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Abstract

Background

Rare diseases (RD) result in a wide variety of clinical presentations, and this creates a signif-

icant diagnostic challenge for health care professionals. We hypothesized that there exist a

set of consistent and shared phenomena among all individuals affected by (different) RD

during the time before diagnosis is established.

Objective

We aimed to identify commonalities between different RD and developed a machine learn-

ing diagnostic support tool for RD.

Methods

20 interviews with affected individuals with different RD, focusing on the time period before

their diagnosis, were performed and qualitatively analyzed. Out of these pre-diagnostic

experiences, we distilled key phenomena and created a questionnaire which was then dis-

tributed among individuals with the established diagnosis of i.) RD, ii.) other common non-

rare diseases (NRO) iii.) common chronic diseases (CD), iv.), or psychosomatic/somato-

form disorders (PSY). Finally, four combined single machine learning methods and a fusion

algorithm were used to distinguish the different answer patterns of the questionnaires.
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Results

The questionnaire contained 53 questions. A total sum of 1763 questionnaires (758 RD, 149

CD, 48 PSY, 200 NRO, 34 healthy individuals and 574 not evaluable questionnaires) were

collected. Based on 3 independent data sets the 10-fold stratified cross-validation method

for the answer-pattern recognition resulted in sensitivity values of 88.9% to detect the

answer pattern of a RD, 86.6% for NRO, 87.7% for CD and 84.2% for PSY.

Conclusion

Despite the great diversity in presentation and pathogenesis of each RD, patients with RD

share surprisingly similar pre-diagnosis experiences. Our questionnaire and data-mining

based approach successfully detected unique patterns in groups of individuals affected by a

broad range of different rare diseases. Therefore, these results indicate distinct patterns

that may be used for diagnostic support in RD.

Introduction

Collectively, rare diseases are not rare. By definition, a rare or orphan disease is one that affects

fewer than 1:5000 individuals. Today, there are more than 7000 different known RD, affecting

an estimated of 350 million people worldwide [1]. However, because of the small patient popu-

lations for each individual RD, funding to investigate causes and treatments is limited, slowing

the discovery of diagnostic tools and potential therapies [2]. This is one reason that diagnosing

RD presents a complex clinical challenge. The length of time from onset of symptoms to an

accurate diagnosis is about 5 years for RD. In a quarter of cases, the diagnostic delay ranges

between 5 and 30 years [1, 3, 4]. The longer it takes to diagnose a RD, the more physicians the

patient has seen. On average, RD patients see more than 7 different physicians before a diagno-

sis is made [1]. Reasons for this delay, sometimes called ‘diagnostic odyssey’ are multiple.

Firstly, patients, their families, and the treating physicians, often have limited awareness of

RD. In addition, the symptoms are often mingled with or mistaken for symptoms of more

common diseases. Initially, these symptoms may be considered minor, and thus of little con-

cern [4–7]. Lastly, symptoms of RD may not be evident to doctors or nurses who have never

encountered the particular disease in question. These obstacles result in a significant burden

for the affected patients, as well as for the health care system at large [8,9]. Delays in making

the correct diagnosis may lead to inappropriate management as well as uncontrolled disease

progression, sometimes resulting in irreversible sequelae. Misdiagnosis can also lead to unnec-

essary interventions at significant additional risk to patients [10–12]. Therefore, initiatives to

improve and shorten pre-diagnostic time periods are needed and several programs addressing

these issues in regard to RD have been launched by the European Union [13].

In pilot studies, we sought to develop a data-mining and questionnaire-based diagnostic

support tool for selected rare diseases, including primary ciliary dyskinesia and glycogen stor-

age disease type II (also known as Pompe disease). Using combined machine learning methods

for questionnaires that were completed by patients, this pattern recognition system achieved

an average sensitivity of 90% in pilot studies [14,15]. From these experiences, we learned that

patients’ experiences during the diagnostic journey could be harnessed to create a support tool

to aid physicians in the early diagnosis of a RD.
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The current project proved the hypothesis that individuals with completely different RDs

share similar pre-diagnostic experience. Several RD with the greatest need for diagnostic sup-

port were selected after a Delphi survey was conducted among experts in Germany [16]. We

interviewed individuals with 21 different RDs and built a database of answered questionnaires.

Combined machine learning methods were then employed to differentiate questionnaires of

individuals with rare disease (RD), common non-rare disease (NRO), chronic diseases (CD)

and individuals with psychosomatic disorders (PSY). The study goal was to develop a diagnos-

tic support tool for individuals with an undiagnosed RD using a new questionnaire and

machine learning classifier.

Methods

Delphi survey, interviews and machine learning methods

In this monocentric, prospective pilot study, we tested whether the subjective experiences and

views of patients with selected RD could provide diagnostic support in most rare diseases with

a long diagnostic latency. All patients or their legal guardians gave their informed consent for

the interview. The study received ethics committee approval by the ethics committee of the

Medical University of Hannover (no.: 2316–2014; head on time of approval: Prof. H.D.

Tröger).

In order to identify those RD with the longest diagnostic latency periods and the most acute

demand for diagnostic support, we previously performed and published a Delphi survey

among German experts for RD [16].

Briefly, German experts on RD were contacted twice to name those RD, where diagnostic

support is particularly needed. In order to cover a preferably broad spectrum of RD with the

interviews, RD with different characteristics were selected (e.g. RD with visible signs as acro-

megaly versus invisible such as cluster headache or RD typically affecting children (mucopoly-

saccharidosis typ1 1) versus RD affecting adults, such as amyotrophic lateral sclerosis.

Likewise, 21 RD were systematically selected for interviews. In the next step and to gain insight

into patients’ view of the pre-diagnostic process, we conducted interviews with patients diag-

nosed with 21 patients or relatives of those RDs identified in the Delphi survey. Affected indi-

viduals or their parents were contacted through patient advocacy groups and invited to share

their experiences during their pre-diagnostic journey. In total, 21 interviews were performed

lasting between 63 and 450 minutes. Most interviews (19/21) were conducted in the family’s

home. In 9/21 interviews, the parents participated in place of their minor children. The dis-

eases included were amyotrophic lateral sclerosis, Ehlers-Danlos syndrome (EDS), congenital

glaucoma, ornithine transcarbamylase (OTC) deficiency, McArdle disease, Pompe disease,

cluster headache, Fanconi anemia, sclerodermia, acromegaly, Hurler syndrome, pulmonary

arterial hypertension, Wilson disease, myelodysplatic syndrome, cystic fibrosis, severe com-

bined immune-deficiency, ataxia teleangiectasia, periodic fever syndrome and Fabry disease.

In addition, one interview was conducted with an individual with somatoform disorder and

another with an individual whose diagnosis could be established despite an extensive search.

The interviews took place across Germany between February 2015 and May 2015 by four

authors (SB, AR, US and LG). These semi-structured (narrative) interviews always started with

the same initial question (“Would you please tell me everything that comes to mind from the

time before your diagnosis was established. Please just tell me everything you consider to be of

any importance and share your observations of all occurrences“). When the patient finished

sharing their thoughts, the interviewer initiated further questioning to elucidate more details.

All interviews were digitally recorded, transcribed and analyzed according to the Colaizzi

technique [17]. Consequently, an inductive system of categories was built, reflecting the pre-
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diagnostic phenomena gathered during the interview process which finally resulted in a ques-

tionnaire containing 53 items (S1 File).

Systematic analysis of the interviews. Four researchers (SB, SM, AR and LG) indepen-

dently reviewed and subsequently discussed interviews. Using the techniques described by

Colaizzi, the observations of the patients extracted from the interviews were then systemati-

cally categorized. A step-wise qualitative analysis was performed, including extraction of sig-

nificant phrases, reduction of the phrases to their essential structures, generation of a question

out of the essential structures and validation of questions through interviewees. To sort the

observations and create a questionnaire that reflected the relevant experiences, we classified

the content of the interviews into categories according to the strategies employed in previous

studies in patients with pulmonary or neuromuscular diseases [14,15]. Out of those categories,

questions were generated, resulting in a questionnaire that includes all categories (S1 File).

Likewise, the questionnaire reflected personal observations and experiences in all categories

and consequently covered all the pre-diagnostic phenomena experienced by the interviewees.

In close dialogue with patient support groups, a maximum length of two pages, and a comple-

tion time of ten minutes, was defined for the questionnaire. The answers in the questionnaire

were scaled from 1 (“completely false”) to 4 (“completely true“). The questions were reviewed

by interviewees and other patients, and the feedback gathered was used to enhance the com-

prehensibility of the final questionnaire, which contained 53 questions. We designed two ques-

tionnaires, one for sick individuals still in the process of reaching a diagnosis and an

equivalent questionnaire for the parents of a sick child. As an example, six questions of the

adult version questionnaire are displayed in Table 1; the complete questionnaire is provided in

the supplementary material (S2 File).

Collection of answered questionnaires. Patients with an established diagnosis of a RD

were invited to answer the questionnaire. To facilitate answering, a web-based platform and a

paper-based version were created for the participants. Individuals without a RD, but with a

chronic disease or a psychological disorder were contacted through the various departments at

Hannover University Hospital (MHH). To increase awareness of the campaign, we contacted

patient advocacy groups and set up a Facebook™ page explaining the project, with a link to the

web-based version of the questionnaire.

Machine learning techniques and data selection. A classification method and an adopted

version of a fusion algorithm were employed as previously described [14,15]. In brief, the cur-

rent study based upon previous approaches by using four different classifier methods and

three independent data sets to arrive at the final diagnostic suggestion. The concept to define

independent data sets for corresponding disease groups with similar symptoms was success-

fully applied to the analysis of genetic data sets of patients with rare diseases in [18]. We used

the following classifiers: support vector machine (SVM), random forest (RF), logistic regres-

sion (LR) and linear discriminant analysis (LDA). Each of the 4 single classifiers calculates a

diagnosis with a corresponding probability value. In many cases, the same diagnosis was

Table 1. Example of questions (selection of 6 out of 53 questions; for the complete questionnaire: S1 file).

Did you suspect for a period of time prior to your diagnosis that something was wrong with your health?

Do you deliberately avoid activities or tasks that make your symptoms obvious to others?

Is it difficult for you to describe your complaints / symptoms?

Do you notice any special tricks or techniques you have developed to compensate for symptom-related limitations

in mastering everyday tasks?

Can you recall a situation when your symptoms caused you to feel threatened?

Did you attempt to research possible causes for the complaints / symptoms you were experiencing?

https://doi.org/10.1371/journal.pone.0222637.t001
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chosen by the 4 classifiers and a clear vote was delivered. However, sometimes a ‘diagnostic

parity’ occurs for the 4 binary classifiers. Therefore, a further SVM classifier was trained

(‘super-fusion classifier‘) which takes into account the pre-calculated and numerically coded

diagnoses and the corresponding probability values of the 4 classifiers. Finding the best classi-

fier is a matter of debate; working on classifying systems in questionnaires we realized that no

individual classifier algorithm works perfectly as stand-alone method for classification of com-

parable sets of data. By contrast, the best combination of the four classifiers used in this study

worked equal or better than the performance of each single classifier (S3 File). Besides, it was

not the purpose of the paper to evaluate the performance of different classifiers but to apply a

method that had been established in similar applications [14,15] and works in comparable sce-

narios. Statistics about the comparison of the classifiers can be found in the supplementary

material (S3–S6 Files) showing that the fusion classifier is better than single classifiers but only

sometimes with a difference of statistical significance.

There are two different types of input vectors to classify. The classifiers for the data sets

evaluate an input vector that includes the answer options of the questionnaire. The answer

“no” is mapped for each question to a numeric value of 1 and the opposite answer “yes” to a

value of 4. This input vector consists of 55 elements containing the 53 answers to the questions,

the gender and the age of the patient.

The results gained by the four classifiers are collected to create an input vector for the fusion

SVM classifier. This fusion input vector contains an index for each classified disease and its

corresponding probability value. This leads to an input vector with 4x2 = 8 elements (four

index values and four probability values).

The classifier parameters were set to default values. For the SVM kernel a 3-dimensional-

polynominal function was selected.

The collection of answered questionnaires was gathered from different sources as it was

necessary to reach individuals with RD. As a result, questionnaires of patients with confirmed,

assumed or unknown diagnoses were collected. As it was the study goal to focus on RD and to

distinguish RD from chronic and psychosomatic / somatoform diseases, at the end of the pre-

evaluation and the consolidation process the training set of questionnaires consisted of 440

patients (or questionnaires) with a confirmed diagnosis. This training set was further subdi-

vided into three data sets due to medical similarities of the diagnosis and the comments given

by patients within the questionnaires.

The training process is based on k-fold stratified cross-validation and results are presented

by sensitivity values, specificity values and confusion matrices for each of the 4 binary classifi-

ers as well as the fusion classifier.

Following a stepwise classification process, a given questionnaire is categorized into a diag-

nostic group in accordance with the main study question (the identification of a RD). We fol-

lowed an approach similar to that proposed by Tsalik [18], in which separate independent

classifiers were constructed for pairs of classes or disease groups, instead of one classifier dis-

tinguishing between all four groups selected in this study. Because the selected groups of NRO

and RD are rather heterogeneous, the full data set was scaled down to 3 pairs of independent

data subsets. Each subset pair consists out of two alternative disease groups. All three subsets

represent the collection of similar diseases from a clinical point of view that takes into account

comparable and groupable diseases.

The training algorithm software applies R statistic libraries controlled within a Java coding.

The locally calculated classifier results are stored in data arrays and in the R package format.

All data are uploaded to a Linux root server system of a public internet provider. The PHP

application software of this web server evaluates the R functions by a software “OpenCPU”

server system. A public software access to the questionnaire is possible by the link “www.

Pre-diagnostic features for diagnostic support
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imdresearch.de/selten” and a password. The diagnostic evaluation of a given questionnaire

and the display of the diagnostic suggestions are protected by further hashed passwords taking

into account privacy statements.

Results

Creation of a novel questionnaire

According to the qualitative analysis, four thematic groups could be generated from the inter-

view material: 1. ‘perceiving symptoms’; 2. ‘searching for a diagnosis’, 3. ‘achieving symptom-

control’ and 4. ‘efforts to adapt in daily life’

In these four thematic main groups, 33 sub-categories were identified. For the selection of a

set of questions that best reflected the experience of RD patients, four workshops were per-

formed. The main objective for the selection of questions was that all thematic groups and

interviews be covered. A second requirement for the questionnaire was that it includes all

essential topics collected in the qualitative analysis of the interviews. Accordingly, the final

questionnaire contained 53 questions (Table 1 and S1 File).

Return rate of questionnaires and further analysis

In total, 1763 individuals answered the questionnaire, about ¾ using the web-based version.

608 out of the 1763 questionnaires were excluded from further analysis (questionnaires from

healthy individuals, or from individuals with incomplete questionnaires or individuals with

diseases outside the scope of the study). In total, 1155 questionnaires qualified for inclusion in

machine learning operations and for further test runs (Table 2).

Among the 1155 questionnaires used for the analysis and training there were three larger

groups of single diseases (sarcoidosis n = 144, PAH n = 50 and syringomyelia n = 44). The

other questionnaires were summarized under the term ‘umbrella RD’, such as rare endocrino-

logical diseases or disorders of the skin. Besides the collection of the 758 individuals with a RD,

149 individuals with a non-rare chronic disease and 48 patients with psychological disorders

answered the questionnaire.

Table 2 lists the structure of all of the answered questionnaires in the data set.

Retrospective testing

The set of 1155 evaluable questionnaires were then separated into the 4 pre-defined groups of

‘RD, ‘NRO’, ‘CD’ and ‘PSY’. In a second step, pairs of diagnostic challenges were constructed

(Table 3). Each single questionnaire belonged to only one of the data sets and each subset of

the selected diseases was evaluated to allow separation between two main diagnostic groups.

Table 3 documents the properties of the selected data subsets, which resulted from an intensive

data analysis process. Those 715 questionnaires not used for training were utilized for prospec-

tive data evaluation.

For each single classifier (SVM, RF, LR, LD) and for each pair of the three data sets

(Table 3) a 10-fold stratified cross-validation analysis was performed. A representative com-

puter cross-validation run is displayed for data set 1 (‘RD versus ‘NRO’ diseases) in Fig 1. The

sensitivity values of the fusion classifier are higher than the values of the single classifiers, indi-

cating that the combination of different classifiers outperforms any single classifier in this set-

ting (Fig 1).

In Table 4, the results of all stratified 10-fold cross-validation runs for the three data sets

are displayed. The sensitivity values vary from 84.2% for the ‘PSY’ up to 93.3% for ‘RD’ in

data set 2. Combining the three different sensitivity values for the rare diseases in the three

Pre-diagnostic features for diagnostic support
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independent data sets by a final aggregation algorithm reaches a sensitivity value for the detec-

tion of a RD with a mean value of 88.9%.

For further retrospective tests, ROC curves and area under the curve (AUC) calculations

were added to measure the diagnostic quality. Fig 2 shows a typical result for a fusion SVM

classifier reaching AUC values of 0.948 which was outperforming each of the 4 single

classifiers.

Table 2. Return rates of questionnaires.

Rare diseases (RD) group and assigned RD subgroups

Sarcoidosis 144

PAH 50

Syringomyelia 44

SLE 31

Rare endocrinological diseasesa 36

Rare neuromuscular diseasesb 90

Rare diseases of the skinc 68

Rare neurological diseasesd 93

Rare pain syndromese 22

Rare autoimmune diseasesf 94

Rare metabolic diseasesg 52

Rare pulmonary diseasesh 34

Sum of all RD 758

Questionnaires assigned to non-rare diseases

NROi 200

CDk 149

PSY 48

Sum of all non-rare diseases 397

Questionnaires excluded

no diagnosis (online questionnaires) 349

incomplete questionnaires 225

healthy individuals 34

Sum of all questionnaires not included in further analysis 608

Total sum of questionnaires for machine learning evaluation

758 of rare + 397 of none-rare disease = 1155 questionnaires

1155

Total sum of all received questionnaires

1155 used + 608 excluded questionnaires = 1763 questionnaires

1763

a Including patients with acromegaly, addisons disease, adenoma, cushings disease
b Including patients with ALS, CIDP (chronic inflammatory demyelinating polyneuropathy), muscular dystrophy

Duchenne, FSHD, SMA, PNP
c Including patients with EDS, ectodermal dysplasia, epidermolysis bullosa, lipoedema, mastocytosis
d Including patients with GBS, M. Menière, Arnold chiari malformation
e Mostly patients with cluster headache
f Including patients with M. Still, M. Wegener, M. Behcet, dermatomyositis, Moya-Moya syndrome
g Including patients with Glycogenosis 1 to 9, M. Fabry, metachromatic leukodystrophia, Niemann-Pick Type C
h Including mostly patients with PCD and Cystic Fibrosis
I Patients feeling ill but without a conclusive diagnosis despite intensive workup. The rare disease center Bonn added

34 questionnaires from individuals without diagnosis despite intensive testing and searching
k Including patients with asthma, inflammatory bowel disease

https://doi.org/10.1371/journal.pone.0222637.t002
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Prospective testing

The retrospective calculations and training procedures were based on three data sets (Tab. 3)

including 440 questionnaires. The remaining 715 questionnaires (1155 minus 440) were used

for simulation of prospective testing. This ‘prospective’ data set included 536 ‘RD, 110 ‘NRO’,

59 ‘CD’ and 10 ‘PSY’ samples. The prospective test performs an independent evaluation for

each of the three data sets. The results confirmed the sensitivity values shown in Tab. 4. Pro-

spective testing was extended to 1155–440 = 715 questionnaires containing a bundle of differ-

ent—assumed or unknown–questionnaires answered by patients. Due to the lack of confirmed

diagnoses, the prospective classification results for these 715 questionnaires are not detailed in

this paper.

Diagnostic support for a potential professional user

The machine learning approach evaluates three independent data sets and therefore it delivers

three probability pairs, one for each data set for RD versus NRO, for RD versus CD and for

RD versus PSY. Fig 3 visualizes these ‘probability pairs’ referring to the probabilities of the RD

1, RD 2 and RD 3 disease groups. In four different examples of questionnaires, referring to a

patient with Fabry disease (upper left), to a patient with inconclusive symptoms with no defi-

nite final diagnosis (NRO, upper right), to a patient with a diagnosis of asthma (lower left) and

to a patient with a somatoform disorder (lower right) the results of the diagnostic suggestion

Table 3. Structures of the 3 data subsets.

Data set Classifier class 1 Classifier class 2 Questionnairesc

1 pulmonary hypertension (PAH), cystic fibrosis other non-rare diseases

(including patients w/o diagnosis)

90 : 90! 180

2 Sarcoidosis, syringomyelia

SLEa, acromegaly, Ehlers-Danlos-Syndromes; Morbus Still, Nail-Patella-Syndrom

chronic diseases 90 : 90! 180

3 CIDPb, cluster headache, Ménièr‘s disease, Fabry disease psychosomatic disorders 42 : 38! 80

a Systemic lupus erythematodes
b Chronic inflammatory demyelinating polyneuropathy
c A selection of questionnaires was chosen at random

https://doi.org/10.1371/journal.pone.0222637.t003

Fig 1. Sensitivity values of a 10-fold stratified cross-validation run. Data set 1 (RD versus NRO). The single

diagnosis of the four different classifiers and their corresponding probabilities were evaluated by a further classifier,

which computed the final diagnosis. For the fusion, a support vector machine (SVM, black line) was selected, because

it performed best. For a better reading of the curves are shifted vertically with a few pixels.

https://doi.org/10.1371/journal.pone.0222637.g001
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for a professional user is displayed. In the Fabry patient, the relatively high probability values

(40%, 76%, 79%) indicate a 79% likelihood of a RD of group 3 (including several neurological

RD, such as CIDP, cluster headache, Ménière disease and Fabry disease). The results for the

patient with a NRO (Fig 3, upper right) show comparably low results for RD, but indicates a

94% (100%-6% = 94%) probability for a non-rare disease (NRO). The results of the question-

naire for the asthma patient exclude a RD as well, but the probability value of 8% for the RD2

points with 92% to the alternative diagnosis of a ‘chronic disease’. The somatoform disorder is

detected with 78% (100%-22% = 78%) probability and none of the three probability values for

any of the RD1, RD2 and RD3 reaches more than 50% (Fig 3).

Discussion

The main finding of this study is that patients share similar experiences during their pre-diag-

nostic journey despite being affected by very different RD. We utilized these experiences to

Table 4. Results of stratified 10-fold cross-validation runs for data set 1, 2 and 3. A binary confusion matrix is based on the results of cross-validation by counting the

numbers of true positives (TP), false negatives (FN), false positives (FP) and true negatives. For data set 1 the TP values are assigned to the RD and the TN to the NRO. The

TN numbers of data set 2 corresponds to the CD and the TN number of data set 3 to the PSY. The sensitivity values for all 3 data sets are defined by TP/(TP+FN) and the

corresponding specificity is given by TN/(TN+FP).

Data

set

Diagnostic groups Sensitivity Specificity Confusion matrix

1 RD versus NRO RD 87.7% NRO 86.6% 79 TP / 11 FN / 12 FP / 78 TN

2 RD versus CD RD 93.3% CD 87.7% 84 TP / 6 FN / 11 FP / 79 TN

3 RD versus PSY RD 85.7% PSY 84.2% 36 TP / 6 FN / 6 FP / 32 TN

https://doi.org/10.1371/journal.pone.0222637.t004

Fig 2. ROC curves and AUC values for RD of data set 1 (RD versus NRO). ROC curves and AUC values indicate

variable diagnostic sensitivity among different classifier systems for identifying correctly classified questionnaires of

patients with RD of data set 1.

https://doi.org/10.1371/journal.pone.0222637.g002
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create a questionnaire-based diagnostic support tool. This tool, which combines different clas-

sifier systems, effectively differentiates between answer patterns among individuals with differ-

ent rare and non-rare diseases. Such a system could function as alarm for the GP to consider

RD.

Diagnostic support is desirable in many different RD [19–22]. As RD are highly heteroge-

neous, the affected patients present with a wide variety of symptoms. However, we hypothe-

sized that there exist a set of consistent and shared phenomena among all individuals affected

by (different) RD during the time before diagnosis is established. Therefore, we aimed to iden-

tify these commonalities and developed a diagnostic support tool.

Based on our previously performed Delphi-survey we conducted interviews with individu-

als with different RD and designed a unique questionnaire which reflected the pre-diagnostic

experiences of different individuals during their odyssey. This approach proved successful in

previous projects in developing new diagnostic support tools [14,15]. The final questionnaire

developed in this study contained 53 questions that were systematically distilled from inter-

views using the technique suggested by Colaizzi [17]. Likewise, different subjective perspec-

tives were grouped in categories so that the final questionnaire reflected a breadth experiences.

Based on three independent data sets, the ten-fold stratified cross-validation method for the

answer-pattern recognition resulted in sensitivity values of 88.9% to detect the answer pattern

of a RD, 86.6% for NRO, 87.7% for CD and 84.2% for PSY.

Collectively, our data illustrates that despite suffering from different RD, patients share sur-

prisingly similar pre-diagnosis experiences. These commonalities were qualitatively explored

Fig 3. Diagnostic support for a potential professional user. Results of different patient questionnaires with a) Fabry disease (upper left),

with b) an unknown diagnosis (upper right), with a c) chronic condition (below left) and with a d) somatoform disorder (below right)

disease. The machine learning approach calculates these graphics, visualizing the probability values for a RD compared to other diagnoses.

In a clinical setting, such a result could then be interpreted by the user in the context of the patient history.

https://doi.org/10.1371/journal.pone.0222637.g003
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and successfully used to develop a questionnaire. Mathematical algorithms learned to distin-

guish different answer-patterns.

In our study, 183 questionnaires were answered by individuals with neurological or neuro-

muscular diseases. In neuromuscular diseases, diagnostic delay is common, as illustrated by a

recent study in Scotland on patients with oculopharyngeal muscular dystrophy [20]. Here,

symptoms were apparent for up to 20 years before the diagnosis was made. Reasons for the

delay varied, and included patient denial, unspecific symptoms, and the rarity of the disease

itself, but the role of the GP as gatekeeper for individuals with undiagnosed RD is eminent

[20,21]. Rarity, clinical variability at presentation and lack of time for the patient history ham-

per rapid diagnosis in individuals with RD [22–25]. New systems to remind medical gatekeep-

ers of rare diseases are urgently needed, as underlined by multiple reports addressing different

disease groups [26,27].

Computer-aided diagnostic support goes back to the 1980s [28,29]. Using databases and

statistical algorithms, scientists hoped to enhance diagnostic accuracy and reduce diagnostic

mistakes [30]. Despite some successes, in the everyday life of doctors and patients, diagnoses

are overwhelmingly still made exclusively by the practitioner and are usually not computer-

supported. On the other hand, new digital and social media offer new opportunities to facili-

tate the diagnostic journey. Addressing the need for timely diagnosis, a Dutch group developed

a mobile application (App) for early diagnosis of treatable diseases resulting in psychomotor

delay [31]. Such examples illustrate the benefits of today’s technology, which is increasing and

improving quickly, as illustrated by recent publication on diagnostic support tools for RD

[32,33]. Importantly, most decision support tools (ADA Dx, FindZebra, Phenomizer) use lead-

ing symptoms for diagnosis, whereas the tool under discussion here uses the patients’ view in

his/her language by using a questionnaire.

A diagnostic support tool like ours could help enhance awareness for RD. A different

approach is the implementation of screening programs or targeted screening for selected RD,

e.g. for alpha-1-antitrypsin deficiency in COPD patients [34]. For individuals with acromegaly,

the framework of a screening program in Latin America was described by Danilowicz et al.

[35]. In acromegaly patients, the delay in diagnosis is common and results in increased mor-

bidity and mortality, whereas timely treatment would improve health and quality of life. Of

note, this study included an interview with an individual with acromegaly and 12 question-

naires were answered by patients suffering from acromegaly.

During this project 12 patients with Fabry disease completed the questionnaire, and our

diagnostic tool learned to detect the ‘Fabry answer pattern’ and subsequently provided correct

diagnostic suggestions (Fig 3). In females suffering from Fabry disease, a delay in diagnosis

results in major organ morbidity [36]. According to data from the Fabry registry, the median

age at first symptoms was 13 years, but the median age at diagnosis was 31 years. Tragically,

twenty percent of patients experienced major health setbacks associated with Fabry disease,

partially due to the long diagnostic latency period [36]. A questionnaire-based alarm system,

hinting towards the possibility of a RD, would be an easily implementable method for individ-

uals searching for an explanation for their symptoms as well as for GPs trying to diagnose

complex cases.

The hardships RD patients endure have been widely reported [37,38]. Therefore, new

approaches using pattern recognition to discern which patients are suffering from ‘common’

ailments and which might have an RD are urgently needed.

Our study has several limitations. First, we performed interviews within a small and hetero-

geneous population. This may have resulted in a selection bias of the chosen questions.

Although this may be consistent with the everyday reality of a GP who cannot ask all relevant

questions due to time constraints, it also reflects the limitations of a questionnaire-based
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diagnostic support tool. And some questions originate from the German health system (e.g.

questions 7 and 15, S1 File) and might not be 100% transferable to any other system. The diag-

nostic odyssey, however, is very international. And so is the patients’ impression that the

health system does not help properly to find the diagnosis. A second limitation of the system is

its potential biased towards detecting a RD much more accurately than, for example, a simple

migraine. However, this issue could be mitigated by prospective testing and the detection of an

index patient, although this is challenging in the setting of RD.

Furthermore, the training data set of 1155 questionnaires was somewhat small and by defi-

nition did not reflect all possible disease manifestations or all possible RD. In addition, certain

diagnoses are more heavily represented in the data set due to particularly well-organized

patient advocacy groups.

And, the set of data from patients with psychosomatic disorders is still quite small, which

will need to be addressed in a future study. However, as a proof of concept, our data show that

it is possible to provide a diagnostic hint by the computer-based analysis of answer patterns,

which might be valuable in pre-selecting for RD patients.

Finally, the patients answered the questionnaire after knowing their diagnosis which might

cause a bias. The current system was not yet systematically tested under ‘real life’ conditions,

where the results are expected to be inferior.

In conclusion, our study provides evidence that a simple questionnaire and the analysis of

answer patterns by machine learning technologies can result in high diagnostic accuracy in a

data set of patients with different RD. Modern mathematical procedures are able to distinguish

answer patterns by sifting through large amounts of data. These results give room for hope

that such technologies might serve as adjunctive tool for physicians and scientists. In the future

and after further testing and more prospectively collected data, pattern recognition might help

to shorten the diagnostic delay even in the notoriously challenging area of RD. The value of

patient observations during the pre-diagnostic time is underlined by our data. Certainly, diag-

nosis remains in the hands of physicians, but raising awareness for RD and easing the path to

eventual diagnosis can be triggered by the tool presented here.
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