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Abstract

Diffusion weighted MRI (DW-MRI) depends on accurate quantification signal intensities that 

reflect directional apparent diffusion coefficients (ADC). Signal drift and fluctuations during 

imaging can cause systematic non-linearities that manifest as ADC changes if not corrected. Here, 

we present a case study on a large longitudinal dataset of typical diffusion tensor imaging. We 

investigate observed variation in the cerebral spinal fluid (CSF) regions of the brain, which should 

represent compartments with isotropic diffusivity. The study contains 3949 DW-MRI acquisitions 

of the human brain with 918 subjects and 542 with repeated scan sessions. We provide an analysis 

of the inter-scan, inter-session, and intra-session variation and an analysis of the associations with 

the applied diffusion gradient directions. We investigate a hypothesis that CSF models could be 

used in lieu of an interspersed minimally diffusion-weighted image (b0) correction. Variation in 

CSF signal is not largely attributable to within-scan dynamic anatomical changes (3.6%), but 

rather has substantial variation across scan sessions (10.6%) and increased variation across 

individuals (26.6%). Unfortunately, CSF intensity is not solely explained by a main drift model or 

a gradient model, but rather has statistically significant associations with both possible 

explanations. Further exploration is necessary for CSF drift to be used as an effective 

harmonization technique.

Keywords

Diffusion; CSF; BLSA; variation

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 October 10.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2019 March ; 10948: . doi:10.1117/12.2512949.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

Vos et al. recently reviewed the effectiveness of using minimally weighted images (“b0’s”) 

interspersed throughout a scan to correct temporal instability in scanner systems [1-3] and 

this was extended to spatially temporal models [4]. In addition, correcting for non-linearities 

in the gradient fields of the magnetic coils can be accomplished through empirical field 

mapping techniques [5, 6]. However, these corrections are not viable for datasets that were 

acquired before these techniques became widely available. Cerebral spinal fluid (CSF) can 

be used to observe trends in signal intensity as it is known to be isotropic. We present a case 

study on a large longitudinal dataset and examine variation in the CSF regions of the human 

brain (Figure 1, Figure 2, and Table 1).

2. DATA

Herein, we consider a large longitudinal dataset comprised of 3949 MRI brain acquisitions 

of 918 subjects. Subjects have repeated DW-MRI acquisitions in each session, and 542 

subjects have repeat sessions at later dates. All data were acquired after informed consent 

under institutional review board and accessed in de-identified form. Each session included a 

T1-weighted structural MP-RAGE (number of slices=170, voxel size=1mm×1mm×1.2mm, 

reconstruction matrix=256×256, flip angle=8 degrees and TR/TE=6.5ms/3.1ms) and two 

diffusion acquisitions. Each diffusion acquisition consists of an initial b0 image and thirty-

two diffusion weighted volumes all with a b-value of 700 s/mm2 (number of gradients=32, 

number of b0 images=1, TR/TE=7454/75 ms, number of slices=70, voxel 

size=0.81×0.81×2.2 mm3, reconstruction matrix=320×320, acquisition matrix=116×115, 

field of view=260×260 mm, flip angle=90°). Susceptibility correction [7] and eddy current 

correction [8] techniques are applied to the diffusion data as a preprocessing step as well as 

b0 signal normalization. The MP-RAGE was segmented with the BrainCOLOR protocol 

(Neuromorphometrics, Inc., Somerville, MA) using hierarchical non-local spatial STAPLE 

[9]. For each 3D volume in a scan, the median signal is computed within the co-registered 

(FSL flirt[10]) regions of interest (ROI) from the BrainCOLOR segmentation defined over 

three CSF filled regions in the brain: the right lateral ventricle, left lateral ventricle, and third 

ventricle.

Variation

Figure 1 shows qualitatively the variation in the left and right lateral ventricles in a single 

scan. In Figure 2, the median normalized signal (i.e., diffusion weighted intensity divided by 

the minimally weighed reference) for all scans in the three ROIs is shown over the course of 

the thirty-two acquired diffusion volumes after the first median value of each scan has been 

subtracted to ensure all timeseries have the same starting position of zero. From this the 

variation across all scans can be seen at certain volumes especially in the left and right 

lateral ventricles. In Table 1, the average standard deviation for all ROIs is shown for intra-

session data, inter-session data, and for inter-subject data. The standard deviation nearly 

triples from intra-session to inter-session and again at least doubles from inter-session to 

inter-subject. The relatively low standard deviation within in a session and higher standard 

deviation across all sessions for a subject indicates that the variation is not only an effect of 
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anatomical differences. The steady increase in standard deviation from intra-session to inter-

session to inter-subject indicates that the effect is static.

Modes of Variation

Figure 3 shows the contribution of variation from the principle components of the median 

signals as well as the cumulative variation from the most contribution component to the least 

for each ROI. It can be seen that almost ninety percent of the variance can be attributed to 

the first three components indicating that an appropriate correction model would be able to 

reduce this variance. In Figure 4, the first three components are normalized and plotted. 

Figure 5 shows the same data from Figure 2 represented as a scatter plot, but now the color 

of the point represents the value of the corresponding gradient direction. In the right and left 

lateral ventricles, it can be seen that the volumes with the most variation are either acquired 

with the gradient taken along the y or z direction and the volumes with the least variation are 

acquired with the gradient taken along the x direction. In addition, it seems that the sharp 

decreases in the plot of component one in Figure 4 correlates with the volumes at which the 

gradient is taken in the y direction as seen in Figure 5.

3. MODELS

To capture the variability in the signal, we examine five models: two linear models and three 

non-linear models, which will be referred to as models one through five. This section 

outlines the basis function used to approximate the signal through regression.

Linear Model

The linear model approximates the apparent diffusion coefficient (ADC) as a constant and 

attributes variation to temporal drift and baseline sensitivity to applied gradient direction. 

For example, these effects could be associated with directional flow related effects. The first 

linear model is defined by:

S(n, X) = d1s0 + d2n + d3n2 + d4x + d5y + d6z + d7xy + d8xz + d9yz + d10x2 + d11y2

+ d12z2
(1)

where is the normalized signal, s0 is the normalized signal at the first volume, n is the 

volume index, and x, y, and z correspond to the vector X that defines the gradient direction 

(b-vector). The coefficients are defined by di.

Log Model

The logarithmic model (“log model”) captures potential changes in ADC related to applied 

gradient direction. The baseline signal intensity is assumed to be constant. For example, 

these effects could be related to imaging gradient alterations in b-vector or nonidealities in 

applied gradients. The log model is defined by:
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log(S) = d1log(s0) + d2x + d3y + d4z + d5xy + d6xz + d7yz + d8x2 + d9y2 + d10z2 (2)

Simple Exponential Model

The third model is a simple concatenation of both prior models, while dropping temporal 

baseline drift (as it was not found to be significant, see below). The first non-linear model is 

defined by:

SL = d1s0 + d2x + d3y + d4z (3)

Se = e
−d5s0 − d6x − d7y − d8z

(4)

S = SLSe (5)

Where SL is the linear portion of the model Se and is the exponential portion of the model.

Cross-term Exponential Model

The second non-linear model expands the third model to evaluate potential interactions 

between the gradients:

SL = d1s0 + d2x + d3y + d4z + d5xy + d6xz + d7yz (6)

Se = e
−d8s0 − d9x − d10y − d11z − d12xy − d13xz − d14yz

(7)

S = SLSe (8)

Squared Exponential Model

The fourth non-linear model expands on the third model with non-linear terms for the x and 

y gradient direction but neglects cross terms due to limited statistical power:

SL = d1s0 + d2x + d3y + d4z + d5x2 + d6y2 (9)
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Se = e
−d7s0 − d8x − d9y − d10z − d11x2 − d12y2

(10)

S = SLSe (11)

Model Analysis

Each model was fit to the median signal in the left and right lateral ventricles from each 

scan. The significance values associated with each term of the models are visualized for each 

scan in Figure 6. In the linear and log model, the s0, yz, and quadratic terms were the most 

significant. In the simple and cross-term model, the s0, y, z, es0, ey, and ez terms were the 

most significant. In the squared exponential model, only the s0, z, es0, and ez terms were 

significant in most of the fits. In the linear model, we can see that the terms representing the 

index of the volume are insignificant which indicates that temporal affects are not causing 

the high variation. An estimation for the median signal of each scan was generated using the 

coefficients learned from each regression and the total root mean squared error (rmse) is 

shown in Table 2 for each method. In terms of accurately estimating the signal, the squared 

exponential model performed the best by a small margin over the other models. Table 2 also 

shows the mean R2 and mean adjusted R2 for each model. The cross-term exponential model 

had the highest R2 while the squared exponential model had the highest adjusted R2.

4. CONCLUSION

The isotropic nature of CSF has allowed us to look at the variation of the signal which may 

be indicative of the variation within surrounding areas or even the whole brain. With few 

modes of variation, a viable model should be able to estimate the median signal with few 

variables being utilized as basis functions. Our results show that using the values of the b-

vector to fit a model to each scan’s signal over time allows for fairly accurate estimations. 

However, it is not clear if there is a strong correlation between the variation in the white 

matter of the brain and the variation in the CSF. If there is a strong positive correlation 

between the median signal in the CSF and the surrounding white matter regions in the brain, 

the estimated signal could be used to correct the variation in the same manner as the b0 drift 

correction as proposed by Vos et al [3]. Unfortunately, the CSF does not appear to provide a 

clear reference tissue. Yet, the variations are highly structured, dependent on diffusion 

weighting direction, and may provide useful anatomical metrics with additional biophysical 

modeling.
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Figure 1. 
A slice from the b0 and three diffusion weighted direction of a single scan are shown with 

logarithmic intensity (a.u.). In the lower right-hand corner of the median intensity of the 

diffusion weighted volumes within the left lateral ventricle is shown. Note the variation of 

up to 28% in absolute intensity.
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Figure 2. 
All median signals for three CSF regions in the brain for 3949 scans, with each line 

corresponding to a single scan. From top to bottom the rows correspond to the 3rd ventricle, 

the right lateral ventricle, and the left lateral ventricle. The median signal has been 

normalized and scaled so that all start at the same point. Note the wide range of signal 

variation and the visually clear dependence on gradient direction.
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Figure 3. 
Here we see the explained variance for the principle components for the median signal for 

all scans. From left to right the plot corresponds to the 3rd ventricle, right lateral ventricle, 

and left lateral ventricle. This shows that most of the variance is explained by the first 3 

modes of variation.
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Figure 4. 
This plot shows the first three principle components. Note the lack of low frequency 

temporal drift.
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Figure 5. 
Each row corresponds to a b-vector (x, y, and z from top to bottom) and each column 

corresponds to a CSF region (3rd, right lateral, left lateral, from left to right). Each 

represents the same data from figure 1, but the color represents the value of the b-vector at 

that volume. This shows that as the variation in the data increases as the gradient is taken in 

the y and z directions.
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Figure 6. 
Each row corresponds to a model used to capture the variance in the left and right lateral 

ventricles. From top to bottom the models are the linear model, log model, simple 

exponential model, cross-term exponential model, and squared exponential model. Each row 

in the images represents p-values of the coefficients from the fitting the model to the median 

signal. Each column represents one of the terms that were used as the basis functions for the 

models.
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Table 1.

The median standard deviation for all volumes within each session, across all sessions for all subjects, and 

across all subjects. The percentage of that value with regards to the median signal for all data is also shown. 

The 3rd column shows the size of the data and the last column shows the p-value of the data against the intra-

session data.

Data Median SD Percent of Median
Signal

N p-value against
Intra-session

Intra-session CSF 0.0029 3.59 1954 N/A

Inter-session CSF 0.0086 10.60 542 < 0.001

Inter-subject CSF 0.0216 26.59 3949 < 0.001
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Table 2.

The sum of the root mean squared error between the estimated median signal and the true median signal, the 

mean R2, and mean adjusted R2 for all models for all scans.

Model Total RMSE Mean R2 Mean Adjusted R2

Linear 10.591 0.797 0.755

Log 10.666 0.794 0.759

Simple Exponential 11.991 0.753 0.722

Cross-term Exponential 10.199 0.818 0.770

Squared Exponential 9.859 0.817 0.779
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