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In this study, a single microphone speech enhancement algorithm is proposed to improve speech

intelligibility for cochlear implant recipients. The proposed algorithm combines harmonic structure

estimation with a subsequent statistical based speech enhancement stage. Traditional minimum

mean square error (MMSE) based speech enhancement methods typically focus on statistical char-

acteristics of the noise and track the noise variance along time dimension. The MMSE method is

usually effective for stationary noise, but not as useful for non-stationary noise. To address both sta-

tionary and non-stationary noise, the current proposed method not only tracks noise over time, but

also estimates the noise structure along the frequency dimension by exploiting the harmonic struc-

ture of the target speech. Next, the estimated noise is employed in the traditional MMSE framework

for speech enhancement. To evaluate the proposed speech enhancement solution, a formal listener

evaluation was performed with 6 cochlear implant recipients. The results suggest that a substantial

improvement in speech intelligibility performance can be gained for cochlear implant recipients in

noisy environments. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5031112

[CYE] Pages: 2244–2254

I. INTRODUCTION

Cochlear implant (CI) devices are able to provide deaf

individuals with the ability to recover some level of hearing

function. Currently, CI recipients achieve a relatively high

degree of speech intelligibility in quiet environments.

However, in noisy backgrounds their speech intelligibility

capability drops dramatically. Previous research has shown

that in noisy backgrounds, the speech reception threshold

(SRT) of CI listeners is about 15 to 25 dB higher than for

normal hearing listeners (Hochberg et al., 1992; Wouters

and Vanden Berghe, 2001; Spriet et al., 2007). Therefore,

developing effective speech enhancement algorithms is

essential to improve speech perception for CI recipients.

Speech can be viewed as an over-redundant signal

which is antagonistic to noise interference. Normal hearing

listeners usually have little difficulty in understanding

speech with mild to moderate levels of noise. Even at zero or

negative signal-to-noise ratio (SNR) levels for certain types

of noise, normal hearing listeners still can achieve high

speech intelligibility. Conversely, CI recipients are only able

to decode limited amounts of spectral and temporal informa-

tion of speech which is delivered through a small number of

CI encoding channels (e.g., 16 or 22 channels) (Patrick

et al., 2006; Loizou, 2006). This limited spectral and tempo-

ral resolution often leaves CI recipients unable to discrimi-

nate target speech from corrupting background noise. To

improve speech perception in noise for CI recipients, both

single- and multiple-microphone based speech enhancement

algorithms have been explored in previous studies

(Kokkinakis et al., 2012; Koning, 2014). It has been shown

that most single microphone noise reduction algorithms are

effective under a stationary noise condition. However, their

benefits are modest or disappear in fluctuating time-varying

noise (Loizou, 2007). Multi-microphone speech enhance-

ment algorithms are able to significantly increase speech

intelligibility for CI recipients in both stationary and non-

stationary noise. However, there is a strict assumption for

multi-microphone based methods that speech and noise sour-

ces must be spatially separated. In some real scenarios, such

as a diffuse sound field or when the target speech and noise

arrive from the same direction, multiple-microphone algo-

rithms have limited benefits. Thus, a single-microphone

speech enhancement solution to improve speech perception

for CI recipients remains an open problem. In addition, a

single-microphone algorithm can be used to complement

multi-microphone methods to improve speech perception in

more diverse noisy scenarios (Hersbach et al., 2012). In this

study, the aim is to improve speech intelligibility for CI

recipients by developing an effective single microphone

speech enhancement algorithm that employs estimated har-

monic structure from the target speech.

For single-microphone based algorithms, previous

research has been focused on two different aspects. One is

developing front-end noise reduction algorithms before CI

encoding (Hochberg et al., 1992; Weiss, 1993; Yang and Fu,

2005; Loizou et al., 2005; Li et al., 2009; Toledo et al., 2003).

The other is optimizing the CI channel selection to deliver

higher SNR speech sub-bands (Hu et al., 2007; Hu and

Loizou, 2008; Buchner et al., 2008; Buechner et al., 2011;

Nie et al., 2009; Hu and Loizou, 2010a; Hu et al., 2011;

Dawson et al., 2011; Mauger et al., 2012; Hu et al., 2015). In

the former case, noise reduction is performed to improve the

speech representation before CI encoding. For example, the

INTEL system was the earliest single microphone noise

reduction algorithm evaluated for speech intelligibility of CIa)Electronic mail: john.hansen@utdallas.edu
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recipients. The algorithm for this system was an equivalent

spectral subtraction method for the purpose of speech

enhancement (Hochberg et al., 1992). Their listening test

experiments showed that the phoneme recognition threshold

in stationary noise can be improved by an average of 4 to

5 dB for CI subjects. More recently, a modified spectral sub-

traction method was developed for CI devices aimed at reduc-

ing musical artifact noise, by combining a variation-reduced

gain function and spectral flooring (Yang and Fu, 2005).

Significant speech intelligibility improvement was achieved

for CI recipients for a speech-shaped noise condition, but not

for a babble noise condition. A subspace based speech

enhancement algorithm has also been developed (Loizou

et al., 2005). In that method, the noisy signal vector was pro-

jected into the “signal” and “noise” subspaces while only the

components from the signal subspace are retained for target

speech estimation. Evaluation results showed significant

improvement for processed versus unprocessed speech in a

stationary noise condition.

For the alternative domain which focuses on CI channel

optimization methods, strategies have been designed for

selection of the CI encoding channels to efficiently deliver

the speech signal to the electrode array for the improved

auditory neural stimulation. An ideal binary mask (IdBM)

based study has also demonstrated that SNR-dependent

channel selection is more desirable than the current maxi-

mum envelope based N-of-M channel selection strategy (Hu

and Loizou, 2008). Specifically, the CI channel with an SNR

higher than the threshold would be considered as speech-

dominated and retained; Otherwise it is considered mask-

dominated and discarded. Although the time-frequency rep-

resentation was coarse in that study (only 22 channels), the

speech intelligibility of CI recipients was restored to the

level attained in a quiet condition. This previous study there-

fore established an optimal upper-bound for channel selec-

tion based speech enhancement algorithms. An environment

specific noise suppression algorithm was later developed

based on a binary mask estimation using a Gaussian mixture

model (GMM) (Hu and Loizou, 2010a). That method was

able to improve speech perception for CI recipients in both

stationary and non-stationary noise conditions. Furthermore,

the soft mask based channel modification was investigated to

attenuate low SNR channels while retaining high SNR chan-

nels (Hu et al., 2007; Dawson et al., 2011; Mauger et al.,
2012; Hersbach et al., 2012). The advantage of a soft mask

over a binary mask is that the environmental awareness is

able to be retained for CI recipients, since low SNR channels

are attenuated rather than completely removed (Hu et al.,
2007). The sparsity characteristic of speech is also taken into

account when developing an effective speech enhancement

algorithm for CI devices. The “envelopegram” is basically

decomposed into the basis and components matrices using a

non-negative matrix factorization (NMF) (Hu et al., 2011).

Accordingly, the enhanced target speech is therefore

obtained in the NMF reconstruction stage.

Comparing the above two types of CI noise reduction

algorithms, earlier researchers argued that preprocessing

based methods may introduce additional processing based

speech distortion in decomposition and reconstruction of

speech signals (Hu and Loizou, 2010b; Dawson et al., 2011).

However, according to a more recent studies (Qazi et al.,
2012; Koning, 2014), speech perception differs between

those with normal hearing and CI recipients. Specifically, CI

listeners are more sensitive to noise interference than speech

distortion due to limited number of CI channels for stimula-

tion, which is the opposite to normal hearing listeners who

have full access to the entire frequency range. One reason

could be the long-term CI listening experience allows the CI

recipients to adapt to the distorted speech via neural plastic-

ity within the auditory context and higher level brain proc-

essing. However, noise interference is not tolerated well by

CI listeners since it presents competing neural stimulation.

The loss of redundancy feature of the CI encoding proce-

dures has resulted in a lack of noise robustness, because lim-

ited amounts of speech information are delivered to the

auditory nerve of the CI listeners.

In this study, we propose a pre-processing based speech

enhancement algorithm to improve the speech representation

before the CI encoding. The proposed method attempts to

assist CI recipients to perceive target speech by reducing the

effect of the interfering noise. In our method, a harmonic

structure estimation approach is combined with traditional

minimum mean square error (MMSE) speech enhancement

for a leveraged overall solution. The MMSE approach is a

statistical based method which minimizes the mean square

error between the estimation and target speech (Ephraim and

Malah, 1984). In addition to tracking noise along the time

dimension, we also explore the harmonic structure of target

speech signals for estimating any interfering non-stationary

noise. CI listeners have been shown to have more difficulties

with non-stationary noise versus stationary noise. Using this

harmonic structure estimation, we are able to remove more

non-stationary noise content for CI listeners, making percep-

tion of the resulting target speech to be perceived as less dis-

turbed. Specifically, the speech energy is primarily carried

by the harmonic partials in the frequency domain in voiced

segments. For noisy speech, the spectral content located

within the harmonic partials are considered to be speech-

dominated. On the other hand, the spectral content located

between adjacent harmonic partials are considered to be

noise-dominated. In general, the spectrum of both speech

and noise is typically distributed in a continuous manner

along the available frequency range. Therefore, we can esti-

mate the noise within the harmonic partials based on the spec-

tral content between the harmonic partials. The estimated

noise along both the time and frequency dimensions are com-

bined and employed in the MMSE framework for an

improved speech enhancement solution. The harmonic struc-

ture estimation is based on noise robust pitch estimation

developed in our previous studies (Wang et al., 2014; Wang

et al., 2017). Thus, a cleaner speech representation is obtained

for CI encoding which ensures that higher SNR encoded

speech is delivered to the auditory nerve of CI listeners.

In addition, similar speech enhancement methods have

also been proposed in previous research (Krawczyk-Becker

and Gerkmann, 2015, 2016). Nevertheless, their noise esti-

mation methods differ from our method. Our motivation is

to achieve more accurate noise reduction, while their study
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was focused more on preserving the speech harmonics to

prevent excessive speech distortion.

II. PROPOSED HARMONIC1MMSE SPEECH
ENHANCEMENT ALGORITHM

In this part, we describe the proposed HarmonicþMMSE

speech enhancement algorithm for improving speech intelligi-

bility for CI recipients. The algorithm overview is shown in

Fig. 1. From Fig. 1, we see that the proposed algorithm is com-

prised of two main stages: (i) noise estimation and (ii) speech

enhancement based on MMSE. The noise estimation has two

separate parts, including noise tracking along both time and

frequency dimensions. On the one hand, time domain noise

tracking is based on a time-recursive average algorithm

(Martin, 2001). Alternatively, noise estimation along the fre-

quency dimension is based on exploring the harmonic structure

of the target speech. In the MMSE framework, given the esti-

mated noise variance (k̂
T

d or k̂
F

d ), the a priori SNR (n̂T or n̂F),

and a posteriori SNR (ĉT or ĉF) are estimated. These parame-

ters are used to derive the gain function (ĜT and ĜF) for the

time and frequency dimensions, respectively. Finally, we fuse

the gain function of both time and frequency dimensions into a

single form (Ĝ) for the target speech estimation based on an

MMSE principle (Krawczyk-Becker and Gerkmann, 2015).

In the following, we will explain the details of tradi-

tional MMSE framework, harmonic structure estimation,

noise estimation and gain function estimation for the target

speech signal.

A. MMSE framework

The MMSE based speech enhancement approach aims

to find the average of the a posteriori probability density

function (pdf) of the clean speech spectrum amplitude given

the pdf of the speech and noise (Ephraim and Malah, 1984).

Usually, the assumption is made that both speech and noise

are Gaussian distributed and are statistically independent

from each other. Here Bayes rule is used to determine the

MMSE estimator for the clean speech spectrum amplitude.

Specifically, the gain function is derived as below (Loizou,

2007),

Ĝ n̂k; ĉk

� �
¼ X̂k

Yk
¼

ffiffiffi
p
p

2

ffiffiffiffiffi
�k
p

ĉk

exp � �k

2

� �

� 1þ �kð ÞI0

�k

2

� �
þ �kI1

�k

2

� �� �
; (1)

where Yk and X̂k are the observed noisy and estimated speech

spectrum amplitude, respectively. Here, the index k denotes

the kth spectrum component, I0 and I1 are the zero- and first-

order of modified Bessel function, ĉk is the a posteriori
SNR, and �k is defined by the a priori SNR n̂k and a posteri-
ori SNR ĉk , shown as

�k ¼
n̂k

1þ n̂k

ĉk; (2)

where ĉk and n̂k are defined as

ĉk ¼
Y2

k

k̂d kð Þ
; (3)

n̂k ¼
k̂x kð Þ
k̂d kð Þ

; (4)

where k̂xðkÞ and k̂dðkÞ are the estimated variances of speech

and noise, respectively.

In particular, the a priori and a posteriori SNR can be

viewed as the true and measured SNR, respectively. The a
priori SNR n̂k is the main parameter influencing noise sup-

pression, while the a posteriori SNR ĉk serves as a correction

parameter that influences attenuation only when n̂k is low

(Loizou, 2007). Therefore, the success of the MMSE

approach for noise reduction mainly relies on the accurate

estimation of the a priori SNR. Furthermore, the a priori
SNR estimation depends on the estimated speech and noise

variance. Traditionally, the noise variance is estimated during

the speech pause section assuming that the noise is stationary.

With the estimated noise spectrum, the a priori SNR is esti-

mated based on algorithms such as maximum-likelihood

FIG. 1. (Color online) Block diagram

of the speech enhancement algorithm.
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method, decision-directed approach or its modified method

(Ephraim and Malah, 1984; Cohen, 2005; Hasan et al., 2004).

However, the strong assumption of stationary noise causes the

unreliable noise estimation in real sound scenarios. Thus,

developing more accurate noise estimation methods is essen-

tial for improving the performance of MMSE based speech

enhancement. In the next subsection, we will describe the har-

monic structure estimation which is used for noise estimation.

B. Harmonic structure estimation

In this subsection, we focus on harmonic structure esti-

mation for the target speech signal. Based on a sinusoidal

model, the voiced speech signal waveform is composed of a

series of sinusoidal signals with frequencies which are multi-

ple integers of the fundamental frequency (McAulay and

Quatieri, 1986). In the frequency domain, the speech spec-

trum is composed of harmonic partials located at frequencies

which are multiple integers of the fundamental frequencies

(Stylianou, 2001). For noisy speech, the spectrum within the

harmonic partials tend to be speech dominated. However,

the spectrum between the harmonics tend to be noise domi-

nated. If we are able to estimate the frequencies of the har-

monic structure for the target speech, then we can categorize

the noisy spectrum into speech and noise dominated bands

along the frequency dimension, and estimate them with

alternative strategies.

We propose to estimate the harmonic structures by

selecting the noisy spectral peaks near the ideal harmonic

partials with frequencies that are integer multiples of F0

(kF0). In order to obtain accurate pitch estimation, we adopt

a classification based approach which is an extension of our

previous work (Wang et al., 2017). We attempt to estimate

pitch contour values by classifying the pitch candidates into

true and false based on input harmonic features. The flow-

chart of the pitch estimation algorithm is illustrated in Fig. 2.

From Fig. 2, we see that pitch estimation is comprised of

two steps: (i) pitch candidates generation and (ii) target pitch

selection. First, the long-short-term Fourier transform is per-

formed on the input noisy speech waveform to obtain the

long-term and short-term frequency spectrum (Huang and

Wang, 2011). After this, in each frame, a series of frequency

based pitch candidates are extracted from both the original

noisy speech spectrum and the subharmonic summation

(SBH) spectrum (Hermes, 1988). After pitch candidate gen-

eration, five harmonic related features are extracted for each

pitch candidate to complementary represent the characteris-

tics of the pitch associated harmonic structure. The noise

robust harmonic features are developed to project the pitch

candidates into a more separable space so as to facilitate

effective pitch candidate classification. The pitch selection

process is formed as a neural network classification problem

where pitch candidates are categorized into true or false

types. Finally, a temporal continuity constraint is applied for

pitch tracking based on a hidden Markov model (HMM)

along with Viterbi decoding to ensure a speech-like F0

contour.

The details of the harmonic feature (er, sr, hd, o2e, rh)

extraction are described as follows.

Harmonic energy ratio (er): The harmonic energy ratio

is the energy ratio between the detected harmonic energy

and the overall noisy spectrum energy. A larger er usually

indicates a higher SNR of the identified harmonic structure

associated with the particular pitch candidate.

SBH amplitude ratio (sr): The SBH amplitude ratio is

the ratio between the SBH amplitude of the pitch candidate

peak and the maximum peak of the SBH vector. For clean

speech, the maximum peak of SBH is expected to appear

exactly at the pitch frequency. For noisy speech, the peak at

the pitch frequency might not be maximum due to interfer-

ence. However, its amplitude is usually close to the maxi-

mum value. Therefore, a higher sr value usually indicates a

higher likelihood that the corresponding pitch candidate is a

true pitch.

Harmonic frequency deviation (hd): Harmonic fre-

quency deviation stands for the average frequency deviation

of the detected harmonic partials from the ideal harmonic

frequencies for a particular pitch candidate. The smaller the

value of hd, the more probable that the pitch candidate is a

true pitch.

Odd to even harmonic energy ratio (o2e): Odd to

even harmonic energy ratio stands for the energy ratio

between odd order of harmonics and even order of harmon-

ics. Since the speech spectrum envelope is smoothly distrib-

uted along the frequency range, the overall energy of the odd

order of harmonics and even order of harmonics should be

equivalent to each other. Therefore, the use of o2e is able to

control or limit any half-pitch errors as well as suppress the

effect of noise interference.

Ratio of detected harmonic structures (rh): The ratio

of the detected harmonic structure denotes the ratio between

the number of detected harmonic partials and the ideal over-

all number of harmonic partials distributed in the analysis

frequency range. More harmonic partials detected for one

pitch candidate indicates that less noise interference is pre-

sent in the speech harmonics associated with that pitch

candidate.

The five harmonic features are combined together to

form a collective input vector [er sr hd o2e rh] for neural

network based classification. In the training phase, the neural

network is created to model the relationship between input

FIG. 2. (Color online) F0 estimation

overview.

J. Acoust. Soc. Am. 143 (4), April 2018 Dongmei Wang and John H. L. Hansen 2247



harmonic features and output pitch salience. The output

value is set to either 0 or 1, denoting either a false pitch or a

true pitch value, respectively. The connecting weights

between each layer in the neural network architecture is

obtained based on back-propagation (Mitchell, 1997). In the

testing phase, given the input of harmonic feature vector for

a pitch candidate, the greater the output value of the neural

network, the more probable this pitch candidate is the true

pitch. Moreover, a temporal continuity constraint is used for

pitch tracking to ensure natural pitch contours. The pitch

tracking problem is modeled with a HMM, and the Viterbi

algorithm is used for HMM decoding.

With the estimated pitch values, the harmonic structures

are obtained by selecting the spectral peaks which are closest

to the ideal harmonic partials within a frequency range

related to the harmonic order. In reality, the observed har-

monic partials usually deviate from the ideal frequency due

to the instability of the glottal pulse sequence/shape during

speech production. The harmonic deviation is typically

greater as one moves towards higher frequency compared to

the low frequency range. Therefore, we set the deviation

threshold DfH to depend on the specific frequency band. The

criteria therefore is to set DfH to a smaller value in the low

frequency range, and a larger value as we move to higher

frequency. The details are shown as follows:

DfH ¼
20; f < 500 Hz;
30; 500 Hz � f < 2000 Hz;
45; fP2000 Hz:

8<
: (5)

Here, the different values of DfH were determined empiri-

cally. At this point, the harmonic structure estimation has

been completed.

C. Noise estimation based on harmonic structure

In this subsection, we focus on estimating noise along fre-

quency dimension based on exploring harmonic structure of

the target speech. In any voiced section, speech energy is pri-

marily carried by the harmonics, only small amounts of speech

energy located between harmonic partials. Accordingly, the

noisy spectrum within harmonic partials is dominated by

speech which has higher SNR. Alternatively, the noisy spec-

tral content between harmonic partials is dominated by noise

which has a lower SNR. Therefore, on the one hand, the spec-

trum within harmonic partials will be more reliable for esti-

mating speech. Alternatively, the spectrum between harmonic

partials will be more appropriate for noise estimation.

The composite algorithm overview of the noise estima-

tion is presented in Fig. 3. It can be seen that the harmonic

spectrum is first generated for target speech by convolving

the harmonic partial vectors with the spectrum of a short-

term hamming window, shown as follows:

SHðf Þ ¼ Swinðf Þ �
XK

k¼1

ak
H � dðf � f k

HÞ; (6)

where ak
H and f k

H are the amplitude and frequency of the kth

order of harmonic peak, Swin is the spectrum vector of the

short-term hamming window, and dð�Þ is the delta function.

Next, the generated harmonic spectral amplitude jSHj is

reduced from the noisy speech spectrum in order to obtain

the initial estimated noise spectrum Â
0

n, as shown,

Â
0

n ¼ maxðjSnj � jSHj; 0Þ: (7)

We call the noise spectrum inside of the main lobe window

the “within-harmonic (WH)” noise, and that one outside of

the main lobe window as “between-harmonic (BH)” noise.

The bandwidth of the main lobe of the harmonics is set as 2/

3 of the main lobe bandwidth of the short-term Hamming

window spectrum to distinguish between BH and WH noise.

The ratio 2/3 is chosen since the central part of the harmonic

main lobe has higher speech energy than the tail portion. For

example, in the case of a 30 ms frame, the main lobe band-

width of harmonics is set to 70 Hz. Furthermore, the WH

noise and BH noise will be estimated separately.

In the case of BH noise estimation, the noise energy is

the dominant component which has little influence from

speech. Thus, the initial estimated noise Â
0

n in the same fre-

quency range will be used for BH noise as shown,

ÂBHðf Þ ¼ Â
0

nðf Þ; (8)

where f 2 kF0þ 1
2

fmb; ðk þ 1ÞF0� 1
2

fmb

	 

, and fmb is the

bandwidth of the harmonic main lobe.

However, for WH noise estimation, the initial estimated

noise is not reliable since speech has the dominant energy in

this frequency range, serving as a strong interference for noise

estimation. Nevertheless, we made an assumption that the

noise spectrum is distributed continuously along the frequency

dimension. In this way, given that the noise spectrum in the

near frequency bands, the noise spectrum in the current fre-

quency band can be approximated based on an interpolation

technique. Figure 4 presents the statistical histogram of the

logarithmic energy ratio between neighboring frequency

bands in four different frequency ranges (0–2000 Hz,

2000–4000 Hz, 4000–6000 Hz and 6000–8000 Hz), for both

speech-shaped noise and babble noise. The bandwidth and

band shift are both set to 100 Hz. Meanwhile, the mean and

standard variance values are shown as well. From Fig. 4, we

see that the mean value of the logarithmic energy ratio

between neighboring bands are near 0 dB across all four cases.

FIG. 3. Algorithm overview of noise

estimation.
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The maximum spread value of the neighboring band energy

ratio for both types of noise is less than 5 dB. This analysis

indicates that the noise energy has a high correlation between

adjacent frequency bands.

With this formulation, we can estimate the WH noise

using the estimated BH noise spectrum with linear interpola-

tion method as shown below,

ÂWHðf Þ ¼ âL
BH þ âR

BH � âL
BH

� �
� f � f L

BH

f R
BH � f L

BH

; (9)

where f 2 kF0� 1
2

fmb; kF0þ 1
2

fmb

	 

; f L

BH and f R
BH are the

edge frequencies for the left and right neighboring BH noise

band adjacent to the current harmonic partial, âL
BH and âR

BH

are the average amplitude of the estimated BH noise spec-

trum in the adjacent left and right frequency bands.

Figure 5 illustrates an example of the noise estimation

solution based on harmonic structure. Figure 5(a) is for the

speech-shaped noise case, and Fig. 5(b) is for the babble

noise case. It can be seen that both the BH and WH noise

spectrum amplitude estimation is almost consistent with the

true noise values over frequency.

D. Noise tracking along time dimension

Besides the noise estimation along frequency dimension

based on harmonic structure, we also perform the noise esti-

mation along time dimension, which is attempting to address

the stationary noise. The time dimension based noise track-

ing is based on a minimum statistics algorithm with optimal

smoothing (Martin, 2001) assuming that the noise is station-

ary. In practice, the noise variance is estimated in the

FIG. 4. (Color online) Histogram of

energy ratio between neighboring fre-

quency bands of noise. SS: speech-

shaped noise, BB: babble noise.

FIG. 5. (Color online) Interpretation of

noise estimation based on harmonic

structure. (a) Speech-shaped noise (b)

babble noise.
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beginning during a quiet section and updated during later

unvoiced and speech-absent segments.

E. Gain function estimation

With the estimated noise spectrum along both time and

frequency dimensions, we derive the gain function for the

target speech. The noise spectrum estimated along frequency

and time dimensions will be incorporated into the MMSE

framework to generate two gain functions ĜF and ĜT based

on Eq.(1), respectively. Based on the MMSE principle

(Krawczyk-Becker and Gerkmann, 2015), ĜF and ĜT are

fused to obtain the optimal gain function for the target

speech, shown as Eq. (10),

Ĝ ¼ ĜF
k̂F

k̂F þ k̂T

þ ĜT �
k̂T

k̂F þ k̂T

; (10)

where k̂F and k̂T are the frequency- and time-dimension

based noise variances, which can be computed from the esti-

mated noise spectrum amplitude obtained in Secs. II C and

II D. The estimated gain function for the target speech is

then applied to the noisy speech spectrum to estimate the

clean speech spectrum. Finally, an IFFT is used to transform

the frequency domain signal back into time waveforms for

each analysis frame. Each continuous frame will be con-

nected via an overlap-and-add technique. This concludes the

algorithm formulations for harmonic estimation based

MMSE enhancement.

III. LISTENING EXPERIMENTS

A. Subjects and stimuli

Six post-lingually deafened cochlear implant users partic-

ipated in this study. The age of the subjects at the time of test-

ing ranged from 58 to 82 years, with a mean age of 67.7

years. Implant use ranged from 5 to 10 years, with a mean of

7.5 years. Table I shows the biographical data for all subjects.

Subjects were paid an hourly wage for their participation.

The target speech materials are comprised of sentences

from the IEEE database (IEEE, 1969). The IEEE corpus con-

tains 72 lists. Each list has ten phonetically balanced senten-

ces. All the sentences were produced by a female speaker.

Babble noise is used to corrupt the sentences to simulate the

noisy speech. The babble noise was recorded in the sound

booth in the CRSS-CILab at University of Texas at Dallas.

Three separate dialog groups are formed by 9 talkers talking

in English (Krishnamurthy and Hansen, 2009). A noise

segment with the same length as the target speech signal was

randomly selected from the noise signal stream and added to

the clean speech signal at the SNRs of 0, 5, and 10 dB,

respectively.

B. Procedure

The listening task includes sentence recognition by CI

subjects. The subjects were seated in a soundproof room

(Acoustic System, Inc.), where the speech samples were

played to the CI subjects. The subjects were asked to orally

repeat all words which were heard in each sentence. We

compare our method with a perceptually motivated MMSE

method (Loizou, 2005), which we call MMSE in the experi-

ment results. All speech samples were processed off-line in

MATLAB with the perceptually motivated MMSE algorithm

and our proposed HarmonicþMMSE method. For compari-

son, the simulated noisy sentences are also included in the

listening test. All sentences were presented to subjects

through a loudspeaker placed at a distance of 80 cm in front

of the subject. The sound pressure level of the speech senten-

ces from the loudspeaker were set as fixed 65 dB through out

the test. The subjects were fitted with their daily CI MAP

strategy. Before the test, each subject participated in a

20 min practice session to listen to a set of clean stimuli to

familiarize him/her with the testing procedure. Each subject

participated in a total of nine test conditions (3 SNR levels

� 3 processing conditions). Two IEEE sentence lists were

used per test condition. None of the sentences were repeated

across the test conditions. The order of test conditions was

randomized across all subjects. Subjects were given a 5-min

break every 30 min during the test sessions to avoid listener

fatigue.

C. Results

The speech intelligibility performance of each CI subject

is measured in terms of word recognition rate (WRR) from the

testing sentences. Figure 6 shows the average WRR results in

the babble noise case. The standard error of the mean (SEM)

for WRR results is also shown along with the average value.

From Fig. 6, we see that the HarmonicþMMSE approach

improves speech intelligibility for CI recipients in all the SNR

TABLE I. Biographical data from the subjects tested.

Subject

Age

(yr) Gender

Age at HL

onset (yr)

Cochlear

implant use (yr)

Etiology of

deafness

Number of

channels

s1 68 M 55 6 Hereditary 22

s2 62 F 48 5 Hereditary 22

s3 58 F 38 5 Hereditary 22

s4 71 M 27 9 Nerve Damage 22

s5 82 M 57 10 Hereditary 22

s6 65 F 30 10 Nerve Damage 22
FIG. 6. (Color online) Average word recognition rate for babble noise.
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levels. The MMSE stand-alone method improves performance

at 0 dB, but decreases speech intelligibility performance at

5 dB and 10 dB SNR levels. The above results indicate the

advantage of the combination of Harmonic processing with

MMSE to address non-stationary noise. In order to investigate

the significance at different SNR for babble noise, we per-

formed an analysis of variance (ANOVA) analysis on these

WRR results. The ANOVA results for 0 dB and 5 dB SNR

are [F(2, 17)¼ 21.26, p< 0.0003] and [F(2, 17)¼ 16.21,

p< 0.0007], respectively, which show a significant difference

across processing conditions. However, the ANOVA result for

10 dB is [F(2, 17)¼ 2.67, p< 0.1181], where no significant

difference exists at this SNR level.

Post hoc pairwise analyses were performed to assess the

statistical significance between different processed condi-

tions at 0 dB and 5 dB SNR levels. When the SNR is 0 dB,

Post hoc results show significant differences between

MMSEþHarmonic and the original noisy speech condition

(p< 0.0002), as well as between MMSEþHarmonic proc-

essed condition and the only MMSE processed condition

(p< 0.003). However, there is no significant difference

between MMSE processed condition and the original unpro-

cessed condition (p< 0.2078). When the SNR is 5 dB, a sim-

ilar statistical difference is found between each speech pair

as with an SNR of 0 dB. In particular, the p-value of the

three pairs are (i) p< 0.0019 is observed between

HarmonicþMMSE processed and original noisy condition;

(ii) p< 0.0013 is observed between HarmonicþMMSE proc-

essed and only MMSE processed conditions; and (iii)

p< 0.9646 is observed between only MMSE processed con-

dition and original noisy condition.

In addition, we present WRR results for individual CI

subject which is shown in Fig. 7. Figures 7(a) and 7(b) show

that all CI subjects benefit from HarmonicþMMSE in terms

of WRR performance. MMSE stand-alone processing

improves WRR results for most of the subjects at 0 dB, but

inconsistently at 5 dB, whereas no improvement is observed

compared to unprocessed condition for some subjects (s3, s5,

and s6). From Fig. 7(c), it can be seen that HarmonicþMMSE

is able to improve or preserve the WRR performance for most

CI subjects, while MMSE stand-alone processing decreases

WRR performance for most CI subjects.

In order to compare the output of the cochlear implant

processed signal, we present electrodograms of the clean,

noisy and processed conditions, respectively in Fig. 8. From

Fig. 8(d), We see the that noise is attenuated and harmonics

are well preserved in MMSEþHarmonic processed electro-

dogram. However, from Fig. 8(c), for the stand-alone

MMSE processed condition, too much residual noise is

either retained or introduced.

IV. GENERAL DISCUSSION AND CONCLUSION

In this study, a speech enhancement method based on

combining harmonic structure estimation and MMSE was

proposed to improve speech intelligibility for CI recipients.

Our algorithm more efficiently estimates noise using har-

monic structure during speech which improved MMSE

enhancement. A listening evaluation with CI subjects

demonstrated the potential benefit of the proposed method

for CI subjects in terms of WRR (word recognition rate) per-

formance for a babble noise condition. At an SNR of 0 dB,

mean subject WRR scores improved from 2% to 6% and

16% with stand-alone MMSE processing and combined

HarmonicþMMSE processing, respectively. At an SNR of

5 dB, the combined HarmonicþMMSE improved WRR per-

formance from 29% to 41%, while MMSE processing alone

decreased WRR by 1%. At an SNR of 10 dB,

HarmonicþMMSE slightly improved WRR scores to the

range 56% to 63%, while stand-alone MMSE processing

actually decreased WRR scores by 3%.

FIG. 7. (Color online) Word recognition rate for individual subject in babble

noise case. (a) SNR¼ 0 dB (b) SNR¼ 5 dB (c) SNR¼ 10 dB.
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Based on these results, for the non-stationary noise con-

dition, MMSE processing alone was not capable of reflecting

the time-varied characteristics of noise, hence leading to no

significant contribution, or even decreasing speech intelligi-

bility in high SNR scenarios. However, improved noise esti-

mation obtained by HarmonicþMMSE processing was

shown to provide a better a priori and a posteriori SNR esti-

mation for the MMSE framework to estimate the target

speech. In addition, the harmonic model used in the pro-

posed method was able to distinguish speech harmonics

from fluctuating background noise so as to enhance the time-

frequency representation of speech. Similar findings have

shown that F0 contour is a substantial cue for speech percep-

tion in noise for CI recipients (Qin and Oxenham, 2003;

Chen et al., 2015).

The performance of individual CI subjects showed that

almost all CI subjects benefit more from HarmonicþMMSE

than stand-alone MMSE processing. The poor speech intelli-

gibility performance of CI subjects in fluctuating babble

noise without processing reflects both the need and challenge

FIG. 8. Electrogram in babble noise

case, SRN¼ 0 dB. (a) Clean, (b) noisy,

(c) MMSE processed, (d) MMSEþ
Harmonic processed.

FIG. 9. (Color online) Speech distortion ratio for processed speech in babble

noise condition.

FIG. 10. (Color online) Residual noise ratio for processed speech in babble

noise condition.
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in providing sustained listener benefits in diverse conditions.

In addition, those subjects with poor performance in their

daily strategies where shown to benefit more from

HarmonicþMMSE which had a more aggressive noise

reduction solution. On the contrary, these CI subjects who

achieved better performance generally had a listener profile

closer to normal hearing listeners who are more sensitive to

speech distortion versus residual noise.

Furthermore, in order to investigate the effects of speech

distortion and residual noise on speech intelligibility of CI

recipients, we computed the percentage rate of speech distor-

tion and residual noise for both the MMSE processed and

HarmonicþMMSE processed speech (Loizou and Kim,

2011). The percentage rate of speech distortion was obtained

as the ratio between the number of T-F bins which were

underestimated (–6.02 dB compared to the clean speech) ver-

sus the total number of time-frequency (T-F) bins. The per-

centage rate of residual noise was computed as the ratio

between the number of T-F bins which were overestimated

(þ6.02 dB compared to the clean speech) versus the total

number of T-F bins. Figures 9 and 10 showed the percentage

of speech distortion and residual noise, respectively. From

Fig. 9, we saw that the HarmonicþMMSE processed speech

had a higher speech distortion rate than the stand-alone

MMSE processed speech. In addition, from Fig. 10, we saw

that MMSE alone had more residual noise than the

HarmonicþMMSE processed speech. From these results, we

can now infer CI recipients are more sensitive to residual

noise than speech distortion when exposed to non-stationary

noise.

For future research, the trade-off between noise reduc-

tion and speech distortion could be further investigated for

alternate noise conditions. With such a follow-on study, a

proper weight value could be set for both the Harmonic gain

and MMSE gain functions to achieve a more consistent and

greater level of speech intelligibility improvement for CI

recipients (Hu and Loizou, 2010a). Moreover, it is also pos-

sible to set alternate analysis window sizes for the input dis-

torted speech signal according to the estimated pitch values

to ensure higher frequency resolution for harmonic structure

estimation.
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