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Abstract

Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it
inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on
Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding
fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of
photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical
redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic
pathways for chemolithoautotrophic microorganisms evolved earlier in Earth’s history than those of surface-dwelling
phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas
the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the
terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to
3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving
the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to
emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets
subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and
low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops,
and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and
diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved
in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at
micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the
search for life on Mars. Key Words: Subsurface life—Microbial diversity—Biosignatures—Mars—Search for life.
Astrobiology 19, 1230–1262.

1. Introduction

From the mid-1980s to early 1990s, evidence accumu-
lated from both the continental and marine realms of a

vast, well-populated underground biosphere that was on par

with the total biomass on Earth’s surface (Onstott, 2016). The
discovery by Stevens and McKinley (1995) of subsurface
lithoautotrophic microbial ecosystems (SLiMEs), fueled by
H2 that was generated by reaction of water with Fe-bearing
minerals in basaltic aquifers, had an immediate impact on the
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planetary science community, especially with respect to the
search for extant life on Mars (McKay, 2001). Subsequently,
subsurface life on Earth has been discovered at depths of 4–
5 km in the continental crust (Moser et al., 2005) and 2.5 km in
subseafloor sediments (Inagaki et al., 2015), at temperatures
from -54�C to 122�C, at pH values ranging from 3 to 13, and in
solutions with ionic strengths up to 7 M for continental crust
sites (Magnabosco et al., 2018a). Subsurface life is pervasive
on Earth, and rock-based microenvironments offer physical
and energetic advantages to their inhabitants compared to the
oceans and surface photosphere. In this paper, we refer to
‘‘rock-hosted’’ life, whose existence is critically dependent
upon physicochemical processes within the host rock, for ex-
ample, water-mineral, gaseous, or radiolytic reactions.

The most recent estimate of the mass of Earth’s subsur-
face biosphere is *1030 cells, which is about 10% that of
the surface biosphere (Magnabosco et al., 2018a). One key
question when considering the likelihood of finding sub-
surface life on other planets is how the abundance of Earth’s
subsurface life may have changed with time, coupled with
the evolution and proliferation of surface life, that is, the
extensive colonization of land by plant life that began *450
million years ago. Some portion of Earth’s current global
subsurface biosphere is supported directly by or indirectly
through thermocatalytic breakdown of organic photosyn-
thate from the surface biosphere while another portion is
supported by abiotically produced organic matter or auto-
trophic carbon fixation. In this paper, we are careful to draw
the distinctions between these two types of subsurface
ecosystems, focusing on the latter. Over the last decade, it
has become apparent that deep subsurface microbial com-
munities are comprised of novel subsurface species with no
known closely related surface relatives and that flourish
independently of the surface photosphere (Chivian et al.,
2008; Osburn et al., 2014; Lau et al., 2016a; Momper et al.,
2017), rather than representing the vestiges of transported or

buried surface microorganisms struggling to survive on
dwindling organic photosynthate ( Jannasch et al., 1971). In
deep crustal environments, rock-hosted life has been found
to comprise entire ecosystems with multiple trophic levels
built upon these species (Lau et al., 2016a).

Habitats for rock-hosted life may have been—and may
still be—present elsewhere in the Solar System (Fig. 1). The
sub-ocean silicate crusts of Europa and Enceladus have been
proposed to host low-temperature groundwater/hydrothermal
systems, leading to chemical/radiolytic reactions, which
could supply energy for life (Schulze-Makuch and Irwin,
2002; Hand et al., 2007; McKay et al., 2012, 2008; Pasek
and Greenberg, 2012; Vance et al., 2016; Deamer and
Damer, 2017; Steel et al., 2017). On Mars, throughout the
first 1.5 billion years of its history, surface waters were
intermittently present (Fassett and Head, 2011), whereas a
more persistent and volumetrically more extensive aqueous
environment existed beneath the surface, hosted in crys-
talline and sedimentary rocks (Clifford and Parker, 2001;
Clifford et al., 2010; Des Marais, 2010; Ehlmann et al.,
2011; Cockell, 2014a, 2014b), and subsurface brines may
still exist today (Orosei et al., 2018). Because of the relative
hostility and instability of the martian surface environment—
aridity, subfreezing temperatures, frequent climate change
due to obliquity cycles, and radiation—compared to Earth or
Mars’ clement and stable subsurface, sampling rock units
that have or may have hosted groundwater warrants top
priority in the search for life on Mars.

In this review, we describe a strategy to search for past
rock-hosted life on Mars by drawing on the lessons from
Earth’s record of extant and fossil rock-hosted life. We first
describe the environmental history and habitability of Mars.
We then review what is currently known about the extent,
metabolic diversity, and community structure of present
rock-hosted life on Earth, as well as its metabolic products.
We next examine the evolutionary history of the enzymes

FIG. 1. Subsurface biosphere habitats from left to right: Ice and Ice-Rock Interfaces host chemolithotrophs; Marine or
Lake Sediments host primarily heterotrophic communities in a high-porosity environment with diffusive flux fueled by
organic photosynthate in some places and chemolithotrophic oxidation in others; Ocean Ridges have advective fluids
carrying reductants and oxidants, including dissolved gases from magma and water-rock reactions, and abiotic hydrocarbons
are oxidized to carbonate mounds (magmatic, non-ridge systems may provide such fluxes on other planets); Deep Basaltic
Crust has H2-fueled chemolithotrophic communities powered by water-rock reactions; Continental Sedimentary Aquifers
are of lower porosity than marine sediments/crust and host mixed heterotrophic and chemolithotrophic communities; and
Deep Subsurface Continental aquifers in mafic and siliceous igneous and metamorphic rocks, in some cases fractured by
impacts or tectonics, host microorganisms fed by products of radiolysis and water-rock reactions.
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utilized by rock-hosted versus photosynthetic life. We then
address how long Earth’s rock-hosted life communities, as
evident in their biomarkers, have existed and what processes
promote preservation of their morphological, mineralogical,
isotopic, and chemical traces in the rock record. Finally, we
consider the large volumes of rock that constitute past and
present habitable environments on Mars and articulate an
operational strategy for their exploration for the bio-
signatures of rock-hosted life.

2. The Case for Targeting the Search for Life on Mars
to Rock-Hosted Life

On Earth, extensive plate tectonics–driven crustal re-
cycling has removed much of the earliest geologic record
and metamorphosed the rest, obscuring the history of the
first billion years and extent of the biosphere. On Mars, the
ancient geologic record remains largely in place with >50%
of the martian rock record from earlier than 3.5 Ga pre-
served at the surface (e.g., Tanaka et al., 2014), including
ancient units uncovered more recently by tectonics, erosion,
and impact cratering. As such, if life evolved on Mars
contemporaneously with Earth’s life, the rocks and bio-
signatures recording the trajectory of its early evolution are
better preserved and more easily accessible than those of
time-equivalent periods on Earth.

Over the last decade, in situ exploration by rovers and high-
resolution mineralogy and stratigraphy by orbiting instruments
have revealed the nature of environmental conditions during
the first 2 billion years. Globally widespread phyllosilicate
minerals (smectites, chlorites, and other hydrated silicates)
were formed by aqueous alteration of igneous materials in
geologic units from the Pre-Noachian (>4.1 Ga) and Noachian
(4.1–3.7 Ga) periods (Mustard et al., 2008; Carter et al., 2013;
Ehlmann and Edwards, 2014). The mineral assemblages,
chemistry, and geologic setting indicate much of this alter-
ation occurred by water flowing underground (Ehlmann et al.,
2011), ranging in depth from shallow sedimentary diagenesis,
which depending upon location, comprised acidic, neutral, or
alkaline pH fluid (Tosca et al., 2005; Bristow et al., 2015; Yen
et al., 2017), to deep, hydrothermal/metamorphic fluid form-
ing serpentine or subgreenschist facies mineral phases, in-
cluding prehnite and zeolites (Ehlmann et al., 2009, 2011;
McSween, 2015). Martian valley networks and open- and
closed-basin lake deposits, particularly well preserved during
the Late Noachian and Early Hesperian epochs (3.8–3.3 Ga)
(Fassett and Head, 2008; Goudge et al., 2016), also record
surface water environments. Rover exploration of sedimen-
tary rocks from two different martian basins revealed shallow
playas that experienced multiple episodes of diagenesis by
acidic waters (Grotzinger et al., 2005; McLennan et al., 2005)
and a Hesperian deep lake with multiple later episodes of
groundwater diagenesis and/or hydrothermal alteration, pos-
sibly as late as the early Amazonian (*3 Ga) (McLennan
et al., 2014; Grotzinger et al., 2015; Martin et al., 2017; Yen
et al., 2017; Rapin et al., 2018). Orbital data suggest that
other sedimentary basins may have been fed by groundwater
(Wray et al., 2011; Michalski et al., 2013), sometimes in
communication with magmatic volatiles (Thollot et al., 2012;
Ehlmann et al., 2016b). Indeed, surface expressions of impact
or volcanic thermal spring systems have been located (Skok
et al., 2010; Arvidson et al., 2014; Ruff and Farmer, 2016).

However, after the Late Hesperian (*3 Ga), evidence for
liquid water on Mars is sparse. While even young martian
meteorites have evidence for aqueous alteration (e.g., Vel-
bel, 2012), large lava bodies emplaced in the Hesperian and
Amazonian do not have hydrated minerals in sufficient
abundances to be detectable from orbit (Mustard et al.,
2005). Outflow channels, lobate debris aprons, and small
valleys occur only near volcanic centers or glacial-like
features. Collectively, these data indicate that after a warmer
and wetter first *1.5 billion years, frozen, arid conditions
prevailed over the last *3 billion years (e.g., Wordsworth,
2016). Notably, even the Noachian climate may always have
been relatively cold and arid (similar to the last 3–3.5 billion
years throughout all of Mars’ history) with punctuated in-
tervals of higher temperatures due to volcanism (e.g.,
Johnson et al., 2009; Halevy and Head, 2014), large impacts
(Segura et al., 2013; Tornabene et al., 2013), or punctuated
release of reduced gases from water-rock reactions
(Wordsworth et al., 2017).

If martian life emerged, it is possible that it might have
looked like the earliest presently recognized terrestrial re-
cord of life, for example, *3.4 Ga laminated structures in
near-shore, marine facies sediments that are believed to
represent anoxygenic photosynthesizing microbial mats
(Tice and Lowe, 2004; Tice, 2009) or possible benthic mi-
croorganisms in carbonate platforms (Allwood et al., 2009).
However, importantly, martian surface water habitats have
always been more episodic and extreme than age-equivalent
surface habitats on Earth. All evidence suggests that Earth
has had an ocean in continuous existence from at least
3.8 Ga and perhaps from as early as 4.4 Ga (Valley et al.,
2002). In contrast, the preponderance of the martian geo-
logical and mineralogical record along with predictions
from climate models suggests that no such body of water on
Mars was in continuous existence (Carr and Head, 2015;
Wordsworth et al., 2015; Pan et al., 2017). Unlike Earth
with its stable axial tilt at 23� – 1�, Mars’ axial tilt fluctuates
from 10� to 60� with changes of tens of degrees occurring on
timescales of hundreds of thousands of years (Laskar et al.,
2004). This has driven episodic reorganization of water
reservoirs from the poles to midlatitude belts with con-
comitant changes in climate cyclically throughout Mars’
history (Laskar et al., 2002). Occasional flood events from
melting of water ice might have caused outflow channels to
debouch in the Northern Lowlands of Mars, forming tem-
porary oceans (Tanaka et al., 2003). Certainly, lakes existed
for thousands and perhaps millions of years (Fassett and
Head, 2008; Grotzinger et al., 2014, 2015). But by the
Noachian-Hesperian boundary (*3.7 Ga), the atmosphere
was <2 bar thick and possibly only tens of millibar thick
(Kite et al., 2014, 2017; Edwards and Ehlmann, 2015; Hu
et al., 2015; Wordsworth et al., 2015, 2017; Bristow et al.,
2017). Mars had also lost much of its protection from solar
radiation and galactic cosmic rays by the loss of its dynamo-
driven magnetic field at 4.1–3.9 Ga (Acuña et al., 1999) and
the subsequent loss of its atmosphere (e.g., Ehlmann et al.,
2016a).

Thus, certainly by *3.0 Ga, and perhaps earlier, Mars’
surface environment had evolved to conditions different
from and more challenging to life than the time-equivalent
habitats on Earth (Westall et al., 2015). Early martian or-
ganisms at the surface would have faced at least seasonally
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subfreezing temperatures, if not nearly continuous sub-
freezing conditions with intermittent thaws, surface aridity,
and surface radiation doses many times higher than present
on early Earth. Ionizing radiation was considerably harsher
than that on Earth because of the lack of magnetic field and
thin atmosphere (Hassler et al., 2014), and the interaction of
UV light with Fe and hydrogen peroxide would have pro-
duced photo-Fenton chemistry that is lethal to Earth bacteria
(Wadsworth and Cockell, 2017). On the other hand, martian
subsurface environments with water were widespread and,
comparatively, stable. Evidence for groundwater extends to
far more recent martian times than that for surface waters
and may still be present today (Orosei et al., 2018). An
example is the lake in Gale Crater whose sediments are
presently being explored by the Curiosity rover. The lake
persisted for up to a few million years (Grotzinger et al.,
2015), but the sediments bear markers of sedimentary dia-
genesis long after the lake had vanished. Crosscutting geo-
logic relationships show that at least several tens of meters
of lake sediment had to be eroded, overlain by dunes, the
dunes lithified to sandstone, and then crosscut by diagenetic
sulfate and silica veins in multiple generations of subsurface
fluid flow, persisting even into the Amazonian (Frydenvang
et al., 2017; Martin et al., 2017; Rampe et al., 2017; Yen
et al., 2017). Fracture networks provided a conduit between
habitable subsurface aquifers and more transient surficial
habitable systems. Elsewhere, fluid circulation through deep
fracture networks driven by hydrothermal activity within
impact craters also mobilized fluids from the surface to far
beneath the cryosphere (Osinski et al., 2013).

Lastly, an important difference between habitable envi-
ronments on Earth and Mars may be related to differences in
communication between the surface and subsurface. Whereas
on Earth warm temperatures and abundant liquid water pro-
vided a rapid pathway for recolonizing the surface from the
subsurface after impacts (Abramov and Mojzsis, 2009) or
global glaciation, on Mars subfreezing surface temperatures
and a thick, global permafrost layer (i.e., cryosphere) might
have limited communication between surface and subsurface
habitats, particularly later in Mars’ history (Clifford, 1993;
Clifford and Parker, 2001; Harrison and Grimm, 2009; Clif-
ford et al., 2010; Grimm et al., 2017). Therefore, if periodic
warm conditions did occur at the surface, the pathways for
communication with the subsurface may not have been as
easily established for (re)colonization of the martian surface
during brief Hesperian surface habitable periods.

Consequently, rock-hosted habitats showing evidence of
persistent water warrant considerable attention in the search
for martian life (Westall et al., 2015). Some of these systems
may have been uninhabitable, perhaps challenged by salin-
ity and acidity (Tosca et al., 2008). Nonetheless, the most
globally widespread systems and some sites observed from
orbit and explored in situ are marked by neutral to alkaline
waters of low salinity, which, if on Earth today, would be
habitable (Ehlmann et al., 2011; Grotzinger et al., 2015).

Several candidate martian landing sites under consider-
ation for future exploration missions have accessible stra-
tigraphy that may preserve rock-hosted habitats. These
include aquifers in volcanic rock and in sedimentary rock.
Most immediately, the volcanic rock aquifer with clay
minerals, carbonate, and serpentine exposed by erosion at
Northeast Syrtis was under consideration for the Mars 2020

rover mission at the time of this submission, and it is ac-
cessible in an extended mission from the chosen landing site
of Jezero crater. These ancient habitats can and should be
explored at high priority as available habitats for martian
life, using the lessons and strategies derived from the ter-
restrial modern and paleorecords of the quantities, nature,
and locations of biosignatures of past rock-hosted life.

3. Modern Rock-Hosted Life on Earth

3.1. Geologic settings with rock-hosted life

On Earth, microbial communities in a wide variety of
rock-hosted environments occur globally. Their abundance
and community structure reflect physicochemical properties
of the rock/water host, the type and rates of energy and
nutrient fluxes, geobiological feedbacks, and the geological
history of the rock. Though most rock-hosted life is com-
prised of Archaea and Bacteria, active eukaryotic members
exist. These range from protists in deep aquifers (Sinclair
and Ghiorse, 1989) to fungi in subseafloor sediment (Orsi
et al., 2013; Pachiadaki et al., 2016) and 793 m deep frac-
ture waters in granite (Sohlberg et al., 2015) to multicellular
bacteriophagous nematodes (Borgonie et al., 2011). What
follows is a brief survey of the variety of rock-hosted eco-
systems documented on Earth, some of which could repre-
sent terrestrial analogs to potential martian rock-hosted
ecosystems (Fig. 1).

The shallowest examples of a rock-hosted ecosystem are
highly concentrated cryptoendolithic communities existing
millimeters beneath the rock surface, which are not truly ‘‘rock-
hosted life’’ as we define the term here (see the introduction).
The primary producers of these communities, cyanobacteria
and algae, are surface-dwelling photosynthesizing organisms
that have retreated to the near subsurface to reduce their ex-
posure to moisture and temperature extremes while retaining
access to a sustainable photon flux (Friedmann, 1982; Wong
et al., 2010). Some shallow subsurface ecosystems do use their
rock/soil hosts for metabolism, meeting our definition of rock-
hosted life (Fig. 1). Chemoautotrophic aerobic and anaerobic
microorganisms that fix atmospheric CO2 reside in barren polar
soils and metabolize atmospheric trace gases such as H2, CO (Ji
et al., 2017), and CH4 (Lau et al., 2015; Edwards et al., 2017).
Though there is a significant energetic potential for such me-
tabolisms in martian regolith, there is no detectable presence of
this metabolism yet (Weiss et al., 2000; Yung et al., 2018).

For the majority of the continental surface on Earth, het-
erotrophic bacteria involved in the degradation of organic
photosynthate (e.g., cellulose) dominate soil communities
(Federle et al., 1986), lacustrine sediments, and shallow
aquifers (Balkwill and Ghiorse, 1985). Similarly, organic
detritus input from the sea surface, water-column, or conti-
nental photosynthates dominate the reductant input to shallow
continental margin, subseafloor sediments. Sediment pore
waters host a wide variety of specialized microbes that gen-
erally use one of a succession of oxidants present in the sys-
tem (in order of free energy release, O2 > Mn oxides > nitrate
> Fe oxides > sulfate [Froelich et al., 1979]) to degrade or-
ganic matter. The carbon isotope composition of photosyn-
thetic organic matter is distinctive: both terrestrial and marine
derived material have a more negative d13C value than
marine inorganic carbon. Minerals precipitated in sediment
pore space by these microbial metabolic processes have
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isotopic and chemical compositions that reflect the original
organic matter and the oxidant used (e.g., reduced manganese
carbonate, rhodochrosite) (Coleman et al., 1982). In organic-
rich sediments, degradation processes continue with depth in
the pore waters with burial until the organic oxidants are
exhausted. In the lowermost oxidation zone, where the least
exergonic electron acceptor, CO2, remains, methanogenic
archaea and acetogenic bacteria largely rely upon abiotic or
biotic subsurface H2 (Fig. 2). Positive d13C values in car-
bonates reflect Rayleigh fractionated depletion of CO2 by
chemolithoautotrophs.

The CH4 from methanogenesis may diffuse upward and
itself be oxidized anaerobically by archaea, bacteria, and
archaeal-bacterial consortia using sulfate or other oxidants
in shallow subseafloor sediment (Orphan et al., 2001; Ettwig
et al., 2010; Milucka et al., 2012; Haroon et al., 2013; Kits
et al., 2015; Cai et al., 2018). Similarly, the acetate from
acetogens will be oxidized anaerobically by heterotrophic
bacteria (Stevens and McKinley, 1995). At greater depths
and temperatures exceeding 100�C, any residual organic
photosynthate is thermally matured and may be transformed
to oil and/or gas or coal while the host strata become ster-

ilized of indigenous microorganisms, a process described as
‘‘paleopasteurization’’ (Wilhelms et al., 2001). Thus, the
microbial communities associated with oil-, gas-, or coal-
endowed deposits either represent immigrants arriving with
groundwater flow over geological time as the deposits
cooled below their maximum temperatures (Tseng et al.,
1998), residents indigenous to the sandstone reservoir when
oil or gas migrated upward to be trapped (Wilhelms et al.,
2001), or contaminants introduced during flooding of or
production from the oil reservoirs (Dahle et al., 2008). Al-
though these sediment-hosted microorganisms are living
completely or nearly completely off the detritus of photo-
synthetate, organic matter from abiotic chemosynthetic or
biotic chemolithoautotrophic sources would be processed in
a similar fashion. The significance of these organic degra-
dation processes is that the inorganic metabolic products
may produce characteristic mineral phases, and isotopic and
chemical signatures. These can be durable biosignatures that
survive for very long periods of time (see Section 4,
‘‘Biosignatures of past rock-hosted life’’).

In contrast to the environments above where organic pho-
tosynthate is important, in continental environments where the

FIG. 2. Cartoon of different microbial metabolic processes separated into Aerobic (top), Anaerobic (bottom), Hetero-
trophic (left), and Autotrophic (right) bins.
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water table is hundreds of meters deep (Fig. 1), subsurface
communities rely upon chemolithotrophs living off atmo-
spheric or vadose zone gases (Tebo et al., 2015; Jones et al.,
2016; Webster et al., 2016), redox reactions with reduced
minerals (Mansor et al., 2018), and metals present in car-
bonate (Barton and Northup, 2007). The chemolithotrophs
serve as primary producers for complex communities (Dat-
tagupta et al., 2009; Fraser et al., 2017) and as ecosystem
engineers that can excavate large caverns by dissolution of
carbonate and deposition of sulfate by the sulfuric acid they
produce (Mansor et al., 2018). In water-saturated environ-
ments where oxygenated water penetrates deeply into crustal
rock such as mountainous terrains of North America (Sahl
et al., 2008; Murdoch et al., 2012; Osburn et al., 2014),
basaltic flows of the geothermal environments of Iceland
(Trias et al., 2017), or taliks in 500 m thick permafrost into
underlying Archean metamorphic rock (Onstott et al., 2009),
heterogeneous redox conditions create highly exergonic con-
ditions for S, Fe, N, and Mn oxidation; and subsurface micro-
bial communities are dominated by chemolithotrophic primary
producers. Where oxygenated seawater comes into contact with
marine basaltic crust, chemolithoautotrophs are the primary
producers fixing CO2 to support substantial biomass by medi-
ating electron transfer at mineralogical redox interfaces from
reduced forms of Fe, S, and Mn to the aerobic fluids in pore
spaces (Edwards et al., 2012). Unlike the organic-rich sediments
discussed above, the geochemical evidence suggests that these
rock-hosted communities do not rely upon the groundwater
transport of organic photosynthate (Kieft et al., 2018) (Fig. 2).

Of the bioavailable electron donors being utilized by deep,
water-saturated, rock-hosted communities, H2 is probably a
key fuel in the deep biosphere (Nealson et al., 2005), and
several abiotic modes of formation exist within rock-hosted
environments. In anaerobic volcanic aquifers (Fig. 1), basalt
interacts with anaerobic groundwater releasing H2, which
then supports chemolithotrophic microbial communities by
the oxidation of H2 at depths of hundreds of meters (Stevens
and McKinley, 1995; Mayhew et al., 2013). Even in the
absence of O2, anaerobic Fe-oxidation via nitrate reduction is
a metabolic process that recycles Fe2+ produced by Fe3+

reduction that can lead to a subsurface Fe-cycle, depending
upon the availability of nitrate (Fig. 2; Melton et al., 2014).
Given the identification of 70–1100 ppm of nitrate at Gale
Crater (Stern et al., 2015) and the Fe-rich nature of the
martian crust, the presence of such a metabolic network has
been proposed for the martian subsurface (Price et al., 2018).

Radiolysis of groundwater also generates H2, H2O2, and
O2, that has been shown to sustain subsurface chemo-
lithoautotrophic primary producers by providing not only H2

as an electron donor but also electron acceptors, such as
sulfate via oxidation of sulfides by radiolytically produced
H2O2 (Lefticariu et al., 2006; Lin et al., 2006; Li et al., 2016).
Metagenomic analyses combined with metaproteomic and
metatranscriptomic analyses have revealed that within these
radiolytically supported communities, a dynamic and tempo-
rally varying multi-tier energy pyramid of chemolithoauto-
trophs exists that recycles biogenic CH4 and sulfide and
possibly nitrogen, while fixing CO2 using the Wood-Ljungdahl
pathway and Calvin-Benson-Bassham cycle (Magnabosco
et al., 2015, 2018c; Lau et al., 2016b). The bacterial biomass
supports multicellular bacteriophagous nematodes at the top of
the food chain (Borgonie et al., 2011). These results indicate

that radiolysis combined with commensurate syntrophic in-
teractions constantly recharges the redox couplings in these
environments; they are not chemically stagnant as claimed by
McMahon et al. (2018). The radiolytic H2 production rate on
Mars is just as great as that found in the crustal rocks of Earth
despite the lower concentrations of radiogenic isotopes, pri-
marily because of the higher porosity at a given depth due to the
lower gravity on Mars (Onstott et al., 2006; Dzaugis et al.,
2018; Tarnas et al., 2018).

Cataclastic diminution of silicate minerals in the presence of
water also generates H2 (Kita et al., 1982) and in the presence
of CO2 generates CO and O3 (Baragiola et al., 2011). H2 release
during seismic events has been recorded at 3 km depths in
South Africa (Lippmann-Pipke et al., 2011), and H2 release
during rock-crushing at the base on the 3 km thick Greenland
ice sheet has been inferred (Telling et al., 2015). The rela-
tionship between rock fracturing and/or crushing and subsur-
face microbial community abundance and activity is not yet
resolved and is an avenue of current research in subsurface
microbiology. Nonetheless, its implications for subsurface life
on Mars, which has fracturing due to impacts and tectonics,
have already been proposed (McMahon et al., 2016).

At still greater depths and at temperatures >200�C in
peridotite, serpentinization produces abundant H2 in high
pH fluids (McCollom and Bach, 2009). This H2 as well as
that generated by radiolysis in turn reacts with transition
metal sulfide catalysts to produce CH4 and low-molecular-
weight hydrocarbons via Fischer-Tropsch-type synthesis
(Sherwood Lollar et al., 2002, 2006; McCollom, 2016). The
resulting hydrocarbons can either diffuse upward to support
chemolithotrophs, methanotrophs, and heterotrophic, alkane-
degrading anaerobic bacteria at shallower, cooler tempera-
tures or remain trapped until the host rock has cooled down,
whereupon these microbial metabolic clades can penetrate the
serpentinite during groundwater flow and utilize the hydro-
carbons (Purkamo et al., 2015). These processes support the
subsurface microbial communities found in continental
ophiolite complexes, such as the Samail Ophiolite (Rempfert
et al., 2017) and in metamorphosed komatiites of Archean
greenstone belts (Sherwood Lollar et al., 2005). They have
also been hypothesized to support a martian subsurface bio-
sphere (Schulte et al., 2006; Westall et al., 2013).

These represent a few examples of the types of rock-hosted
microbial communities that are globally distributed across
Earth at depths ranging from millimeters to kilometers in a
wide range of rock types and that are metabolically and phy-
logenetically diverse (Mykytczuk et al., 2013). In general,
more oxic conditions nearer to the surface yield to more re-
duced conditions with increasing depth but with important
exceptions. Despite the great abundance of organic carbon
derived from the surface photosphere in marine sediments and
shallow soils, chemolithotrophy is widespread and even dom-
inant in many subsurface environments. This may explain the
absence of any correlation of deep subsurface prokaryotic
biomass with organic carbon content in the continental sub-
surface below the soil zone (Magnabosco et al., 2018a).

3.2. Fundamental physical and environmental controls
on rock-hosted life

The thermal state of the crust constrains the habitable zone.
The currently recognized temperature limits for metabolic
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activity range from -20�C for microorganisms trapped in
Siberian permafrost (Rivkina et al., 2000) and -25�C for an
aerobic, halophilic heterotroph in laboratory microcosm ex-
periments utilizing 14C-labeled acetate (Mykytczuk et al.,
2013) up to 122�C for a methanogen isolated from a deep sea
vent plume (Takai et al., 2008). Based upon temperature
alone, the habitable volume for Earth’s continental and oce-
anic crust has been estimated to be *2 · 1018 m3 (Heberling
et al., 2010; Magnabosco et al., 2018a), using global heat
flow and surface temperature maps and thermal conductivity
estimates. In the case of the continental crust, the average
depth to the 122�C isotherm is 4 km; a maximum depth of
16–23 km occurs in the Siberian Craton where mean annual
temperatures and heat flow are both lower than average
(Magnabosco et al., 2018a). Similar types of calculations for
Noachian Mars indicate an average depth to the 122�C iso-
therm would have been 6–8 km, and the corresponding hab-
itable volume based on temperature constraints alone would
also be *1018 m3 (Michalski et al., 2017).

Temperature and possibly the ionic strength of the crustal
fluids play a role in constraining the abundance and activity of
subsurface life since cell concentrations appear to be in-
versely correlated with both parameters (Magnabosco et al.,
2018a). Organic markers of biodegradation of petroleum
suggest that the maximum temperature of the subsurface
biosphere may typically be closer to 80–85�C and that salinity
>50 g L-1 may inhibit low-energy metabolisms such as me-
thanogenesis to even lower temperatures (Head et al., 2014).
High concentrations (>220 g L-1) of chaotropic salts, such as
MgCl2, may even preclude life (Hallsworth et al., 2007).

The fluid-bearing (saturated or thin film) porosity that is
accessible, that is, with pore throats that are greater than
0.1mm in diameter, also controls the habitable volume. On
Earth, rock strata from 3 to 5 km depth may have a matrix
porosity of 0.5% to 1%, but their habitable volume could be
as little as 0.05% to 0.002% (Supplementary Fig. S1; Sup-
plementary Information available online at www.liebertonline
.com/ast) due to compaction and cementation. On Mars the
porosity is likely to be 10% at comparable depths due to the
lower gravitational force, and as a result the subsurface
habitable volume on Mars may be greater than that of Earth’s.

Porosity and permeability also constrain the flux of nu-
trients and the degree of metabolic activity. For terrestrial
life, a finite minimum quantum of energy determined by the
reaction ADP + P / ATP must be available through cata-
bolic redox or substrate-level reactions to be metabolically
useful (Müller and Hess, 2017). To sustain life, the Gibbs
free energy flux (energy per unit time per cell) (Hoehler,
2004; Onstott, 2004) must be equal to or exceed that re-
quired for a cell’s (Hoehler and Jørgensen, 2013; Onstott
et al., 2013) or a syntrophic community’s (Scholten and
Conrad, 2000) maintenance. Temperature is a principal
control on the maintenance energy demand in part because
the diffusivity of H+ through the cell membranes increases
with temperature (van de Vossenberg et al., 1995). As a
result, cell metabolic rates must increase with temperature to
counteract these effects. The higher the temperature, the
higher the nutrient flux needed to maintain a given subsur-
face biomass. The same may also hold true for salinity as
microorganisms need to manufacture internal osmolytes to
maintain osmotic pressure and osmolytic production exerts
an additional energy requirement (Oren, 1999).

To the extent that higher rock permeability increases
groundwater velocities that increase the rate at which re-
actants flow toward microorganisms hosted by rock strata,
higher permeability can lead to a more prolific subsurface
biomass by maintaining a nonzero Gibbs free energy
(Marlow et al., 2014a). Three other abiotic processes that
operate to enhance the local flux of nutrients are chemical
gradients or boundaries, physical heterogeneity, and local
abiotic and biotic recycling. First, the presence of high
electron donor/acceptor chemical spatial gradients in rock
units enhances local diffusive fluxes, which leads to higher
microbial activity and biomass than in homogeneous units.
On modern Earth the most dramatic examples are typically
found at the contacts between organic-rich shale and sulfate-
bearing sandstone (Krumholz et al., 1997) or oil and water
(Bennett et al., 2013) producing higher rates of microbial
metabolism than observed some distance away from these
contacts. Other examples include fluid-rock redox interfaces
at small scales along fractures, detailed below. On Mars an
example might be the boundary between a serpentinized
olivine-rich unit and an overlying sulfate-rich unit at North-
east Syrtis (Marlow et al., 2014a). Serpentinization of the
olivine would generate H2 that would then diffuse into the
overlying aquifer where it could be microbially oxidized
using sulfate, leading to a zone with potential to support high
biomass at the boundary. Second, physical heterogeneity can
also act to create favorable zones, as is observed in the high
cell concentrations within highly fractured and brecciated
rock of the Chesapeake Bay impact structure, compared to
the overlying marine sediments (Cockell et al., 2012). In this
case metabolically active microorganisms are constrained to
the fractured rock where they draw down the energy sub-
strates and increase the product concentrations. Though the
surrounding massive rock has pore spaces too small for mi-
crobes, the diffusive flux of energy substrates from the
massive rock into the fractured zone and the diffusion of the
products from the fractured zone into the massive rock en-
hance the biomass residing in the fracture rock (see Section
3.3, Supplementary Fig. S1). Third, abiotic recycling reac-
tions such as radiolysis can continuously generate H2 from
water and recycle metabolic waste products, such as HS- back
into sulfate, and sustain subsurface microbial communities
without the need for fluid transport (Lin et al., 2006).
‘‘Cryptic sulfur cycling,’’ in which iron oxides abiotically
oxidize sulfide to more oxidized sulfur species, can support
organic carbon degradation in non-stoichiometric proportions
with a relatively limited sulfur supply (Holmkvist et al.,
2011). Finally, syntrophic interactions between different mi-
croorganisms also act to sustain subsurface communities by
converting waste products back into reactants locally without
the need for advective transport (Lau et al., 2016b). Thus,
obligately mutualistic metabolism (Morris et al., 2013) may
be a characteristic aspect of subsurface microbial communi-
ties as a means of avoiding extinctions (Gaidos et al., 1999)
because Gibbs free energy will remain nonzero.

3.3. Subsurface biomass distribution

Magnabosco et al. (2018a) recently estimated the total living
subsurface prokaryote biomass for Earth was 7–11 · 1029 cells
of which 2–6 · 1029 cells occur in the continental subsurface,
2 · 1029 cells exist the oceanic crust, and 3 · 1029 cells reside in
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the subseafloor sediments. Permafrost-affected crust and con-
tinental ice sheets cover a large fraction of the continental area
and are often considered terrestrial analogs to early Mars. In
these, as a function of depth, biomass generally declines; but at
all depths, biomass varies by orders of magnitude, depending
on the sampling location, including substantial intra-site vari-
ation (Fig. 3A). The total cell concentrations for Siberian
permafrost sediments can be quite high, ranging from 107 to
109 cells g-1 (brown-filled diamonds in Fig. 3A) and diminish
with depth up to 100 m and with increasing permafrost age up
to 2 Ma (Gilichinsky and Rivkina, 2011). The cell concentra-
tions within the Greenland ice sheet (light blue-filled circles in
Fig. 3A) are much lower, on the order of 105 cells cm-3, except
at the very bottom where the ice sheet is in contact with the
Precambrian bedrock and cell concentrations reach 109 cells
cm-3 as a result of H2 generation at the rock-ice interface
(Fig. 1). Antarctic permafrost (brown crosses) and subglacial
sediments (brown-filled triangles) exhibit cell concentrations
that are also greater than those of the adjacent and overlying ice
sheets (open triangles). In general, cell concentrations in ice
sheets (open squares, triangles, and circles) do not diminish as
a function of depth and age as rapidly as observed for per-
mafrost sediments and likely reflect a combination of airborne
input flux and in situ metabolism (Chen et al., 2016). Cell
concentrations are higher near rock-ice interfaces and in dust-
rich ice, pointing to the importance of chemical and physical
gradients.

Unlike the ice cores, the cell concentrations from rock
and sediment cores decline with increasing depth following
a power law fit (Fig. 3B). Notable exceptions are the cell
concentrations reported for the Chesapeake Bay Impact that
increase at a depth of 1.5 km where the highly fractured
basement rock exists (brown-filled squares to pink-filled
squares in Fig. 3B; Cockell et al., 2012). In soil zones the
concentrations range from 109 cells g-1 down to as low as
105–6 cells g-1 in the case of the Atacama Desert (blue open
circles in Fig. 3B; Connon et al., 2007; Lester et al., 2007),
considered by some to be a terrestrial analog site for Mars
because of its aridity and low organic content. Below 10 m
depth, however, cell concentrations do not correlate with
water saturation of the pore space (orange open circles
versus orange-filled circles in Fig. 3B). For example, the cell
concentrations within unsaturated volcanic ash deposits at a
depth of 400 m in central Nevada (deep vadose zone) range
from 5 · 104 to 5 · 107 cells g-1 (gray open diamonds in
Fig. 3B; Haldeman and Amy, 1993; Haldeman et al., 1993),
which is not significantly different from the cell concen-
trations reported for water-saturated post-impact sediments
of the Chesapeake Bay Impact (brown-filled squares in
Fig. 3B; Breuker et al., 2011; Cockell et al., 2012) or Atlantic
Coastal Plain Sediments (orange-filled circles in Fig. 3B;
Magnabosco et al., 2018a) or Deccan Trap basalts of similar
depth (gray-filled diamonds in Fig. 3B; Dutta et al., 2018).

The cell concentrations also do not correlate with the rock
type, that is, sedimentary versus igneous versus metamor-
phic, with the possible exception of salt deposits where cell
concentrations are low, ranging from 0.02 to 104 cells g-1

(Schubert et al., 2009a, 2009b, 2010; Wang et al., 2016).
Despite their paucity within salt, microorganisms exhibit
remarkable preservation with viable cells being isolated
from salt deposited tens of thousands to hundreds of milli-
ons of years in the past ( Jaakkola et al., 2016), though the

older claims remain controversial (Hebsgaard et al., 2005;
Lowenstein et al., 2005).

Cell concentrations on fracture or cavity surfaces are
often considerably higher than those of the surrounding fluid
or matrix especially if the interface acts to focus redox
fluxes. For example, in deep vadose zones cell concentra-
tions up to 107 to 108 cells cm-2 and prolific and pigmented
biofilms exist on the surfaces of caverns in quartzite (Barton
et al., 2014), basalt (Riquelme et al., 2015), and carbonate
( Jones et al., 2016). Because of the difficulty of aseptically
sampling water-saturated fracture surfaces at depth, only
two studies of the cell concentrations on deep fractures have
been published. Analysis of modern biofilms, occurring on
fracture surfaces in 2.7 Ga metavolcanic rocks at a depth of
2.8 km, revealed 105 cells cm-2 with cells occurring in
clumps of 2 to >20 (Wanger et al., 2006). Given the fracture
width, such a concentration corresponds to a 100· enhance-
ment of the living cell concentration relative to the fracture
water. Much lower living cell concentrations, 40 to 2 · 103

cells cm-2, have been reported for 186 m deep groundwater-
fed fractures in granite ( Jägevall et al., 2011). Although these
two studies would suggest that deep fracture surfaces do not
harbor high biomass concentrations, examination of buried
Cretaceous hydrothermal veins reveals preserved organic
remains of microbial colonies in mineral surfaces, which by
mass would be equivalent to *109 cells cm-2 (Klein et al.,
2015). Similarly, observations of fossil microbial cells in
veins in granite indicate a fossil biomass equivalent to 3 · 107

cells cm-2 (Pedersen et al., 1997). The higher cell concen-
trations in fossil biomass versus living biomass result from
accumulation of necromass in biofilms on fluid-filled fracture
surfaces over time, similar to what is observed in shallow
subseafloor sediments (Lomstein et al., 2012).

McMahon et al. (2018) stated ‘‘the bulk of Earth’s mas-
sive deep biosphere, and presumably also its fossil record, is
a poor analog for any ancient or modern Martian equivalent
which, in the absence of a productive surface biosphere,
would be much smaller and dominated by chemoautotrophs,
not heterotrophs.’’ This statement is not borne out by ex-
isting data. As described in Section 3.1, the cell concen-
trations in continental rock and groundwater do not exhibit
any correlation with dissolved or particulate organic carbon
concentrations and are dominantly inhabited by chemo-
lithoautotrophs. This finding contrasts with the observations
of shallow subseafloor sediments where cell concentrations
do correlate with the organic photosynthate content (Lipp
et al., 2008). The deep subsurface environments associated
with Phanerozoic-age oil (Head et al., 2014) and coal (Kirk
et al., 2015) deposits, where heterotrophic metabolisms
would perhaps dominate, comprise only 1012 m3, or 0.0001%,
of the total habitable volume of Earth’s subsurface bio-
sphere. The overlap in cell concentrations of the conti-
nental rocks with those of deep subseafloor sediments
suggests that access to organic photosynthate has little
impact on deep subsurface biomass (Fig. 3). The cell
abundance data and observed metabolisms do not support
the claim that most of Earth’s deep biosphere is sustained
by heterotrophic metabolism of surface-derived photo-
synthate. Rather, fracture surface concentrations of 105 to
109 cells cm2 are observed in Earth’s chemolithoauto-
trophic communities in settings isolated from organic
photosynthate and fueled by chemolithoautotrophy, which
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FIG. 3. (A) Cell concentrations versus depth for ice sheets, subglacial sediments, and permafrost. Open squares = Tibetan
glacial ice sheets; brown-filled diamonds = Siberian permafrost; blue-filled diamonds = Siberian cryopeg; light gray-filled
triangles = Antarctica ice sheets and lakes; brown-filled triangles = Antarctic subglacial sediments; brown crosses = Antarctic
permafrost and subglacial sediment in New Zealand; orange crosses = Canadian High Arctic and Svalbard permafrost; light
blue–filled circles = Greenland ice sheet; orange-filled circle = Greenland subglacial sediment. (B) Cell concentrations
versus depth for rock and soil cores from nonpolar regions. Orange-filled circle = water-saturated sediments or sedimentary
rock; orange open circle = vadose zone sediments or sedimentary rock; brown squares = Chesapeake Bay Impact sediments;
pink squares = Chesapeake Bay Impact impactite; black-filled orange circle = oil-gas-coal-bearing sediment or sedimentary
rock; gray-filled gray diamond = water saturated rhyolitic ash; open gray diamond = deep vadose zone rhyolitic ash; open
black diamond = vadose zone basaltic rock; gray-filled black diamond = water-saturated basaltic rock, which includes recent
Deccan Trap data from Dutta et al. (2018); red-filled diamond = Deccan Trap granite data from Dutta et al. (2018); purple
square = metamorphic rock. Rest of data are from Magnabosco et al. (2018a). Blue open circles = Atacama desert soil from
Connon et al. (2007) and Lester et al. (2007). Solid and dashed lines represent the best-fit power law for subseafloor
sediments proposed by Parkes et al. (2014).
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is an appropriate analog to Mars. (See Section 4 for a dis-
cussion of Earth’s fossil record.)

Using simple assumptions from the chemical energy
available from basalt weathering (10-13 kJ/g-yr), Jakosky
and Shock (1998) estimated that over 4 billion years Mars
could accumulate 10 g cm-2 of biomass from a 100 m thick
basalt layer. For comparison, Earth’s continental crust is
estimated to contain 0.006–0.02 g of extant life cm-2, inte-
grated from 1 m depth to the 122�C isotherm (Magnabosco
et al., 2018a). The addition of fluid flow from an oxic sur-
face to reducing subsurface, as where sulfate rocks are in
contact with serpentinizing rocks, increases this estimate by
an additional 10 g of biomass cm-2 by enhancing the de-
livery of reactants and removal products (Marlow et al.,
2014a). Calculations of the energy flux from subsurface
radiolytic reactions for Mars reveal an energy source
comparable to that found on Earth, indicating that the
subsurface biomass abundance should be comparable to that
of Earth’s (Onstott et al., 2006; Dzaugis et al., 2018), and
allay the concerns raised about limited oxidant supply to the
martian subsurface from the surface (Fisk and Giovannoni,
1999). Radiolysis releases energy into the rock at a rate of
10-9 kJ/g-yr based upon the parameters utilized by Onstott
et al. (2006) of which some fraction is accessible for bio-
mass production depending upon the porosity. This rate is
greater than that estimated for weathering reactions and
would be even higher on Mars during the Noachian when
the radioactive parent isotopes were more abundant. These
calculations suggest that adequate energy exists on Mars to
support substantial biomass equivalent to that of the rock-
hosted biosphere on Earth and that an inhabited Mars would
accumulate organic matter over time in subsurface aquifers,
completely independent of a habitable martian surface.

3.4. Biodiversity and geography

As is the case for biomass, the species richness of deep
subsurface environments is highly variable. Subsurface or-
ganisms span the branches of the 16S rRNA phylogenetic
tree, including deeply rooted lineages (e.g., Methanomada,
Archaeoglobi, Korarchaeota, Thermotogae, and Synergis-
tetes) (Magnabosco et al., 2018a). Reports of deep subsur-
face planktonic communities dominated by a single archaeal
(Chapelle et al., 2002) or bacterial (Chivian et al., 2008)
species are rare. More commonly, diversity estimates range
from over a hundred (Marteinsson et al., 2013) to almost
100,000 (Bomberg et al., 2016) operational taxonomic units
or OTUs (at 97% identity in the 16S rRNA gene) within a
single fluid sample. To some extent this reflects the im-
provement in sequencing technology and the fact that the
highly variable subregions of the 16S rRNA gene are tar-
geted. It is not unusual to find a large number of OTUs that
comprise <1% of the total population (Castelle et al., 2013;
Magnabosco et al., 2014), referred to as the rare biosphere
(Sogin et al., 2006). Additionally, single-cell genome se-
quencing of subsurface Candidatus Desulforudis audaxviator
indicates significant differences in the genomes of single
species (Labonté et al., 2015).

Species abundance does not correlate with its ability to
influence the overall function of a subsurface community.
For example, in continental subsurface environments, me-
thanogens frequently comprise only 2% of the total com-

munity, but the primary gas phase is biogenic CH4. In the
case of one deep subsurface site in South Africa, this bio-
genic CH4 was the principal carbon source for the remainder
of the community (Simkus et al., 2015; Lau et al., 2016b).
Electron microscopy (Kyle et al., 2008; Middelboe et al.,
2011; Engelhardt et al., 2014), single-cell genomes (Labonté
et al., 2015), and metatranscriptomic analyses (Lau et al.,
2016b) have also revealed that viruses are abundant and
actively infecting bacteria and altering their genomes (Paul
et al., 2015) in subseafloor sediments and fractured rock
aquifers. Because active viral populations can transfer genes
between microbial species and control the population den-
sity, they may be a vital component of obligately mutualistic
metabolic SLiMEs.

One might expect that subsurface diversity would re-
semble island-like behavior because of the lesser connect-
edness between subsurface habitats when compared to
surface habitats where wind and surface water are transport
agents. In island-like ecosystems, the number of species
should increase with the size of the island (i.e., volume of
groundwater sampled) (Locey and Lennon, 2015). However,
Magnabosco et al. (2018a) did not find any such correlation.
Species richness may instead correlate with greater hetero-
geneity of microenvironments, which are difficult to char-
acterize in the subsurface. The lack of species richness
versus habitat size could also reflect a surprisingly high
degree of connectedness between habitats and motility. This
is consistent with the presence of the same rare biosphere
OTUs in fractures ranging from 0.6 to 3.0 km depth and
separated by hundreds of kilometers in South Africa and a
general lack of a distance-decay relationship (Magnabosco
et al., 2018a). The presence of the same OTUs in fracture
water of different isotopic compositions also suggests that
these species are actively motile (Magnabosco et al., 2014).
The implication of these observations for an early martian
subsurface biosphere is that impacts and volcanic activity
could have produced zones of sterilized rock, but these
zones would have quickly become recolonized by ground-
water circulation.

3.5. Subsurface metabolic activity

Estimates of the in situ metabolic rates of subsurface
ecosystems offer insight into their longevity and biomass
turnover and provide a better sense of how they impact
biogeochemical cycles on a planetary scale, though obtain-
ing accurate estimates has proven challenging (Orcutt et al.,
2013). Geochemical estimates of the electron production
rate from marine subsurface in situ microbial activity range
from *5 mol e- L-1 yr-1 at seafloor hydrothermal vents
(Wankel et al., 2011) to *2 to 100 pmol e- L-1 yr-1 in
oligotrophic subseafloor red clays (Røy et al., 2012) to 0.004
to *4 pmol e- L-1 yr-1 for continental deep fractured rocks
and consolidated sediments (Kieft and Phelps, 1997), esti-
mates spanning more than 15 orders of magnitude. Recent
metabolism-agnostic approaches utilize isotopic labeling
and measurements of the D/L of aspartic acid of bulk sub-
seafloor sediment (Lomstein et al., 2012) and of cells sep-
arated from deep continental fracture fluids (Onstott et al.,
2013) to determine the bulk rate of growth and repair, often
referred to as cell turnover. These analyses yielded cell
turnover times ranging from 73,000 years for subseafloor
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sediments to 1.7–1.8 years for 60�C fracture water and
imply that in situ metabolic rates are strongly temperature
dependent (Xie et al., 2012; Onstott et al., 2013; Trembath-
Reichert et al., 2017). In the case of the 60�C fracture water
dominated by a single species of autotrophic sulfate-reducing
bacterium, the cell turnover time corresponded to a metabolic
rate of 2.6–2.8 nM of sulfate per year or 21–22 nmol e- L-1

yr-1 (Onstott et al., 2013). The shorter cell turnover times
observed in deep continental fracture water are also con-
sistent with metatranscriptome and metaproteome observa-
tions from similar environments that revealed significant
intracommunity recycling of metabolic waste products (Lau
et al., 2016b). Recycling of biogenic CH4, sulfide, and CO2

suggests that initial geochemical approaches for estimating
metabolic rates (Phelps et al., 1994) may have under-
estimated the rates of cell turnover and thus metabolic rates.
Despite the challenges posed in accurately estimating the
metabolic rates of subsurface microbial ecosystems, recent
in situ approaches utilizing natural 14C (Simkus et al., 2015)
suggest that a wide range can be found that correlates with
the energy fluxes and temperatures. The longer turnover times
in colder ecosystems raise questions about the nature and rate
of evolution in subsurface ecosystems, which are also char-
acterized by physicochemical conditions that are more stable
over time than surface ecosystems and where microorganisms
are exposed to low radiation dosage rates relative to those of
surface ecosystems (Teodoro et al., 2018).

3.6. Evolution of chemoautotrophic versus
photosynthetic pathways

The depiction of subsurface microbial environments
above as dominantly suboxic conditions near the surface
yielding to more reduced conditions with increasing depth is
the result of the evolutionary emergence of oxygenic pho-
tosystem II in cyanobacteria. Prior to this emergence, both
surface and subsurface habitats were likely dominated by
anaerobic metabolisms such as methanogenesis. Recently
retrieved genomes of methanogens belonging to Crenarch-
aeota have revised our understanding of when methanogenic
metabolisms evolved. The discovery of Verstraetearchaeota
(Vanwonterghem et al., 2016) and Bathyarchaeota (Evans
et al., 2015) indicates that the methanogenic metabolic
pathway must have arisen after the split between Archaea
and Bacteria from the Last Universal Common Ancestor,
LUCA, but prior to the split between the Crenarchaeota and
Euryarchaeota. This places the time for the emergence of
this pathway in the Paleoarchean or Hadean. The youngest
bound on age for the development of the methanogenic
pathway is *3.25 Ga, that is, prior to or during the proposed
Archean expansion of genes, based upon molecular clock
analyses (David and Alm, 2011), and likely developed in the
stem of Archaea (Betts et al., 2018).

Recently sequenced genomes from non-photosynthetic
members of the Cyanobacteria phylum indicate that oxy-
genic photosynthesis arose within Cyanobacteria after the
split of photosynthetic Cyanobacteria (now the class of
Oxyphotobacteria) from the other non-photosynthetic Cya-
nobacterial lineages, Melainabacteria and Sericytochromatia
(Soo et al., 2017). The age for this divergence has been
estimated to be 2.6 to 2.5 Ga based upon molecular clocks
(Shih et al., 2017), which lies between the *2.8 Ga age for

the stem of the Cyanobacteria and the 2.2 Ga age for oxy-
genic photosynthesis emergence estimated from a different
molecular clock approach (Magnabosco et al., 2018b). This
is consistent with the theory that photosystem II evolved
from a Mn-carbonate-oxidizing enzyme within a suboxic,
neutral pH paleoocean ( Johnson et al., 2013) to a HCO3

--
oxidizing oxygenic photosystem and then to H2O-oxygenic
photosynthesis (Dismukes et al., 2000) just prior to the rise
of O2 during the Great Oxidation Event at ca. 2.3 Ga (Betts
et al., 2018). During this transition, surface anaerobic eco-
systems would have either started going extinct or would
have adapted to higher O2 levels, perhaps incorporating
aerobic metabolic pathways, whereas deep subsurface eco-
systems would have remained relatively unaffected.

The molecular clock constraints on the non-oxygenic
phototrophic-bearing phyla, Chloroflexi (green nonsulfur
bacteria) and Chlorobi (green sulfur bacteria) suggest that
the origin of their stems dates from no earlier than *3 Ga
with Fe2+-oxidizing green sulfur bacteria likely being the
most ancient (Magnabosco et al., 2018b). The inferred Fe2+

phototrophic mat structures in the 3.45 Ga Buck Reef Chert
(Tice and Lowe, 2004) predate this stem age for all photo-
trophic lineages. The remaining phototrophic bacteria
within the phyla Proteobacteria and Clostridia likely ac-
quired their abilities by later horizontal gene transfer. The
discrepancy in the timing for the emergence of phototrophy
between the fossil record, 3.45 Ga, versus that of molecular
clock models, 3.0 Ga, requires resolution, but the emergence
of oxygenic photosynthesis is much later.

A critical nutrient to the expansion of both subsurface and
surface life on any planet is the availability of nitrogen as an
aqueous species. On Earth, microorganisms evolved the
ability to fix N2 into ammonia with the development of
nitrogenase to overcome this constraint. Nitrogenases, Nif
proteins, are complex enzymes, utilizing iron, molybdenum,
and/or vanadium, that exist in both bacterial and archaeal
domains. Phylogenetic comparison of genes that comprise
nitrogenases and a complement of proteins required for their
regulation indicate that nitrogenases emerged in anoxic
sulfidic environments on Earth within obligate anaerobic
thermophilic methanogens and were transferred to obligate
anaerobic clostridia (Boyd et al., 2015), both common sub-
surface microorganisms. As Nif proteins were adopted first
by the aerobic diazotrophic lineage Actinobacteria and then
by the more recently evolved aerobic Proteobacterial and
Cyanobacterial lineages, the Nif protein suite became more
complex to protect the core MoFe-bearing proteins from O2

(Boyd et al., 2015). Although it is not clear whether the
emergence of the more complex protein occurred prior to or
after the Great Oxidation Event, it is certain that the ancestral
protein emerged in an anoxic environment when the demands
for aqueous nitrogen species exceeded the abiotic supply.
The implications for martian ecosystems are that nitrogenase
would have also likely emerged within an anaerobic sub-
surface environment, not in the oxic surface environment.

Experiments on the effects of low pN2 on diazotrophic
nitrogen-fixing soil bacteria have shown that they could
grow in N2 partial pressures of 5 mbar but not 1 mbar
(Klingler et al., 1989). This result suggests that further ex-
periments on wild-type species are required to determine
whether the evolution of pN2 in the martian atmosphere was
a significant deterrent to the expansion of early life,

1240 ONSTOTT ET AL.



especially after Mars lost most of its atmosphere. Analyses
of the nitrogen budget and of nitrogen cycling from deep
subsurface environments in South Africa indicate that the
pN2 is higher at depth than on the surface, that most of this
N2 originates from the rock formations through nitrogen
cycling, and that N2 is being actively fixed in the subsurface
by microbial communities (Silver et al., 2012; Lau et al.,
2016b). Given the presence of a cryosphere barrier to dif-
fusion on Mars, the nitrogen availability and perhaps even
the pN2 of subsurface brines are likely to be higher there
than on the martian surface.

4. Biosignatures of Past Rock-Hosted Life

Examination of fossil evidence for life on Earth prior to
*2 Ga is hindered by the fact that single-cell prokaryotes
typically do not produce inorganic cellular components and
Archean rocks have been subjected to metamorphic condi-
tions capable of completely erasing the organic microscopic
cellular remains. For those rare low-metamorphic-grade
Archean rocks, molecular biosignatures such as hopanes
(Eigenbrode, 2008) and their associated isotopic signatures
(Williford et al., 2016) can constrain ancient metabolic pro-
cesses. Examining examples of fossilized subsurface eco-
systems in Phanerozoic rocks, however, provides a bridge
between modern-day processes and contestable Archean
examples (Table 1; Fig. 4).

4.1. Subsurface life biosignatures in hydrothermally
altered ultramafic rocks

Magma-poor paleocontinental margins expose large vol-
umes of mantle peridotites to infiltration by seawater (Whit-
marsh et al., 2001). Along the Lower Cretaceous Iberian
margin, seismic data indicates 25–100% serpentinization-
driven alteration of ultramafic crust to depths of 4 km (Dean
et al., 2000). The upper *1 km is most heavily altered with
serpentinized rocks crosscut by calcite-brucite assemblages,
for which isotopic data indicate precipitation at temperatures
from 25–40�C. The contact zone is hypothesized to represent
the deep plumbing of a Cretaceous ‘‘Lost City’’ type hy-
drothermal system (Kelley et al., 2005, 2015).

Mineralized veins in the contact zone at depths of
*750 m are significantly enriched in organic carbon. Ana-
lysis for biosignatures revealed round to rod-shaped struc-
tures, *2–200 mm in diameter, which are consistent with
the morphologies of microbial colonies. Analyses of these
putative fossilized cells with Raman spectroscopy revealed
them to be carbon-enriched, with C–H, –CH2, and –CH3

functional groups. Band positions are consistent with lipids,
amino acid side chains of proteins and carbohydrates, and
amide I bonds in proteins. Further analysis of lipid bio-
markers revealed nonisoprenoidal dialkylglycerol diether
lipids of bacterial origin and acyclic glycerol dibiphytanyl
glycerol tetraether lipids of archaeal origin. Thus, hydro-
thermal activity *750 m beneath the seafloor at *120 Ma
sustained very abundant archaeal and bacterial microbial
communities, equivalent to *109 cells cm-2, within fractures
leaving behind morphologic fossils, organic carbon, and lip-
ids (Klein et al., 2015).

Fossilized remains of microorganisms have also been
described in carbonate or serpentine veins of *1 Ma ultra-
mafic peridotite rocks in the Mid-Atlantic Ridge, and

characterized by a combination of morphology, chemical
composition, and the presence of organic matter, sometimes
including specific complex amides usually characteristic of
biopolymers (Ménez et al., 2012; Ivarsson et al., 2018). In
these systems, complex organics are found in either arago-
nite veins or within a poorly crystalline mix of serpentine,
magnetite, and hydrogarnet, and remnant orthopyroxene
with chemical enrichments in Ni, Co, Mo, and Mn (Ménez
et al., 2012; Ivarsson et al., 2018) that are different com-
pared to microbial preservation in basalt-hosted systems,
which are instead dominated by clay minerals or Fe oxides
(see Section 4.2 below).

4.2. Fracture-filling fossilized complex subsurface
chasmoendolithic and cryptoendolithic communities
in igneous rocks and precipitated rocks

Basaltic rocks cored from modern-day continental
groundwater circulation sites show that cells are strongly
concentrated within clay and oxides assemblages in frac-
tures and pore spaces (e.g., Trias et al., 2017, their Sup-
plementary Fig. 15). Encrustation of biological matter by
mineralization is a key means of preserving the structures
over geologic time, as cataloged for rocks of multiple ages
and types (Hofmann and Farmer, 2000; Hofmann, 2008).
Investigations of ancient, now fossilized fracture surfaces in
igneous rocks show these are zones of concentration of
microbial activity, sometimes including complex commu-
nities of organisms with multiple trophic levels, preserved
by mineralization.

In seamount basaltic lavas ranging in age from 48 to
81 Ma, the fossilized remains of chasmoendolithic (fracture-
dwelling) subsurface microorganisms, that is, coccoidal,
filamentous or stromatolitic structures with elevated carbon
concentration and organic matter such as lipids and rare
chitin, are preserved in mixtures of clay, Fe oxides, and Mn
oxides and carbonate and gypsum veins (Ivarsson and Holm,
2008; Ivarsson et al., 2009, 2012; Bengtson et al., 2014).
The microstromatolitic structures found at 68–153 m below
the seafloor within the fractured basalt are interpreted as the
result of Fe- and Mn-oxidizing bacteria, and based on min-
eral succession, appear to be the initial colonizers of sub-
seafloor basalt (Bengtson et al., 2014; Ivarsson et al., 2015).
These rocks are interpreted to preserve a syntrophic com-
munity of chemolithoautotrophs, hyphae-forming fungi, and
microstromatolitic Frutexites. Most filamentous and coccoi-
dal fossils have so far been interpreted on morphological
characteristics and rare chitin as fungal hyphae and yeast
growth stages, respectively (Ivarsson et al., 2012, 2015).
This is probably not due to a dominance of fungi in sub-
seafloor crust but instead due to fungi being more easily
recognized than prokaryotic fossils. Microstromatolites and
associated single-celled features with morphologies compa-
rable to S-cycling archaea like Pyrodictium species suggest
prokaryotic remains are present as well (Bengtson et al.,
2014; Ivarsson et al., 2015). The organic micron-sized coc-
coidal shapes occur in concentrations equivalent to *107

cells cm-2 on the vein walls with vein-containing tubular
ichnofossils (see Section 4.3 below) and with saline fluid
inclusions recording entrapment temperatures of *130�C.

As a second example, in continental flood basalts of
Miocene age (17–6 Ma) in Oregon, secondary minerals
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formed within and near fractures preserve *1 mm sized
coccoidal and rod-shaped microstructures and framboidal
pyrite associated with kerogen (McKinley et al., 2000) in an
aquifer where the present-day microbial communities are
comprised of sulfate-reducing bacteria (Baker et al., 2003).
Iron oxyhydroxides, smectites, zeolites, and silica within

fractures and smectite veins were investigated because they
contained framboidal pyrite, and the cell-like microstruc-
tures were discovered.

As a third example, fossilized remains of biofilms have
also been found preserved within calcite-filled fractures of
1800 Ma granite at a depth of 200 m in the Fennoscandian

Table 1. Subsurface Biomarkers Preserved in Geological Record

Age (Ma)

Biosignature type reported

Forms Formation type Ref.Isotope
Geochemistry/

mineralogy Morphology
Organic
carbon Lipid

0.6 x filaments Sea Mounts 1
1 x x filaments Ries Impact Crater 2, 3
2 x x x concretions Navajo Sandstone 4
3.4–44 x Cretaceous shale 5, 6
15 x x microcolonies Columbia River Basalt 7
31 x x x ichnofossils sea floor basalt 8
48 x x filaments Sea Mounts 9, 10
56 x x filaments Sea Mounts 9
60 x x concretions Moeraki Formation 11
81 x x filaments Sea Mounts 9
84 x x concretions Gammon Shale 12
88.5 x x x concretions Mancos Shale Formation 13
91 x x x concretions Frontier Formation 13
95 x x x concretions Frontier Formation 13
92 x x ichnofossils Troodos ophiolite 14, 15
0.115–400 x x x x x microcolonies Fennoscandian shield granite 16–18
120 x x x x x microcolonies Southern Iberia Abyssal Plain 19
152 x x concretions Kimmeridge Clay 20
173 – 8 x Fennoscandian shield granite 21
180 x x concretions Upper Lias 22
250 x x reduction

spheroids
Mercia Mudstone Group 23

315 x x concretions Lower Westphalian coal 24
355 – 14 x x x filaments Fennoscandian shield granite 21
358–394 x x x Fennoscandian shield granite 21, 24
385 x x x filaments Arnstein pillow basalt 25, 26
388 x filaments Tynet Burn limestone 27
443 x x ichnofossils Caledonian ophiolite 28
458 x x filaments Lockne Impact Structure 29
551 x x concretions Doushantuo Formation 30
1175 x reduction

spheroids
Bay of Stoer Formation 23

1950 x x ichnofossils Jormua ophiolite complex 31
2400 x filaments Ongeluk Formation sea floor

basalt
32

2900–3350 x x x ichnofossils Euro Basalt 33, 34
3240 x filaments Sulphur Springs Group 35
3300 x Barberton Greenstone Belt 36
3460 x Dresser Formation 37
3465 x x x microcolonies Apex Chert 38
3465 x microcolonies Apex Chert 39
3465 x Apex Chert 40
3465 x x ichnofossils Hooggenoeg Formation 41, 42
3770–4280 x filaments Nuvvuagittuq belt 43

1Ivarsson et al. (2015), 2Sapers et al. (2014), 3Sapers et al. (2015), 4Loope et al. (2010), 5Ringelberg et al. (1997), 6Elliott et al. (1999),
7McKinley et al. (2000), 8Cavalazzi et al. (2011), 9Ivarsson et al. (2009), 10Ivarsson et al. (2012), 11Thyne and Boles (1989), 12Coleman
(1993), 13Mcbride et al. (2003), 14Furnes et al. (2001), 15Wacey et al. (2014), 16Pedersen et al. (1997), 17Drake et al. (2015a), 18Drake et al.
(2015b), 19Klein et al. (2015), 20Irwin (1980), 21Drake et al. (2017a), 22Coleman and Raiswell (1995), 23Spinks et al. (2010), 24Curtis et al.
(1986), 25Drake et al. (2018), 25Eickmann et al. (2009), 26Peckmann et al. (2007), 27Trewin and Knoll (1999), 28Furnes et al. (2002),
29Ivarsson et al. (2013), 30Dong et al. (2008), 31Furnes et al. (2005), 32Bengtson et al. (2017), 33Banerjee et al. (2007), 34McLoughlin et al.
(2012), 35Rasmussen (2000), 36Ohmoto et al. (1993), 37Shen and Buick (2004), 38Schopf et al. (2018), 39Pinti et al. (2009), 40Ueno et al.
(2006), 41Banerjee et al. (2006), 42Furnes et al. (2004), 43Dodd et al. (2017).
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shield using transmission electron microscopy (Pedersen
et al., 1997). Stable isotope, fluid inclusion, and fission track
analyses constrain the age of occupation and entrapment
between 115 ka and 400–300 Ma. More recently, Drake
et al. (2017a) have discovered fossil biofilms preserved in
calcite veins dated at 355 – 14 Ma that occur at 300 m depth
in a similar Swedish granite and core lipids indicative of
sulfate-reducing bacteria extracted from calcite veins from
80 to 920 m depth in Swedish granite and that are 358–394
million years in age (Drake et al., 2018). In the same gra-
nitic rocks, coupled bacterial sulfate reduction–anaerobic
CH4 oxidation paleoactivity is recorded by the -125& to
+36.5& V-PDB d13C values and diagnostic lipid biomark-
ers preserved in vein-filling calcite (Drake et al., 2015a) that
formed at temperatures <50�C and the -54& to +132& V-
CDT d34S values in pyrite lining open fractures (Drake

et al., 2015b, 2018) over a depth range of 200–750 m. These
paleobiosignatures are consistent with the present-day ob-
servations of a coupled bacterial sulfate reduction–anaerobic
CH4 oxidation zone over similar depth ranges in fracture
water from the granite, though in one instance the sulfate-
rich zone is above the methane-rich zone (Pedersen et al.,
2014), and in the other instance the opposite is true (Hall-
beck and Pedersen, 2012).

Excellent preservation of fossilized fungal mycelia have
also been reported from granites of the Fennoscandian
shield with diagnostic morphologies like anastomosis be-
tween branches (Ivarsson et al., 2013). Drake et al. (2017b)
have reported a fossilized anaerobic fungi–sulfate reducing
bacteria consortium from a 740 m deep fracture in granite
located at the Laxemar site, Sweden. In particular, fossils of
filamentous microorganisms of fungi are within impact-
induced fractures in granite from the 89 Ma Dellen impact
and 458 Ma Lockne impact (Ivarsson et al., 2013). Both
sites are related to the subsequent hydrothermally formed
mineralization, indicating that impact-generated habitats in
igneous rock can be favorable for microbial colonization
and preservation.

As a fourth example, some organisms, known as ‘‘auto-
endoliths,’’ play a more active role in the formation of rock
edifices, whose precipitation can result directly from micro-
bial metabolism and encapsulate the responsible microbial
constituents (Marlow et al., 2015). For example, anaerobic
methanotrophs oxidize methane, increase alkalinity, and
produce bicarbonate that precipitates as carbonate rock at
methane seeps (Peckmann et al., 2001). Metabolic activity
continues from within the rock (Marlow et al., 2014b), and
biosignatures of the entombed organisms can persist for
hundreds of millions of years (Peckmann and Thiel, 2004).

Other examples of fracture-filling filamentous fabrics of
rock-hosted life include those preserved in chalcedony and/or
zeolite in tens of terrestrial volcanic rocks ranging in age
from Tertiary to Mesoproterozoic (Hofmann and Farmer,
2000); filamentous fabrics of what are interpreted as Fe-
oxidizing chemotrophic bacteria of Devonian age in calcite
veins cross-cutting lacustrine sedimentary rock (Trewin and
Knoll, 1999); complex mineralized filamentous structures in
Devonian-age pillow basalt (Peckmann et al., 2007; Eick-
mann et al., 2009); and fungi-like mycelial fossils in vesi-
cles and fractures of 2.4 Ga basalt in South Africa (Bengtson
et al., 2017). The interpretations that these fossils represent
subsurface prokaryotes and fungi are consistent with ob-
servations of the present-day subsurface biosphere (see
Section 3.1). Nonetheless, as the record is pushed backward,
Earth’s overprinting processes demand more sophisticated
high-resolution analyses for biogenicity determination (see
also Section 4.6).

4.3. Microbial trace fossils in recent and ancient glass

Complex, tubular structures that are sometimes found ema-
nating from alteration mineral–filled fractures in basalts, ba-
saltic glass, or impact glass may in some cases be trace fossils of
microbial origin, called ichnofossils. These structures were first
reported in Pleistocene volcanic glass in Iceland (Thorseth
et al., 1992) and have since been documented globally in young
seafloor pillow basalt glass (Thorseth et al., 1995; Furnes et al.,
1996; Fisk et al., 1998; Fisk and McLoughlin, 2013) and in

FIG. 4. Present understanding of rock-hosted life over
time. The currently recognized biosignatures of rock-hosted
life from Table 1 are plotted as a function of time along with
the timing of development of microbial metabolisms from
molecular clock techniques, as discussed in the text. Earth’s
geologic timescale, Earth’s oxidation, and the era of surface
stability of water on Mars are also shown.
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pillow basalt of ancient ophiolites and greenstone belts dating
back 3.5 Ga (Furnes et al., 2008). The mechanisms of formation
of these features combine dissolution of glass with leaching of
cations and formation of clay minerals, Fe and Mn silicates, and
Fe and Ti oxides (Staudigel et al., 2008).

In modern rocks, basaltic glass samples from 1.3–1.8 km
depth from Hawaii Scientific Drilling Program core that
were examined with Raman, deep UV fluorescence, and 16S
rRNA sequencing show microorganisms are present in clays
at the dissolution boundary with the glass near microtubular
structures (Fisk et al., 2003). In modern seafloor basalts on
the Mohns spreading ridge of the Norwegian Sea, tubular
dissolution structures originate from the palagonite-glass
interfaces, and evidence for bacterial processing includes
the characteristic rounded and elongated, microbial-sized,
0.5–2 mm, pores, enrichments of Mn on the rims of coccoid-
shaped structures with elevated concentrations of C, N, and
organic carbon with a depleted isotopic signature (Kruber
et al., 2008; McLoughlin et al., 2011).

Determining biotic versus abiotic origin in fossil rocks
requires careful observations of textural subtleties and
paired morphological-chemical criteria (e.g., McLoughlin
and Grosch, 2015). As with many exothermic inorganic
chemical processes that are exploited by chemolithoauto-
trophic microorganisms, distinguishing structure formed by
abiotic reactions from biologically mediated ichnofossils is
challenging (Knowles et al., 2012; Grosch and McLoughlin,
2014; Wacey et al., 2017). We describe two of the best
ancient examples involving rock-hosted microbial life as-
sociated with glass dissolution.

Ichnofossils like the modern examples are found in vol-
canic glass of the 92 Ma Troodos ophiolite (Furnes et al.,
2001). Tubular dissolution structures possess 3-D spiral
morphologies with organic carbon and nitrogen enriched
linings (Wacey et al., 2014). Careful analyses of the rela-
tionship between infilling clay minerals and organics shows
that the organics formed first by microbial extracellular
materials and were then mineralized by clays.

In the 14 Ma Ries impact crater, microtubules related to
microbial life are found in the impact-generated glass within
heavily altered zones with clay minerals and Fe oxides. The
carbon-bearing materials have C-Hx and amide I and II
absorption bands from organic materials, not observed in
tubule-free areas (Sapers et al., 2014). Further analysis with
Raman spectroscopy showed quinoic compounds, and
STXM coupled with NEXAFS showed Fe redox patterns in
these areas consistent with microbially mediated dissimila-
tory Fe reduction (Sapers et al., 2015).

4.4. Lipid biomarkers of rock-hosted life

Neutral lipid biomarkers have been widely utilized as a
biomarker of terrestrial life in sedimentary and petroleum
deposits (see review by Brocks and Summons, 2005), and
their application to Archaean marine sediments had a sig-
nificant impact on the understanding of the evolution of
prokaryotes and eukaryotes (e.g., Brocks et al., 1999).
However, aliphatic and polycyclic lipids in the metamor-
phosed Archean sediments containing polyaromatic hy-
drocarbons were later shown to be drilling contamination
(French et al., 2015). Unmentioned, and unresolved, is
whether some of the low concentrations of bacterial lipids

and archaeal isoprenoids found in the rock matrix could
in fact have originated from extant and extinct subsurface
microorganisms colonizing the rock mass over billions of
years.

Analyses of lipid biomarkers in modern marine sediments
under anoxic conditions document how rapidly the lipid
biomarkers of marine planktonic biomass, both eukaryotic
and prokaryotic, are quickly replaced within the water col-
umn and the surface seafloor sediment by the bacterial lipids
of the subseafloor biosphere (Schubotz et al., 2009). The
archaeal lipid half-lives appear to be longer on the order of
hundreds of thousands of years (Xie et al., 2012). A geo-
logical test for both the age and preservation of subsurface
bacterial lipids has been documented in Cretaceous-age
marine sediments that were intruded by mafic dikes 3.4
million years ago (Table 1; Fig. 4). Profiles of the phos-
pholipids (active bacteria) and glycolipids (extinct bacteria)
both stratigraphically and as a function of distance from the
intrusion indicate that the glycolipids result from the decay
of phospholipids of subsurface bacteria. These lipids from
subsurface bacteria predate the 3.4 Ma intrusion and post-
date the 44 Ma age of burial sterilization (Tmax = 125�C) of
the marine shale (Ringelberg et al., 1997; Elliott et al.,
1999). This persistence indicates that study of lipid bio-
markers of rock-hosted life warrants considerably more at-
tention as the microbial record of ancient terrestrial rocks is
interrogated.

4.5. Putative Archean subsurface versus surface
microbial biosignatures

The earliest, commonly agreed upon, preserved microbial
structures are in the 3.4–3.5 Ga rock units of the Pilbara
Craton, Australia. Some units contain microfossils and lam-
inated sedimentary structures consistent with stromatolites
and contain contentious carbonaceous biosignatures (e.g.,
Walter et al., 1980; Buick et al., 1981; Schopf, 1993; Brasier
et al., 2006; Noffke et al., 2013) that are suggestive of
photosynthetic microorganisms at this time, though their
biogenicity has been questioned (e.g., Buick et al., 1981;
Lowe, 1994; McLoughlin et al., 2008).

The 3.46 Ga Apex chert represents hydrothermal dikes
with silica-mineralization containing kerogenous microfos-
sils involved in subsurface cycling of CH4 (Schopf et al.,
2018) and/or organic matter formed by abiogenic mecha-
nisms, for example, Fischer-Tropsch-type synthesis or re-
mobilization of other organics (Brasier et al., 2002, 2005,
2006; Garcı́a-Ruiz et al., 2003). Other workers have sug-
gested the -56& d13C V-PDB value of CH4 trapped in fluid
inclusions of the same veins could be the earliest evidence
of methanogenesis in the subsurface (Ueno et al., 2006).

Sulfur isotope fractionation between sulfides and barite in
sediments and crosscutting veins (Shen et al., 2009) and
within seafloor basalt and komatiite (Aoyama and Ueno,
2018) of the Dresser Formation suggest that sulfate-reducing
bacteria were also present and metabolically active at the
near surface and subsurface by *3.46 Ga. Microfossils
preserved in chertified Strelley Pool arenite and pyrite with
negative d34S V-CDT values also suggest the presence of
subsurface sulfate-reducing bacteria at 3.43 Ga (Brasier
et al., 2015). Pyritic filaments preserved in the 3.24 Ga deep
sea volcanogenic massive sulfide deposits within the
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Sulphur Springs Group provide the most convincing evi-
dence of early life in the form of thermophilic, chemo-
trophic prokaryotes living in hydrothermal systems beneath
the seafloor (Rasmussen, 2000).

Putative microfossils in the form of mineralized tubular
features in basaltic glass from the 3.47–3.46 Ga upper
Hooggenoeg Formation of the Barberton Greenstone Belt,
containing isotopically light carbonate, have been proposed
as subsurface biosphere fossils (Furnes et al., 2004; Banerjee
et al., 2006). Titanite mineralized microtubules in 3.35 Ga
basaltic glass with a minimum age of 2.9 Ga have also been
suggested to represent evidence of biological processing
(Banerjee et al., 2007). Very negative d34S V-CDT values
from pyrite within these microtubules suggest that they were
formed by microbial sulfate reduction (McLoughlin et al.,
2012). More recently, however, Grosch and McLoughlin
(2014) disputed the biogenicity of the microtubule textures
suggesting they represent contact metamorphic textures as-
sociated with postdepositional intrusions (Table 1; Fig. 3).

Even more controversial are the earliest traces of life
from 3.95–3.75 Ga amphibolite-grade metamorphic rocks in
Greenland and Labrador in the form of ‘‘biogenic graphite’’
(Mojzsis et al., 1996; McKeegan et al., 2007; Tashiro et al.,
2017) and a single graphite inclusion in 4.1 Ga zircons from
Jack Hills, Australia (Bell et al., 2015) that yield negative
d13C V-PDB values comparable to those of modern life.
Determining whether they represent primary organic matter
versus secondary organic matter formed during later meta-
morphism is challenging (Papineau et al., 2011), and iso-
topic values do not determine whether they formed by
biological fractionation or abiotic processes (van Zuilen
et al., 2003; Sherwood Lollar et al., 2006), let alone whether
they represent ‘‘chemofossils’’ of phototrophic or subsur-
face chemoautotrophic microbial biomass. Other evidence
for Archean life is based upon textural evidence such as
putative centimeter-scale stromatolites in 3.7 Ga meta-
carbonates in Greenland (Nutman et al., 2016) and tens-of-
micron-scale hematite filaments in 4.2 Ga metasedimentary
rock in Quebec (Dodd et al., 2017). The former features,
however, were recently refuted as true stromatolites (All-
wood et al., 2018).

In summary, the paucity of low metamorphic grade Ar-
chaean rock record hampers our ability to identify unambig-
uous biosignatures older than *3 Ga, which is approximately
the time frame at which Mars’ broad-scale habitability began
to decline. Putative morphological biogenic structures, com-
bined with C and S isotopic evidence, have been preserved
in volcanics, dikes and quartzites that are consistent with
subsurface life (methanogenesis and sulfate reduction) while
those found in marine sediments are suggestive of photo-
synthetic life. Noteworthy is a quote from the work of Brasier
et al. (2015), as follows: ‘‘Why are few cellular fossils found
in rocks before 2.5 Ga? For decades, the main search image
has been cyanobacteria-like assemblages as silicified algal
mats and stromatolites. Have we been looking for fossils in
the wrong places?’’ (Brasier et al., 2015). In light of new
insights on the magnitude of the rock-hosted biosphere on
Earth, it seems clear that while we were not looking in the
wrong places, the taphonomic windows and environmental
settings investigated for the biomarkers of ancient life should
be expanded. The same can be said, therefore, for the >50%
of the surface of Mars that is older than *3 Ga. As it is

unmetamorphosed relative to Earth, it represents a particu-
larly compelling exploration frontier (see Section 5).

4.6. The footprint of fossil rock-hosted life

The confirmation of biosignatures often takes place at the
micrometer scale by a suite of integrated techniques de-
scribed in the examples above. Nevertheless, the ‘‘foot-
print’’ of fossil rock-hosted life can far exceed this scale as
the mineralogical, chemical, and isotopic signatures for the
presence of life can often be observed in bulk rock samples,
sometimes over enormous volumes ranging from millime-
ters to kilometers. Indeed, the impact of rock-hosted life on
biogeochemical cycling on Earth is significant and a current
major topic of research (Colwell and D’Hondt, 2013).

An example of just how large this footprint can be is the
magnetic anomalies on the scale of tens of kilometers de-
tected around oil fields by aeromagnetic surveys (Fig. 5).
These anomalies are characteristic of freshwater oil reser-
voirs and result from the oxidation of hydrocarbon coupled
to the reduction of Fe(III) in the sediment by Fe(III)-reducing
bacteria producing fine-grained magnetite that records the
ambient magnetic field at the time of crystallization over the
geological life span of the oil reservoir (Liu et al., 2004;
Schumacher, 1996).

An example more relevant to planetary sciences is the
footprint left behind by the subsurface microbial processes
in pore waters in sediments that successively consume or-
ganic matter and give mineralogically, chemically, and iso-
topically characteristic products that are much larger than the
microorganisms forming them. For example, the association
of pyrite with nonferroan calcite with d13C values of ap-
proximately -20& V-PDB is a clear indication of the former
presence of sulfate-reducing bacteria, as has been shown in
modern-day deposits (Coleman et al., 1993). The likely d13C
value for each of the processes, which may vary from -20&
to +15& V-PDB, is summarized in Fig. 1 of Coleman (1985).
Any part of a sedimentary succession might have evidence of
one process only, and this results from the rate of burial of the
sediment (or changes in rate), which controls in which zone
the organic matter resides for the longest time (Irwin et al.,
1977). The characterization is sufficiently specific that con-
tributions from different processes can be identified in a
single mineral, for example, Mn reduction, Fe reduction, and
methanogenesis in siderite (Fe carbonate) minerals in 315 Ma
sediments (Curtis et al., 1986). These mineral biosignatures
occur as intergranular pore-filling cements in many sediment
rock types ranging from shale to coarse sandstone (Curtis,
1977). However, the most spectacular occurrences are large
spherical or subspherical nodular concretions ranging in size
from a few millimeters up to 2 m diameter (Thyne and Boles,
1989). Their visibility makes them excellent pathfinders for
other more detailed analyses to confirm their origin, and they
can preserve biosignatures for more than 550 million years
(Dong et al., 2008).

Other examples of carbonate/oxide concretions produced
by anaerobic and micro-aerophilic subsurface bacteria are
found in ancient sandstones at scales of up to meters (Co-
leman, 1993; Abdel-Wahab and McBride, 2001; McBride
et al., 2003). These sandstone concretions form as a result of
microbially mediated redox reactions occurring during fluid
flow long after deposition of the sediment. Meter-sized
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Fe(II)-rich carbonate/iron oxide concretions (Fig. 4) are
found in Jurassic sandstone deposits of southwest Colorado
that were formed at hundreds of meters’ depth between 2
and 0.5 Ma as the Colorado River Basin was uplifted
(McBride et al., 2003; Loope et al., 2010). Similar-sized
ferroan calcite and siderite concretions occur in Late Pa-
leocene/Early Eocene Wasatch Group sandstones, and sid-
erite nodule-bearing cores from the formation (Lorenz et al.,
1996) yielded thermophilic Fe(III)-reducing bacteria that
were capable of producing prodigious quantities of siderite
(Roh et al., 2002). In subaqueous systems unconstrained by
rock matrix, authigenic carbonate mounds at CH4 and hy-
drocarbon seeps, formed from carbon mobilized by meth-
ane- and alkane-oxidizing microorganisms (Greinert et al.,
2001; Formolo et al., 2004; Ussler and Paull, 2008), can be
hundreds of meters tall and more than a kilometer wide
(Klaucke et al., 2008).

At smaller scales but still larger than individual micro-
organisms, filamentous bacteria often form mats centimeters
in size that later are silicified into stalactite-like cavity-
filling textures (Hofmann and Farmer, 2000). Smaller still
are framboidal pyrites generated by sulfate-reducing bacte-

ria in sizes ranging up to tens of micrometers in diameter
(Popa et al., 2004; Maclean et al., 2008). Framboidal pyrites
of similar size and texture are seen in Archean sedimentary
deposits (e.g., Guy et al., 2012). However, framboidal pyrite
alone is not an infallible biosignature, as pyrite with similar
microcrystalline textures can be produced abiotically in the
laboratory if the solutions are extremely supersaturated with
respect to pyrite and/or the temperatures are greater than
60�C (Ohfuji and Rickard, 2005) and occur naturally in ore
deposits formed at 150�C to 320�C (Halbach et al., 1993),
temperatures well above the limit of hyperthermophiles.
Nevertheless, true framboidal pyrites are widely associated
with microbial sulfate reduction and can act as a valuable
pathfinder so that other characterizations can be performed.

Reduction spheroids were formerly believed to be created
by detrital organic matter abiotically reducing Fe(III) min-
erals to Fe(II) minerals in red beds, but additional mecha-
nisms, such as radiolysis and subsurface bacteria, have been
advanced to explain their occurrence (Keller, 1929; Hof-
mann, 1990, 1991, 2008). Reduction spheroids that range in
diameter from millimeters to decimeters with a core enriched
in uranium and vanadium have been found throughout the

FIG. 5. Increasing scale of metabolic footprint of subsurface life. (A) Single microbial cells attached to clay minerals of a
2.8 km deep fracture zone (Wanger et al., 2006). (B) Framboidal pyrite sack with organic mineralization from 1.5 km deep
borehole. White arrow points to single bacterial cell (Maclean et al., 2008). (C) Centimeter-scale ‘‘Pseudostalactite’’ of
quartz and goethite cemented by biogenic filaments occurring in Tertiary volcanic rocks in California (Hofmann and
Farmer, 2000). (D) Ferroan carbonate septarian concretions from 88.5 Ma in the Ferron Sandstone Member of the Mancos
Shale Formation in Utah that are 1–4 m in diameter (McBride et al., 2003). (E) Surface diagenetic alteration zones and
traces of pre-Permian faults over Velma field, Stephens County, Oklahoma, 1 mile scale bar (Al-Shaieb et al., 1994).
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geological record reaching back to the oldest red beds in the
Mesoproterozoic and are believed to record the activity of
subsurface microorganisms often pre-dating peak metamor-
phism and deformation (Spinks et al., 2010).

Thus, the footprint of subsurface metabolic activity can
greatly exceed the organic content of the microorganisms
responsible. To quantify some of the examples above, 1–20
cells occurring within a cluster or patch in the rock would be
comprised of only 2 · 10-15 to 4 · 10-14 mol of organic
carbon in a 10-11 cm3 volume. Microbially generated fram-
boidal pyrite ranges in size and mass up to *10-9 cm3 of
53 wt % S, representing *10-10 mol e- of sulfate reduction.
Reduction spheroids are 10-3 to 103 cm3 volumes, depleted
in Fe(III) by 1–3 wt % Fe2O3 compared to the rock host
(Hofmann, 1990), and represent 10-6 to 5 mol e- of Fe(III)
reduction. Carbonate concretions attain volumes of 103 to
106 cm3, enriched in carbonate by as much as 50–70 wt %
(Coleman and Raiswell, 1995), and represent 10 to 104 mol e-

from organic carbon oxidation although isotopic profiles
suggest that some of the carbonate volume could accrue from
increased alkalinity due to anaerobic respiration (McBride
et al., 2003). These estimates correspond to a total metabolic
conversion of *1 (reduction spheroids) to 100 (pyrite
framboids) mol e- L-1 over timescales of millions of years
(Thyne and Boles, 1989; Abdel-Wahab and McBride, 2001;
Mcbride et al., 2003). Such rates are consistent with the
metabolic rates reported for near-shore, deep subseafloor
sediment microbial communities (Orcutt et al., 2013), and
the size of these mineral footprints reflects the environmental
stability of the subsurface environment over geological time
intervals.

5. An Exploration Strategy for Past Rock-Hosted
Life Biosignatures on Mars

5.1. Lessons from Earth

Earth’s crust has harbored and preserved subsurface life
since at least 3.2 Ga, possibly 3.45 Ga, and the fossil remains
are preserved in rock with low metamorphic grade, which is
promising for tracking the terrestrial fossil record as well as
searching for fossils in similar-age rocks from Mars. The
types of biosignatures of rock-hosted life include morphologic
structures, organic carbon, spatial patterns in geochemistry,
gases, minerals, and their isotopic signatures. When available
in concert they can distinguish rock-hosted life from abiotic
footprints (e.g., McLoughlin et al., 2011). The criteria for
recognizing such life are not fundamentally different from
those articulated for more ‘‘classic’’ near-surface sedimen-
tary environments (Summons et al., 2011). As summarized
by Grosch et al. (2014), textural, chemical, and isotopic
information (about both reservoir composition and frac-
tionation patterns) is required, initially at submillimeter
scale and then micrometer scale with NanoSims, FIB-TEM,
and X-ray synchrotron-based studies. The nature of the rock
types that warrant investigation for fossil rock-hosted life
and the methods for finding and then characterizing the most
promising samples are, however, different. Crystalline ig-
neous rocks altered by groundwater and impact-altered
rocks are of high priority in the search for rock-hosted life
on Mars. Several heuristic principles can be extracted, based
on the terrestrial experience in finding and characterizing
biosignatures of rock-hosted life, discussed in Sections 3–4.

These scale down from the landscape scale to the micro-
scopic scale (Fig. 4).

First, suitable host rock formations must be identified
within the environmental parameters that support life. These
include zones with a suitable temperature range during
water-rock interaction (< *120�C) and sufficient perme-
ability for fluid flow or porosity for diffusive transport (can
be highly heterogeneous), combined with redox couples that
yield sufficient energy to provide adequate power for sus-
taining significant biomass concentrations. Many martian
rock formations may be suitable (see Section 2). Even rocks
identified with higher-temperature water-rock alteration are
of interest because there will exist some contact zone or
gradient where the higher-temperature waters cool toward
Mars surface ambient. Rocks should not have excessive
overprinting by later chemical or thermal processes, which
might obfuscate or destroy the interpretation of the origin of
the rock-hosted life biosignatures. However, even rocks with
low-grade hydrothermal or metamorphic overprinting have
yielded subsurface biosignatures on Earth, although the du-
ration of such modifications is an important consideration.
Ancient martian rocks are generally far less metamorphosed
than ancient terrestrial rocks due to the absence of plate
tectonics.

Second, finding specific locales to search for biosignatures
relies on seeking interfaces at a variety of spatial scales.
Studies of terrestrial rock-hosted life (and ice-hosted life)
have revealed there are two types of interfaces conducive to
rock-hosted life: zones with redox disequilibria gradients or
high-permeability zones of fluid flow. The former provide
energy for life, and the latter ensure sufficient delivery of
new material to support metabolism and removal of waste
products. Fault zones, fractured rock, connected vesicles and
voids, and alteration zones are locations where rock-hosted
life, present and fossil, is found on Earth. Indeed, the cell
count is often at least an order of magnitude higher at the
interfaces in comparison to surrounding rock (Fig. 3, Section
3.3). Meter-scale and centimeter-scale analyses of mor-
phology, mineralogy, and chemistry can identify these key
interfaces for investigation. Detection of the biosignatures
themselves relies on smaller spatial scale (submillimeter)
analyses of the patterning in morphology, chemistry, and
isotopes.

Third, bulk rock organic carbon content over large spatial
scales does not track as a key indicator of the richness of the
microbial community. Heterogeneity along interfaces is ex-
pected, and most subsurface cell concentrations are clustered
rather than diffuse. Based upon a review of terrestrial bio-
mass distribution (see Section 3.3), any search for cell-like
materials requires searching rock fracture surfaces for *10
cell clusters (> *103 cells g-1) occupying hundreds of mm2

areas or identifying seams with carbonaceous material where
cell concentrations can reach 109 cells g-1. Thus, the ability
to detect 1000 cells g-1 at 100mm spatial sampling may be a
rule of thumb for evaluating candidate techniques for in situ
biosignature prospecting for rock host.

Finally, a crucial lesson from the terrestrial record of
fossil rock-hosted life is that the initially detected potential
biosignature is more likely to be a suggestive mineralogical,
chemical or isotopic composition, possibly in a particular
shape or texture, rather than a direct detection of organic
carbon enrichment from such life. This is because the
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products of life are more volumetrically significant than life
itself (Section 4.6). Phases that may be metabolic products of
rock-hosted life or be by-products of metabolic reactions
include sulfide, carbonate, sulfate, oxides as well as gases
trapped in fluid inclusions. The ability to interrogate their
microscale textures, isotopic signatures, the presence or ab-
sence of organic carbon, and trace element patterns all
support the ability to identify possible biosignatures that later
might be confirmed with still smaller-scale analyses in ter-
restrial laboratories.

5.2. The exploration strategy for Mars

On Mars, rocks preserving ancient subsurface habitats are
accessible to surface exploration today. Their interrogation
does not require the type of large or complex drilling op-
erations that have been proposed to search for modern deep
subsurface life beneath kilometers of rock or ice (Sta-
menković et al., 2019). The search for paleo-rock-hosted
life is considerably more straightforward and can be con-
ducted efficiently at many locations with rovers or other
mobile surface explorers. This is because faulting, impacts,
and erosion have exposed scarps of rocks from the subsur-
face and ongoing wind erosion continually renews the upper
surface to expose rocks less affected by radiation and oxi-
dation. Crustal loading by emplacement of large volcanic
edifices at Tharsis and unloading around large impact basins
around Isidis and Argyre have created extensional faults that
expose thick strata of crust that once hosted groundwater
flow (Ehlmann et al., 2011; Ehlmann and Edwards, 2014).
Active erosional processes have exposed hundreds of meters
of materials that once hosted aquifers in a form accessible to
rovers. Examples include mineralized ridges at centimeter-
to kilometer-length-scale, which were conduits of ground-
water flow (Thollot et al., 2012; Saper and Mustard, 2013;
Siebach and Grotzinger, 2014; Quinn and Ehlmann, 2019).
At Gale Crater, erosion rates that refresh the surface and
expose materials less affected by radiation are *0.75 m My-1

(Farley et al., 2014). Impact craters also provide direct ex-
posure of subsurface material by their walls, ejecta, and uplift
of materials in the central peak (Cockell and Barlow, 2002;

Cockell et al., 2012). The complicating factors affecting
preservation of rock-hosted life biosignatures on Earth such as
organic matter degradation by modern organisms and over-
printing of chemical/mineralogical/isotopic signatures by
metamorphic fluids billions of years later are likely absent or
reduced in the near subsurface of Mars. Rock-hosted-life
biosignatures sealed in reduced mineral phases in the martian
subsurface may also be less susceptible to secondary oxidation
during uplift and exposure to surface oxidation than surficial
porous sediments comprised of oxidized mineral phases.

The exploration strategy for searching for evidence of
martian rock-hosted life parallels that employed on Earth,
but with the need to narrow progressively the spatial scale of
the exploration zone to target efficiently, access, and explore
the best sites, given the prevalence of orbital data and—
relative to the terrestrial situation—the paucity of opportu-
nities for data collection from landed missions (Table 2).
Additionally, many biosignatures are (at present) only de-
tected with advanced laboratory analyses necessitating
parsimonious sample selection coupled with acquisition of
contextual data for return of those samples with promising
preservation of biosignatures for rock-hosted life.

The scaled exploration strategy for rock-hosted life relies
on seeking interfaces and boundaries (Table 2). Redox in-
terfaces, indicated by mineralogy with contrasting oxidation
states, can be manifest at a range of spatial scales indicating
the potential for past thermodynamic disequilibria that drive
metabolism. Lithological interfaces that indicate zones of
focused fluid flow—fault zones, dikes, fracture networks, and
connected vesicles—also are required for exchange of ma-
terials with the environment. Because of the importance of
subsurface hydrology in establishing and maintaining habit-
able conditions, reconstructing fluid flow regimes through
martian aquifers is a key priority. Volcanic rocks inherit
large-scale fractures during cooling. Dike swarms also pro-
duce kilometers-scale fracture conduits due to the difference
in rock properties at their contacts with bedrock. Sediment
compaction and closing of pore space is less pronounced on
Mars than it is on Earth due to its lower gravity. Meteorite
impacts represent one of many reliable modes of fracturing
rock and creating reactive surface area and permeability

Table 2. Steps to Search for Rock-Hosted Life on Mars

Step Spatial scale Key measurement requirements

1. Identify rocks with ancient subsurface
habitats

<100 m sampling Ability to identify water-related mineral
deposits from orbit and determine
stratigraphic context

2. Locate interfaces that represent
favorable locations for rock life

Meter- to centimeter-scale Ability to identify redox and permeability
interfaces by identification of distinct
lithologic units

3. Search for mineralization from fluid
flow at interfaces

Centimeter- and
millimeter-scale

Ability to identify silica, carbonate, sulfate,
phyllosilicate, and oxides that may
mineralize microbial life

4. Search for organics, mineralization,
and isotopic anomalies at the interface

<100mm sampling Ability to detect organics, chemical, miner-
alogic, and/or isotopic differences between
interface rocks and surrounding rocks
indicative of biosignatures

5. Map putative biosignatures in 3-D,
tracking chemical and organic
variations with texture

<1 mm sampling in 3
dimensions

Ability to identify microbial textures and
distinguish biotic and abiotic processes to
confirm definitively fossil rock-hosted life
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enhancement—as demonstrated at the Haughton and Chesa-
peake Bay Impact Structures (Pontefract et al., 2016)—all of
which improve habitability prospects (Cockell et al., 2012).

As an example of the exploration strategy for Mars, orbit-
based data can identify rocks’ lithologies, recording the
paleoenvironmental conditions with groundwater flowing
through sulfate- and serpentine-containing rocks at Northeast
Syrtis Major. The presence of serpentine alongside oxidized
sulfur indicates the presence of redox interfaces. Abundant
fracturing in the area and the presence of secondary minerals
(Quinn and Ehlmann, 2019) suggest lithological interfaces
and substantial fluid flow. Calculations of Gibbs free energy
suggest that these martian habitats had the necessary energy
to support anaerobic oxidation of CH4 (Marlow et al., 2014a).
Mobile surface explorers with camera and instruments for
remote assessment of mineralogy and chemistry can then
pinpoint lithologic and mineralogical interfaces such as
fractures, redox fronts, and zones of low-temperature aqueous
mineralization: for example, crosscutting serpentine veins,
serpentine-carbonate contacts, and zones of intense magnetite
precipitation to meters then centimeters in scale. Advanced
instruments for petrology employed in contact with the rock
then examine a variety of initial observables, characteristic of
sites hosting signatures of paleo-rock-hosted life, including
organics and organic-mineral associations (Tables 1 and 2).
In select cases (e.g., complex mineralized filaments, re-
duction spheroids, concretions or framboidal pyrite), a
biosignature may be deemed highly likely, especially if
concentrations of organic matter are associated with it.
However, the best confirmation of biogenicity would require
further higher-resolution laboratory analyses on Earth that
include significant sample preparation and nanometer-scale
analyses.

In addition to the igneous and sedimentary rocks at
Northeast Syrtis and Nili Fossae, igneous and sedimentary
rocks altered by groundwater at Valles Marineris (Thollot
et al., 2012), sediments in the Terra Sirenum craters (Wray
et al., 2011; Ehlmann et al., 2016b), and even Gale Crater
present opportunities for searching for subsurface life. Or-
ganics have been found in diagenetically altered Gale Crater
sediments, though their origin as sedimentary detritus or
from later fluids cannot be established from the bulk sample
composition reported from the Curiosity rover’s instruments
(Eigenbrode et al., 2018). As of this writing, the long-lived
subsurface habitats on Mars have not yet been targeted in
geological or astrobiological investigations of the Mars
exploration program, which has instead targeted deposi-
tional basins, following an Earth environmental model. As
subsurface habitats for rock-hosted life are the most prom-
ising sites for preservation of ancient martian life (Section
2), the best prospects for life on our neighboring world await
future exploration by in situ missions or sample return.

6. Summary and Recommendations
for Future Directions

A review of the published studies on abundance and di-
versity of extant terrestrial subsurface life, the diverse envi-
ronments in which it is found, their fossil remains and
biomarkers, and a comparison of the evolution of key meta-
bolic pathways for phototrophic versus chemolithoautotrophic
microorganisms provide guidance to the search for biomark-

ers of subsurface life on Mars. First, the metabolic pathways
for microorganisms found in the terrestrial subsurface evolved
much earlier in Earth’s history than those of surface-dwelling
phototrophic microorganisms. Second, time-equivalent envi-
ronments on Mars were much less stable than on Earth, and
martian surface environments were challenged by radiation,
aridity, freezing temperatures, and frequent obliquity-driven
climate change that reduced the availability of water.

Subsurface environments inhabited by rock-hosted life
are common, not rare, on Earth. Rock-hosted life and its
preserved remains are found in ultramafic serpentinizing
systems, deep groundwater systems, hydrothermal systems,
and shallow aquifer and diagenetic environments. Terrestrial
subsurface biomass concentration tends to be highest at
chemical redox gradients and at permeability interfaces; it
does not correlate directly with the abundance of organic
carbon. Rock-hosted life does not rely upon metabolizing
organic photosynthate supplied by Earth’s phototrophic or-
ganisms but rather upon subsurface energy sources and
fluxes (e.g., water-rock chemical reactions, radiolysis) and
the abiotic and biotic recycling of carbon and metabolic
waste products. The terrestrial rock record reveals examples
of subsurface biomarkers at least back hundreds of millions
of years and likely to 3.45 Ga. Several excellent examples of
rock-hosted life with high-quality preservation are found in
rocks quite different from those traditionally explored for
fossils from the photosynthetically supported biosphere.

These findings suggest a well-defined exploration strategy
for rock-hosted life on Mars (Table 2):

(1) locate rocks preserving aquifers, that is, the plumbing
of hydrothermal and groundwater systems;

(2) then, identify redox interfaces and permeability/
porosity boundaries preserved within the rock outcrop;

(3) search for locations where these interfaces exhibit
mineralization that may have entombed cells;

(4) at submillimeter scale, interrogate these zones of
mineralization for patterns in organic molecule con-
centration, morphologies suggestive of microbial fil-
aments or cells, changes in isotopic signatures
(particularly of C, N, S, and Fe), and associations
between these putative biosignatures.

Armed with this strategy, evidence of the biosignatures of
rock-hosted life can be found in situ on Mars and the best
samples identified for return to Earth and further interro-
gation. The search for rock-hosted life is essential to un-
derstanding whether Mars was once inhabited, and the
search for life on Mars will only be complete once its
subsurface habitats are targeted for exploration.
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Labonté, J., Field, E., Lau, M., Chivian, D., van Heerden, E.,
Wommack, K.E., Kieft, T.L., Onstott, T.C., and Stepanauskas,
R. (2015) Single cell genomics indicates horizontal gene
transfer and viral infections in a deep subsurface Firmicutes
population. Front Microbiol 6, doi:10.3389/fmicb.2015.00349.

Laskar, J., Levrard, B., and Mustard, J.F. (2002) Orbital forcing
of the martian polar layered deposits. Nature 419:375–377.

Laskar, J., Correia, A.C.M., Gastineau, M., Joutel, F., Levrard, B.,
and Robutel, P. (2004) Long term evolution and chaotic dif-
fusion of the insolation quantities of Mars. Icarus 170:343–364.

Lau, M.C.Y., Stackhouse, B.T., Layton, A.C., Chauhan, A.,
Vishnivetskaya, T.A., Chourey, K., Mykytczuk, N.C.S.,
Bennett, P.C., Lamarche-Gagnon, G., Burton, N., Ronholm,
J., Pollard, W.H., Omelon, C.R., Medvigy, D.M., Hettich,
R.L., Pfiffner, S.M., Whyte, L.G., and Onstott, T.C. (2015)
An active atmospheric methane sink in high Arctic mineral
cryosols. ISME J 9:1880–1891.

Lau, M.C.Y., Kieft, T.L., Kuloyo, O., Linage, B., van Heerden,
E., Lindsay, M.R., Magnabosco, C., Wang, W., Wiggins,
J.B., Guo, L., Perlman, D.H., Kyin, S., Shwe, H.H., Harris,
R.L., Oh, Y., Yi, M.J., Purtschert, R., Slater, G.F., Ono, S.,
Wei, S., Li, L., Sherwood Lollar, B., and Onstott, T.C.
(2016a) Deep-subsurface community dependent on syntrophy
is dominated by sulfur-driven autotrophic denitrifiers. Proc
Natl Acad Sci USA 113:E7927–E7936.

Lau, M.C.Y., Kieft, T.L., Kuloyo, O., Linage, B., van Heerden,
E., Lindsay, M.R., Magnabosco, C., Wang, W., Wiggins,
J.B., Guo, L., Perlman, D.H., Kyin, S., Shwe, H.H., Harris,
R.L., Oh, Y., Yi, M.J., Purtschert, R., Slater, G.F., Ono, S.,
Wei, S., Li, L., Sherwood Lollar, B., and Onstott, T.C.
(2016b) Deep-subsurface community dependent on syntrophy
is dominated by sulfur-driven autotrophic denitrifiers. Proc
Natl Acad Sci USA 113:E7927–E7936.

Lefticariu, L., Pratt, L.M., and Ripley, E.M. (2006) Mineralogic
and sulfur isotopic effects accompanying oxidation of pyrite in
millimolar solutions of hydrogen peroxide at temperatures from
4 to 150 degrees C. Geochim Cosmochim Acta 70:4889–4905.

Lester, E.D., Satomi, M., and Ponce, A. (2007) Microflora of
extreme arid Atacama Desert soils. Soil Biol Biochem 39:
704–708.

Li, L., Wing, B.A., Bui, T.H., McDermott, J.M., Slater, G.F.,
Wei, S.W., Lacrampe-Couloume, G., and Sherwood Lollar, B.
(2016) Mass-independent sulfur fractionation in subsurface

fracture waters indicates a long-standing sulfur cycle in Pre-
cambrian rocks. Nat Commun 7, doi:10.1038/ncomms13252.

Lin, L.H., Wang, P.-L., Rumble, D., Lippmann-Pipke, J., Boice,
E., Pratt, L.M., Sherwood Lollar, B., Brodie, E., Hazen, T.,
Andersen, G., DeSantis, T., Moser, D.P., Kershaw, D., and
Onstott, T.C. (2006) Long term biosustainability in a high
energy, low diversity crustal biome. Science 314:479–482.

Lipp, J.S., Morono, Y., Inagaki, F., and Hinrichs, K.-U. (2008)
Significant contribution of Archaea to extant biomass in
marine subsurface sediments. Nature 454:991–994.

Lippmann-Pipke, J., Erzinger, J., Zimmer, M., Kujawa, C.,
Boettcher, M., Heerden, E.V., Bester, A., Moller, H., Stroncik,
N.A., and Reches, Z. (2011) Geogas transport in fractured hard
rock—correlations with mining seismicity at 3.54 km depth,
TauTona gold mine, South Africa. Appl Geochem 26:2134–
2146.

Liu, Q., Chan, L., Liu, Q., Li, H., Wang, F., Zhang, S., Xia, X.,
and Cheng, T. (2004) Relationship between magnetic
anomalies and hydrocarbon microseepage above the Jingbian
gas field, Ordos basin, China. American Association of Pet-
roleum Geologists 88:241–251.

Locey, K.J. and Lennon, J.T. (2015) Scaling laws predict global
microbial diversity. Proc Natl Acad Sci USA 113:5970–5975.

Lomstein, B.A., Langerhuus, A.T., D’Hondt, S., Jørgensen,
B.B., and Spivack, A.J. (2012) Endospore abundance, mi-
crobial growth and necromass turnover in deep sub-seafloor
sediment. Nature 484:101–104.

Loope, D.B., Kettler, R.M., and Weber, K.A. (2010) Follow the
water: connecting a CO2 reservoir and bleached sandstone to
iron-rich concretions in the Navajo Sandstone of south-
central Utah, USA. Geology 38:999–1002.

Lorenz, J., Nadon, G., and LaFreniere, L. (1996) Geology of the
Molina Member of the Wasatch Formation, Piceance Basin,
Colorado. In Sandia Report, Sandia National Laboratories,
Albuquerque, NM, p 30.

Lowe, D.R. (1994) Abiological origin of described stromatolites
older than 3.2 Ga. Geology 22:387–390.

Lowenstein, T., Satterfield, C., Vreeland, R., Rosenzweig, W.,
and Powers, D. (2005) New evidence for 250 Ma age of ha-
lotolerant bacterium from a Permian salt crystal: comment
and reply: REPLY. Geology 33:e93–e94.

Maclean, L.C.W., Tyliszczak, T., Gilbert, P.U.P.A., Zhou, D.,
Pray, T.J., Onstott, T.C., and Southam, G. (2008) A high-
resolution chemical and structural study of framboidal pyrite
formed within a low-temperature bacterial biofilm. Geobiol-
ogy 6:471–480.

Magnabosco, C., Tekere, M., Lau, M.C.Y., Linage, B., Kuloyo,
O., Erasmus, M., Cason, E., van Heerden, E., Borgonie, G.,
Kieft, T.L., and Onstott, T.C. (2014) Comparisons of the
composition and biogeographic distribution of the bacterial
communities occupying South African thermal springs with
those inhabiting deep subsurface fracture water. Front Mi-
crobiol 5:679–689.

Magnabosco, C., Ryan, K., Lau, M.C.Y., Kuloyo, O., Sherwood,
B., Kieft, T.L., van Heerden, E., and Onstott, T.C. (2015) A
metagenomic window into carbon metabolism at 3 km depth in
Precambrian continental crust. ISME J 10:730–741.

Magnabosco, C., Lin, L.-H., Dong, H., Bomberg, M., Ghiorse,
W., Stan-Lotter, H., Pedersen, K., Kieft, T.L., van Heerden,
E., and Onstott, T.C. (2018a) The biomass and biodiversity of
the continental subsurface. Nat Geosci 11:707–717.

Magnabosco, C., Moore, K.R., Wolfe, J.M., and Fournier, G.P.
(2018b) Dating phototrophic microbial lineages with reticu-
late gene histories. Geobiology 16:179–189.

1256 ONSTOTT ET AL.



Magnabosco, C., Timmers, P.H.A., Lau, M.C.Y., Borgonie, G.,
Linage-Alvarez, B., Kuloyo, O., Alleva, R., Kieft, T.L.,
Slater, G.F., van Heerden, E., Sherwood Lollar, B., and On-
stott, T.C. (2018c) Fluctuations in populations of subsurface
methane oxidizers in coordination with changes in electron
acceptor availability. FEMS Microbiol Ecol 94, doi:10.1093/
femsec/fiy089.

Mansor, M., Harouaka, K., Gonzales, M.S., Macalady, J.L., and
Fantle, M.S. (2018) Transport-induced spatial patterns of sulfur
isotopes (d34S) as biosignatures. Astrobiology 17:59–72.

Marlow, J., Peckmann, J., and Orphan, V. (2015) Auto-
endoliths: a distinct type of rock-hosted microbial life. Geo-
biology 13:303–307.

Marlow, J.J., LaRowe, D.E., Ehlmann, B.L., Amend, J.P., and
Orphan, V.J. (2014a) The potential for biologically catalyzed
anaerobic methane oxidation on ancient Mars. Astrobiology
14:292–307.

Marlow, J.J., Steele, J.A., Ziebis, W., Thurber, A.R., Levin,
L.A., and Orphan, V.J. (2014b) Carbonate-hosted methano-
trophy represents an unrecognized methane sink in the deep
sea. Nat Commun 5, doi:10.1038/ncomms6094.

Marteinsson, V.T., Runarsson, A., Stefansson, A., Thor-
steinsson, T., Johannesson, T., Magnusson, S.H., Reynisson,
E., Einarsson, B., Wade, N., Morrison, H.G., and Gaidos, E.
(2013) Microbial communities in the subglacial waters of the
Vatnajokull ice cap, Iceland. ISME J 7:427–437.

Martin, P.E., Farley, K.A., Baker, M.B., Malespin, C.A.,
Schwenzer, S.P., Cohen, B.A., and Navarro-González, R.
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