto referred to as the OHAT 

method) (NTP 2015). The protocols specified the research questions; the literature search 

strategy; the inclusion/exclusion criteria used for identifying relevant studies; framework for 

judging the quality of included studies; and plan for data analysis, synthesis and presentation 

of findings (Stephens et al. 2011). The protocols and other details of methods are available 

from the full report (NASEM 2017).

Research questions

The following research questions were developed for the human and animal systematic 

reviews:

• Human: What is the effect of in utero exposure to DEHP on AGD in male 

children?
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• Animals: What is the effect of in utero exposure to DEHP on AGD in nonhuman 

male animals?

Population, exposure, comparator, and outcome (PECO) statements

The following PECO statements were developed for the animal and human systematic 

reviews:

Human:

• Population: Male humans

• Exposure: In utero exposure to DEHP. No restrictions based on route of 

exposure. Measurements must be based on biomonitoring data (e.g., 

mono-2-ethylhexyl phthalate [MEHP], mono-[2-ethyl-5-hydroxyhexyl] 

phthalate [MEHHP], mono-[2-ethyl-5-oxohexyl] phthalate [MEOHP], 

mono-[2-ethyl-5-caroxypentyl] phthalate [MECPP], sum of DEHP 

metabolites).

• Comparator: Male humans exposed in utero to lower concentrations of 

DEHP.

• Outcomes: AGD: the measured distance between the anus and the genitals. 

Typically measured from the anus to the base of the scrotum or the base of 

the phallus. Other measures that might be used include: (a) anogenital index 

(AGI): AGD measurement divided by body weight or by the cube root of 

body weight; (b) anoscrotal distance (ASD): the measured distance between 

the anus and base of the scrotum; or (c) anopenile distance (APD): the 

measured distance from the anus to the base of the penis.

Animals:

• Population: Nonhuman male mammals

• Exposure: In utero exposure to DEHP. Oral route of exposure.

• Comparator: Male nonhuman mammals exposed in utero to different doses 

of DEHP or vehicle-only treatment.

• Outcomes: See human outcomes above.

Literature searches

A search string employing medical subject heading (MeSH) terms and keyword synonyms 

was developed. The PubMed search strategy was considered the primary search strategy and 

provided the basis for the other electronic search strategies. To assist in compiling these 

MeSH terms, 8 human and 25 animal articles were selected for review to help identify 

spelling variants. The search strategies addressed each of the following concepts: phthalates 

(e.g., CAS registry numbers were included in the list of search terms), exposure, species, and 

outcomes. The search for animal literature was completed using a published search filter to 

eliminate non-mammalian animals (Hooijmans et al. 2010). The search for literature using 

humans employed a search filter to identify human studies (Higgins and Green 2011) that 
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was modified to comply with PubMed formatting. Each of the above search concepts were 

searched together using the Boolean operator “AND.” PubMed, Embase, and Toxline 

databases were searched for investigations on the effects of phthalates on male reproductive 

tract development on August 15, 2016. Reference lists of eligible studies were also searched.

Screening process

References were independently screened for inclusion criteria at the title and abstract level 

and at the full-text level by two individuals using a web-based project management tool for 

tracking studies through the screening process (DistillerSR, Evidence Partners Inc., Ottawa, 

Canada). References were excluded if they met at least one of the following criteria:

• No original data (e.g., review article, commentary, editorial)

• Study does not include relevant population of interest (e.g., male humans or 

nonhuman mammals)

• Study does not report phthalate exposure

• No relevant outcomes

• Incomplete information (e.g., conference abstract, meeting poster)

• Not in English and unable to determine eligibility

• Other (explanation required)

Data extraction

Data from the included studies were entered into a web-based visual display software system 

(HAWC; https://hawcproject.org). One person entered data and a second individual verified 

the entries. All data entered into HAWC are available at the following links: https://

hawcproject.org/assessment/351/ (for the animal assessment) and https://hawcproject.org/

assessment/350/(for the human assessment).

Quality assessment of individual studies

Risk of bias (RoB) and other study quality elements were assessed using the OHAT RoB 

tool (NTP 2015) tailored to the SRs, and involved answering up to nine questions, based on 

the type of study (Supplemental Table 1). Three elements were considered more important 

for assessing the quality and potential bias in each data set. The 3 key elements in the human 

epidemiologic studies included control for confounding, exposure characterization, and 

outcome assessment (including blinding of outcome assessors). The following variables 

were considered as key potential confounders and/or effect measure modifiers that were 

considered in the analyses of the relationship between phthalate exposure and AGD: a 

measure of weight or body size at exam, a measure of weight or body size at birth, age at 

exam, and measure of urinary dilution (specific gravity, creatinine, or osmolality) or 

indication that exposure measure was adjusted for urinary dilution. The quality assessment 

also included consideration of the exposure characterization in the epidemiologic studies, 

including the reliability of the analytical chemistry methods used, whether exposure 

biomarkers were measured in a relevant time-window for the outcome, and whether the 

analysis accounted for urinary dilution. In animal studies, the key elements included whether 
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or not animals were randomly assigned to treatment groups, outcome assessment (including 

blinding of outcome assessors to treatment groups), and investigator control for litter effects 

in the experimental design or statistical approaches (e.g., using the “litter” as the statistical 

unit of analysis, or utilizing a nested model or another statistical method that accounts for 

intra-litter correlation). The quality assessment of the animal studies also considered when 

outcome assessments were performed (i.e., age), characterization of the test chemical, 

exposure methods, concealment of allocation to study groups, and information regarding 

attrition and data exclusion. Two-person teams independently assessed each study and 

answered all applicable questions. One individual from each pair then reconciled any 

discrepancies with input from the second person. Study authors of a publication under 

review were recused from the evaluation of that study. Elements were rated as definitely low 

RoB, probably low RoB, probably high RoB, definitely high RoB, or not reported (NR). A 

rating of NR was considered equivalent to probably high-risk RoB.

Data analysis of the human studies

The body of evidence was synthesized qualitatively and, where appropriate, a meta-analysis 

was performed. In some cases multiple AGD measurements were collected, in these cases, 

anoscrotal measurements, AGD(as), was preferred in the analysis over anopenile 

measurements, AGD (ap), because AGD(as) is a more reliable measurement 

(Sathyanarayana 2015). Phthalate exposure measurements performed in the first trimester 

were preferred over the second trimester, which was preferred over the third trimester, 

because the male programming window is approximately gestation weeks 8–14 in the 

human (Welsh et al. 2008). The sum of DEHP metabolites was the preferred exposure metric 

over MEHP, which was preferred over any of the other DEHP metabolites, because the sum 

better reflects the parent compound exposure. For the studies by Bustamonte-Montes et al. 

(2013) and Swan (2008), the confidence intervals were estimated using the reported p-value, 

assuming a normal distribution. For other studies, confidence intervals were included in the 

published manuscript. Slopes (beta coefficients) were reported in the evaluated human 

literature as units of change in mm per log10 change in urinary concentrations of DEHP 

metabolites. To standardize effect sizes across studies, each reported beta coefficient was 

divided by the mean value of the reported outcome measure prior to conducting the meta-

analysis. The result is that each beta coefficient was standardized to a percent change in 

AGD per log10 change in urinary DEHP metabolite concentrations.

Data analysis of the animal studies

The body of evidence was synthesized qualitatively and, where appropriate, a meta-analysis 

was performed. Summaries of main characteristics for each study used in the meta-analysis 

were evaluated to determine comparability between studies, identify data transformations 

necessary to ensure comparability, and determine whether heterogeneity was a concern. The 

main characteristics considered across all eligible animal studies included: experimental 

design, species and age, exposure (developmental stage, dosing), health outcomes, type of 

data and statistical methods, and variation in the degree of RoB at the individual study level. 

Animal studies in which exposures did not cover the entire male programming window 

(gestation days 16–18 in the rat and gestation days 14–16 in the mouse, respectively (Welsh 

et al. 2008)) were excluded from the meta-analysis. When multiple AGD measures were 

Dorman et al. Page 6

J Toxicol Environ Health B Crit Rev. Author manuscript; available in PMC 2019 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported in an animal study the following priority was used: (a) the earliest postnatal time 

point was used when AGD was measured at multiple time points; and (b) for studies that 

reported AGD in multiple units, AGD in mm/cube root of body weight was preferred 

followed by AGD in mm/body weight and AGD in mm. Effect sizes were calculated as 

follows:

yi = 100 × In mean o f treatment group i
mean o f concurrent control group

= 100 × In 1 +
%changei

100

For instance, a −5% change corresponds to y = −5.1. This transformation resulted in 

confidence intervals that are more symmetric and closer to normal (Lajeunesse 2011). A 

standard random effects model was applied in the meta-analysis, using the Restricted 

Maximum Likelihood Estimate as implemented in the R package metafor (Raudenbush 

2009; Viechtbauer 2005, 2010).

yi = μ + ui + εi

where yi is the observed effect size for group i; μ is the average true effect size; μ + ui is true 

effect size for group i, which is normally distributed μ ~ N(0,tau2); and εi ~ N(0, vi) is the 

sampling error, where vi is calculated based on the reported sample sizes and standard 

deviations of the treatment and control groups. In this model, different treatment groups in 

the same study are treated as independent, even though they usually share a common control 

group, leading to inter-group correlations. To check the impact of these correlations, one of 

the sensitivity analyses involved choosing the single highest treatment group from each 

study, so that each yi represents a separate study, and is therefore independent. A separate 

sensitivity analysis involved leaving one study out at a time, to check if any single study was 

highly influential. The average true effect μ was estimated along with its 95% confidence 

interval (CI) and z-score. For evaluating heterogeneity, tau2 was estimated, as well as the Q 

statistic and its p-value (whether there is statistically significant heterogeneity) and the I2 

index (I2 = tau2/overall variance). Rat and mouse data were analyzed separately, due to 

known anticipated species differences in sensitivity to phthalates (Johnson, Heger, and 

Boekelheide 2012). In addition, rat data were subjected to a subgroup analysis by strain 

because of anticipated differential sensitivity across strains (Wilson et al. 2007). Meta-

regression of the animal AGD data was also used for benchmark dose (BMD) estimates. 

Meta-regression involved adding nj predictors xj,i to the random effects model in an attempt 

to explain the residual heterogeneity.

yi = μ + ui + ∑ j = 1…n j
β jx j, i + εi

The meta-regression analyses focused on the dose–response relationship. Three models were 

used: linear: x1,I = dosei log-linear: x1,I = log10 (dosei), and linear-quadratic: x1,I = dosei; x2, 
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I = dose2
i. For the linear and linear-quadratic models, the “intercept” term μ was omitted to 

ensure that there was no effect at dose = 0. These two models were also used to estimate 

BMD values based on the average true effect across studies yavg(dose) = β1 × dose and yavg 

(dose) = β1 × dose + β × dose2. As with the standard BMD methodology, Akaike’s 

Information Criterion (AIC) was used to select the preferred model. Covariates such as 

species and strain were assessed by sub-group analyses.

Confidence rating and level of evidence conclusions

The confidence in each body of evidence was evaluated separately for the human and animal 

data using the GRADE system for evidence assessment as adapted in the OHAT 

methodology (Guyatt et al. 2011; Rooney et al. 2014). In brief, data were initially grouped 

within outcomes by key study design features, and each grouping of investigations was given 

an initial confidence rating of high, moderate, low, or very low based upon these features. 

Several factors were then considered to determine whether the initial rating should be 

downgraded or upgraded (see Table 1). Confidence ratings were independently assessed by 

two individuals, and discrepancies were resolved by consensus through discussion with a 

third individual. After a final confidence rating was determined, the rating was translated 

into a level of evidence using the scheme developed by OHAT (NTP 2015).

Integration of evidence and drawing hazard identification conclusions

The OHAT framework was used to draw hazard identification conclusions (NTP 2015). The 

procedure involves integrating the levels of evidence ratings for the human and animal data 

and considering them within the context of biological plausibility provided by mechanistic 

information. The 5 possible hazard conclusions considered were: (1) known, (2) presumed, 

(3) suspected, (4) not classifiable, or (5) not identified to be a hazard to humans. If either the 

animal or the human evidence stream was described as having inadequate evidence, 

conclusions were drawn based on a single evidence stream.

Results

Search results

Sixteen studies assessing the effect of in utero exposure to phthalates on male reproductive 

effects in humans were identified (Figure 1(a)), and 13 met the inclusion screening criteria. 

Three studies (Adibi et al. 2015; Barrett et al. 2016; Martino-Andrade et al. 2016) involved 

“subanalyses” of a cohort by Swan et al. (2015) and one study (Swan 2008) had expanded 

results from an earlier study on the same cohort by Swan et al. (2005) and included a larger 

sample size. To avoid double-counting data from the same cohort, the studies from Adibi et 

al. (2015), Barrett et al. (2016), and Swan et al. (2005) were excluded from data extraction. 

Martino-Andrade et al. (2016) was retained because it provided additional information 

beyond Swan et al. (2015) on windows of exposure during the second and third trimester. Of 

the 13 phthalate studies, 6 studies evaluated DEHP (Figure 1(a) and Table 2).

Seventy studies assessed the effect of in utero exposure to phthalates on male reproductive 

effects in male non-human mammals (Figure 1 (b)). Of the 70 studies, 19 studies evaluated 
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DEHP and AGD; 16 studies used the rat model and 3 studies used the mouse model (see 

Table 3).

RoB evaluation

Most of the human studies had either a low or a very low RoB rating across domains (Figure 

2(a)). Although most animal studies had low or very low RoB for a majority of domains, 

several domains were commonly rated as “not reported” because reporting of methods and 

results was incomplete. Most animal studies were rated as having a probably high RoB 

(Figure 2(b)) for inadequately describing the method of AGD measurement and/or the 

reliability of the test methods used to measure AGD (e.g., use of micrometer caliper or 

reticule micrometer), and not reporting whether blinding of the outcome assessor was 

performed. In addition, in 8 animal studies, the experimental design and/or statistical 

methods did not explicitly account for litter effects. There was no qualitative evidence of 

publication bias in either the animal or human literature.

Effects of DEHP on AGD in humans

Five prospective cohorts contributed data to the analysis of human data on DEHP and AGD 

(Bornehag et al. 2015; Bustamante-Montes et al. 2013; Jensen et al. 2016; Swan 2008; Swan 

et al. 2015). Suzuki et al. (2012) was not included in the meta-analysis because it was the 

only study that reported results only as AGD index (AGD divided by body weight). The 

results of the meta-analysis are presented in Figure 3 (upper half). In the primary analysis, 

the data from 5 studies were expressed as beta coefficients standardized to a percent change 

per log10 change in urinary DEHP metabolite concentrations, and analyzed using a random 

effects model. A significant summary estimate of −4.07 (95% CI: −6.49, −1.66; [p = 

0.0009]) was found for the change in AGD per log10 rise in urinary DEHP metabolite 

concentrations. There was no significant heterogeneity, with an estimated I2 value of 0% (Q 

statistic was not statistically significant). Two studies (Swan 2008; Swan et al. 2015) 

accounted for over 60% of the weight in the summary estimate. Figure 3 (bottom half) 

shows the sensitivity analyses that were performed by leaving one study out at a time. 

Leaving one study out at a time, the summary estimates ranged from −4.35 to −3.59. The 

summary estimate remained significant in all cases, with p-values ranging from 0.0007 to 

0.019. There was no observed heterogeneity in any of these cases (I2 value of 0%). After the 

Swan studies, the next largest weight in the summary estimate was obtained from Jensen et 

al. (2016).

Sensitivity analyses were further performed using alternative effect estimates for each study 

(Supplemental Table 2). The summary estimates ranged from −4.78 to −1.51. In 11 of the 42 

alternative analyses, the summary estimates were no longer significant (summary estimates 

range from −1.51 to −2.69), with p-values ranging from 0.05 to 0.41. All of the non-

significant alternative analyses involved replacing the Swan et al. (2015) results using first 

trimester DEHP metabolite measurements with results from Martino-Andrade et al. (2016) 

using second trimester or third trimester DEHP metabolite measurements. Each of these 

analyses also led to greater heterogeneity (I2 up to 54%, though none were significant). 

Finally, 8 additional sensitivity analyses were conducted restricting the included results to 

more homogeneous exposure and/or outcome measures (e.g., using only the sum DEHP 
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metabolite estimates). The resulting summary estimates ranged from −4.2 to −2.0, all of 

which were significantly different from 0. Further, there was no observed heterogeneity in 

any of these cases (I2 = 0).

Effects of DEHP on AGD in animals

In all, 13 of the 16 rat studies and all 3 of the mouse studies were included in the analysis; 3 

of the rat studies were excluded because they were missing group size values (Borch et al. 

2004; Jones et al. 2015; Vo et al. 2009). A significant overall reduction in rat AGD was 

found (−3.96 [95% confidence interval (CI)]: −5.07, −2.85). Significant linear trends in 

log10(dose) (–1.97 [95% CI: −2.98, −0.96]) and dose (−1.55 [95% CI: −1.86, −1.24]) were 

also noted. No single study was found to influence the results, as the overall effect was 

robust to leaving out individual studies. Using the linear-quadratic model, there was low 

heterogeneity (I2 = 23%, p = 0.12), with a BMD5 estimated to be 270 mg/kg-day (95% CI: 

180, 420). When analysis was restricted to the highest dose group, there was a larger overall 

effect, larger linear trend in log10(dose), consistent linear trend in dose, and consistent 

BMD5 estimates. In subgroup analyses, there were significant overall effects and linear 

trends in log10(dose) and dose for Sprague-Dawley and Wistar rats separately, with reduced 

heterogeneity. Sprague-Dawley rats appeared somewhat less sensitive than Wister rats, with 

smaller overall effect sizes, smaller trend in log10 (dose), and larger benchmark dose 

estimates. Specifically, a BMD5 for Sprague-Dawley rats was estimated to be 290 mg/kg-

day (95% CI: 170, >1,000), whereas the BMD5 for Wistar rats was estimated to be 150 

mg/kg-day (95% CI: 100, 280). The results of linear-quadratic meta-regression, the model 

with the lowest Akaike information criterion (AIC) corrected for finite sample sizes (AICc), 

are shown in Figure 4.

No significant overall effect for DEHP and changes in mouse AGD were seen, but there 

were significant linear trends in log10(dose) (−1.77 [95% CI: −2.71, − 0.85]) and dose 

(−2.03 [95% CI: −3.51, −0.55]). Under the linear-quadratic model, there was low 

heterogeneity (0%, p = 0.19), with the BMD5 estimated to be 110 mg/kg-day (95% CI: 90, 

150). When the analysis was restricted to the highest dose group, there remained no 

significant overall effect, and there was no longer a significant linear trend. The overall 

effect was no longer significant when leaving out some individual studies during the 

sensitivity analyses. The results for the overall effect estimate, which had the lowest AICc, 

are illustrated in Figure 5.

Confidence in the body of evidence

The human studies involved exposures that occurred prior to the outcome; outcomes were 

measured on individuals; and the inclusion of a (control) comparison group. These factors 

led to an initial moderate rating for the confidence in the human studies (Table 1). There 

were no marked changes in the confidence rating for the human evidence after considering 

factors that might increase or decrease confidence.

The initial rating for the confidence in the animal studies was high (Table 1) because they 

involved controlled exposures, exposures occurred prior to the outcome, outcomes were 

measured on individual animals, and a concurrent control comparison group was used. One 
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factor that decreased confidence was the concern of significant RoB (described above under 

“RoB Evaluation”) related to confidence in the reliability of outcome measure, blinding of 

investigators to the treatment groups, and control for litter effects. However, confidence was 

not downgraded because two factors increased confidence in the evidence, a large magnitude 

of effect and evidence of a dose-response relationship.

Level of evidence for the health effect

The results from the human studies demonstrate a consistent pattern of findings that higher 

maternal urinary concentrations of DEHP metabolites during the prenatal male genital 

programming window are associated with a smaller AGD in male infants compared to 

infants whose mothers contained lower DEHP exposures during pregnancy. In accordance 

with the OHAT method (NTP, 2015), evidence of an effect combined with a moderate 

confidence rating in the body of evidence leads to the conclusion that there is a moderate 

level of evidence in humans that fetal exposure to DEHP is associated with a reduction in 

AGD.

A meta-analysis of the animal studies found consistent evidence of a decrease in AGD after 

in utero exposure to DEHP in rats only; thus, rat data was used in the final evidence 

integration step. Evidence of an effect and a high confidence rating in the body of evidence 

led to the conclusion that there is a high level of evidence in male rats that fetal exposure to 

DEHP is associated with a reduction in AGD.

Evidence integration

The human and animal bodies of evidence present a consistent pattern of findings that fetal 

exposure to DEHP is associated with reduced AGD in male offspring. Changes in AGD are 

considered an adverse effect. Under the OHAT method, a combination of a moderate level of 

human evidence and a high level of animal evidence leads to the conclusion that DEHP is 
presumed to be a reproductive hazard to humans on the basis of effects on AGD.

Discussion

This study found consistent moderate evidence that increasing maternal prenatal urinary 

concentrations of the sum of DEHP metabolites was associated with reduced AGD in male 

infants. The present study also found consistent high evidence of decreased AGD in male 

rats after fetal exposure to DEHP, with a modest dose-response gradient. Integration of these 

results supported the conclusion that DEHP is presumed to be a reproductive hazard to 

humans on the basis of effects on AGD. This conclusion is further supported by a recent 

NASEM report that included the result of animal and human SRs that also considered 

changes in fetal testosterone levels and hypospadias incidence following in utero DEHP 

exposure (NASEM 2017). Unlike the present study, NASEM conclusions concerning DEHP 

effects on fetal testosterone (“presumed to be a reproductive hazard to humans’) and 

hypospadias (“suspected to be a reproductive hazard to humans”) rested solely on animal 

evidence since insufficient human evidence was available to assess whether exposure to 

DEHP is associated with these outcomes (NASEM 2017). Our conclusion that DEHP is 

presumed to be a reproductive hazard to humans is also supported by mechanistic evidence, 
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including an adverse outcome pathway (AOP), from the rat of reproductive toxicity after in 
utero phthalate exposure during the period of sexual differentiation (Howdeshell et al. 2015). 

Maternal rat exposure to endocrine-active phthalates during late gestation might reduce the 

expression of genes encoding proteins involved in steroidogenesis in the fetal testis Leydig 

cells. Affected proteins can include CYP11A1, CYP17A1, translocator protein (18-kDa) 

(TSPO), and steroidogenic acute regulatory protein (STAR) (Borch et al. 2006; Gray et al. 

2000). Decreased steroidogenic protein expression in fetal rat Leydig cells can result in 

diminished fetal testis testosterone production. If exposure occurs during the in utero male 

programming window, developmental alterations in androgen-dependent tissues might 

occur, including reduced expansion of the perineum resulting in a decrease in AGD and 

altered urethral epithelium closure resulting in hypospadias (Howdeshell et al. 2015). 

However, the molecular initiating event producing reductions in fetal testis steroidogenic 

mRNA levels remains unknown. Data from xenograft studies in which fetal rat, mouse, and 

human testes were implanted in nude rats or mice exposed to dibutyl phthalate (DBP) 

indicate that human testes appear to be less sensitive to the effects of phthalates on 

steroidogenic gene expression when compared with the rat (Heger et al. 2012; Mitchell et al. 

2012).

Some animal strain and species differences were seen in the present study. For example, 

Sprague-Dawley rats were less sensitive than Wistar rats to DEHP effects on AGD, with a 

BMD5 of around 300 mg/kg-day compared to 150 mg/kg-day, whereas mice have a BMD5 

of 250–350 mg/kg-day. These strain and species differences may relate to DEHP effect on 

fetal testosterone production. Studies demonstrated that reproductive-tract malformations 

were found in male rats when fetal testosterone production was reduced by about 25–70% 

(Howdeshell et al. 2015). The association between decreases in fetal testosterone and 

changes in AGD in other species is less clear. For example, studies conducted in mice with a 

structurally related phthalate, di-n-butyl phthalate (DBP), noted that reduced fetal testicular 

testosterone occurs in rats, but not in mice, following in utero exposure (Gaido et al. 2007; 

Johnson, Heger, and Boekelheide 2012). In the present study, a significant overall effect on 

AGD and DEHP exposure was not seen in male mice, thus rat data were relied upon in the 

final analysis.

When the human and experimental animal data were analyzed similarly (estimating the 

magnitude of change for each log10 increase in DEHP), the effect estimates were similar: 2–

6% for humans, 0–2% for Sprague–Dawley rats, 1–5% for Wistar rats, and 1–3% for mice. 

Thus, these estimates were largely concordant; however, the dose ranges in which these 

estimates are observed differ substantially between humans and rats. For example, estimates 

of mean daily intake in adults in the US population range from approximately 0.0006–0.002 

mg/kg-day (Lorber, Angerer, and Koch 2010) to 0.011 mg/kg-day (Lorber and Calafat 

2012). Published estimates of daily DEHP intake in adults were therefore several 1000-fold 

lower than the calculated BMD5 (>100 mg/kg-day) for effects of DEHP on AGD in rodents. 

However, intake is not necessarily reflective of biologically active dose, due to potential 

differences in pharmacokinetics. Fetal DEHP metabolite concentrations have not been 

measured in human studies but when one considers urinary and amniotic fluid MEHP 

concentrations, differences between biomarkers of exposure in humans versus animals dosed 

near the BMD5 were substantially reduced as compared to the daily intake estimates. For 
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instance, one human study reported a median amniotic fluid MEHP concentration of 23 

ng/ml (Huang et al. 2009), which is only 3-fold lower than the mean amniotic fluid MEHP 

concentration of 68 ng/ml reported in pregnant rats exposed to 11 mg/kg-d (Calafat et al. 

2006). In addition, peak concentrations and area under the curves for MEHP and DEHP in 

human serum in human volunteers given deuterated DEHP are markedly greater than those 

noted for either rats or marmosets given comparable administered doses (Kessler et al. 2012; 

Koch, Bolt, and Angerer 2004).

In humans, several studies reported that newborns with hypospadias or cryptorchidism 

exhibited shorter AGD than infants without these abnormalities (Hsieh et al. 2012; Jain and 

Singal 2013; Thankamony et al. 2014). In addition, several cross-sectional studies in adult 

males found that men who have reduced fertility, including lower sperm concentration, 

count, and motility, display shortened AGD (Eisenberg et al. 2011, 2012; Mendiola et al. 

2011; Eisenberg and Lipshultz 2015). However, the quantitative relationship between 

reduced AGD and increased risk of apical endpoints remains uncertain.

Meta-analysis of animal data remains in its early stages and this study provides a novel 

illustration of how meta-analysis and meta-regression might be used to integrate animal data 

across studies. Meta-analysis techniques are more robust than relying on individual study 

results, because they (1) account for potential heterogeneity across studies, (2) consider the 

number of studies when calculating variance and 95% confidence intervals for meta-

estimates, and (3) increase statistical power as compared to each individual study. Further, 

results of the meta-analyses of animal and human evidence directly contributed to 

consideration of the “down/upgrading” factors of imprecision (through summary estimates), 

unexplained inconsistency (through analyses of heterogeneity and subgroup analyses), large 

magnitude of effect (through summary estimates and meta-regression), and dose-response 

gradient (through meta-regression). Meta-analyses of the animal evidence also supported the 

estimate of benchmark doses for DEHP effects on AGD. Further, a rigorous and unbiased 

inclusion of studies that used a common endpoint measured across the animal and human 

studies enabled consistent meta-analyses approaches between these two bodies of evidence.

In conclusion, our results show that exposure of the fetus to DEHP is associated with 

decreased AGD in male offspring and DEHP is presumed to be a reproductive hazard to 

humans. Future risk assessments for DEHP need to take into account that humans are 

exposed to multiple anti-androgenic phthalates, some of which may confound associations 

of DEHP with AGD. Further, exposure to multiple anti-androgenic phthalates necessitates 

the need for risk assessors to consider cumulative risk from DEHP and other anti-androgenic 

phthalates (Howdeshell, Hotchkiss, and Gray 2017; NRC 2008). Our study also illustrates 

how animal and human evidence may be identified, analyzed, and integrated to draw hazard 

conclusions using a systematic methodologic approach. Meta-analyses of the animal and 

human evidence helped strengthen this data integration and supported quantitative evaluation 

of the relationships between endocrine active chemicals and endpoints of interest to inform 

the confidence ratings of the bodies of evidence.
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Figure 1. 
Summary of the search and screening of the literature on the effects of in utero exposure to 

phthalates on male AGD in humans (A) and animals (B). The initial search and screening 

process identified studies of any ortho phthalate and effects on AGD, fetal testosterone, or 

hypospadias. The studies were subsequently divided by individual phthalates and by effect. 

This figure depicts the number of relevant studies on DEHP and effects on AGD.
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Figure 2. 
Risk of bias heatmap of studies of DEHP and AGD in humans (A) and animals (B). The 

study by Martino-Andrade et al. (2016) does not appear in the heatmap of the human studies 

because it is linked to the Swan et al. (2015) study; it has the same risk of bias evaluation as 

that study. In HAWC: https://hawcproject.org/summary/visual/341/.
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Figure 3. 
Results of the meta-analysis of studies on DEHP and AGD in humans are shown as the 

percent change per log10 change in DEHP concentration, including sensitivity analyses 

leaving one study out at a time. Each box and whisker represents the point estimate and 95% 

confidence interval for each study, with the size of the box proportional to the inverse-

variance weight. Diamonds represent summary estimates under a random effects (RE) 

model, both overall and with individual studies removed.
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Figure 4. 
Results of the meta-regressions of studies on DEHP and AGD in rats. The overall effect of 

treatment in each strain is shown at the bottom of each subgroup analysis above as the 

change per 100 mg/kg-day. Each box and whisker represents the point estimate and 95% 

confidence interval for each study, with the size of the box proportional to the inverse-

variance weight. Grey diamonds that overlap with the box and which represents the 

predicted effect size (95% CI) under the meta-regression; grey diamonds alone represent the 

fitted linear and/or quadratic coefficients (95% CI) for the subgroup; and black diamonds 

alone represent the fitted coefficients (95% CI) overall.
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Figure 5. 
Results of the meta-analysis of studies on DEHP and AGD in mice. The overall effect of 

treatment is shown at the bottom of the figure as the change per 100 mg/kg-day. Each box 

and whisker represents the point estimate and 95% confidence interval for each study, with 

the size of the box proportional to the inverse-variance weight. Grey diamonds that overlap 

with the box and which represents the predicted effect size (95% CI) under the meta-

regression; and black diamonds alone represent the fitted linear and quadratic coefficients 

(95% CI) overall.
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