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Abstract

Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT 

activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, 

found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from 

sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small 

molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-

MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight 

gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on 

diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA 

synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, 

we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 

4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and 

diabetes.

Brown adipose tissue (BAT) contributes to metabolic homeostasis in both rodents and 

humans1,2. BAT`s main function is to maintain body temperature via non-shivering 

thermogenesis. In addition, BAT has a remarkable capacity for glucose and triglyceride 

uptake and secretes adipokines that positively influence metabolism3–5. BAT activation 

counteracts obesity and insulin resistance (IR) by elevating total energy expenditure, 

supporting weight loss, and increasing insulin sensitivity6,7.

Thus, new therapeutic strategies are of great clinical interest because existing weight-

lowering drugs lack sufficient efficacy and raise safety concerns when used long-term8,9–11.

Although BAT activation is an attractive strategy for supporting weight loss, the 

unfavourable or not yet extensively studied risk/benefit ratios of currently-known BAT 

activators, such as beta-adrenergic sympathomimetics12, peroxisome proliferator-activated 

receptor γ (PPARγ) agonists13, and fibroblast growth factor (FGF) 2114, have hampered 

their clinical use. A large proportion of particularly obese individuals do not have detectable 

BAT15,16. Thus, being able to recruit and to activate more BAT is important, urgently 

requiring new compounds that increase BAT activity. Relatedly, there is also a need for 

improving the technologies to measure BAT activity. To date, BAT activity is assessed in 
vivo using CT-guided 18F-fluorodeoxyglucose positron emission tomography (18F-PDG-

PET)2. However, this method has its limitations, especially in states with increased insulin 

resistance. Developing new BAT activators would be fostered by effective non-radioactive 

imaging methods for longitudinal analysis of BAT activity in vivo.
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Hyaluronan (HA), a long, non-sulfated glucosaminoglycan, is abundant in the extracellular 

matrix. The transmembrane HA synthases (HAS)-1, -2, and -3 catalyze HA synthesis from 

activated sugar precursors, namely uridine diphosphate (UDP)-glucuronic acid (UDP-

GlcUA) and UDP-N-acetyl-glucosamine (UDP-GlcNAc), thereby linking HA synthesis to 

glucose metabolism17. Indeed, HA is strongly affected by diabetic conditions18. In turn, 

since glucose reportedly also serves as an important BAT substrate in cold-induced 

thermogenesis19, changes in HA synthesis might directly impact BAT function. The small 

molecule inhibitor 4-methylumbelliferone (4-MU; INN “hymecromone”) has been used in 

humans as a prescription-free choleretic drug and is available in Europe and Asia.

It is also used as an inhibitor of HA biosynthesis by competing with the endogenous 

substrates for UDP-glucuronyltransferase, thereby depleting the cytosolic UDP-GlcUA 

pool20. In turn, the HA precursors GlcUA and GlcNAc accumulate and might be directed 

into other catabolic pathways or used for post-translational modifications such as O-

GlcNAcylation.

Given the interference of HA with glucose metabolism, we hypothesized that HA synthesis 

interferes with BAT function. Therefore, the aims of the present study are to test the effect of 

the small molecule inhibitor of HA synthesis on BAT activity and to investigate the 

underlying mechanisms using HAS isoenzyme-deficient mice. Relatedly, to facilitate 

longitudinal analysis of BAT activity, we aimed to develop a novel MRI-based method for 

functionally assessing BAT activation.

Here, we demonstrate that inhibition of HA synthesis by 4-MU induces thermogenic 

markers in primary human brown adipocytes and in mice, increases BAT capacity while 

ameliorating hyperglycemia and the development of obesity. Further, we present a novel 

MRI T2 mapping method capable of assessing BAT function in vivo. Importantly, both 4-

MU and the magnetic resonance imaging (MRI)-based BAT imaging have the potential to be 

directly translated into patients.

Results

4-MU prevents weight gain and activates BAT

8-week-old male C57Bl6/J mice were fed a diabetogenic diet (DD) supplemented with or 

without 4-MU (DD 4-MU). Plasma levels in mice reached values of 56.08 ± 0.009 ng/ml 

after 24 hours of 4-MU treatment, which resembles the concentrations achieved in humans 

treated with the compound. Importantly in the context of this manuscript, 4-MU 

accumulated in BAT reaching tissue concentrations of 6.16 ± 2.90 μg/mg.

4-MU treatment reduced weight gain and total body fat content, as determined by NMR 

analysis after 17 weeks of feeding (Figure 1a, b). In order to elucidate the underlying 

mechanisms leading to this dramatic phenotype, (i) food intake, (ii) hormonal factors, and 

(iii) spontaneous activity of the mice were analyzed. Food intake during chronic 

administration was not affected in DD 4-MU-treated mice compared to DD-fed mice thereby 

excluding an anorectic effect (Figure 1c). Also, within one week of pair-feeding, 4-MU 

decreased weight gain and BAT weight, thereby revealing that the effect of 4-MU did not 

Grandoch et al. Page 3

Nat Metab. Author manuscript; available in PMC 2019 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



depend on food intake (Supplementary Figure 1). Circulating triglycerides and cholesterol 

levels were unchanged (Supplementary Figure 2) while circulating leptin was reduced in 4-

MU treated animals (Figure 1d), thereby excluding involvement of changes in hepatic 

metabolism and central leptin-mediated behavioral and metabolic responses induced by 4-

MU. Further, after 5 weeks of feeding, no increase in locomotor activity of 4-MU-treated 

mice was detectable (Supplementary Figure 3), despite significantly reduced weight of the 

animals as shown in Figure 1a.

Importantly, interscapular BAT weight was dramatically reduced, and BAT adipocytes were 

smaller in 4-MU treated mice; both indicating decreased lipid content (Figure 1e-h). 4-MU 

induced Ucp1 and Cidea mRNA expression in BAT after 22 weeks of feeding (Figure 1i), 

pointing towards increased BAT capacity. Of note, increased expression of Ucp1 mRNA in 

BAT was detected even at 6 and 9 hours after 4-MU treatment, well before changes in body 

weight occurred (Supplementary Figure 4). Consistent with this, immunohistochemical 

staining of BAT as well as western blots of UCP1 demonstrated elevated protein expression 

in 4-MU-treated mice (Figure 1j,k).

Importantly, elevated levels of UCP1 occurred independently from changes in sympathetic 

nerve density, as shown by western blot analysis of tyrosine hydroxylase expression in BAT 

of mice treated for 22 weeks with DD or DD 4-MU (Figure 1l). In addition, pretreatment of 

mice with the unselective β receptor antagonist propranolol prior to 4-MU application had 

no effect on 4-MU-induced changes in BAT weight and Ucp1 mRNA expression 

(Supplementary Figure 5). Accordingly, 4-MU likewise increased the expression of Ucp1, 

Cidea, and Ppargc1a mRNA in differentiated murine primary brown adipocytes 

(Supplementary Figure 6a-c) as well as in murine T37i cells (Supplementary Figure 6d), and 

differentiated adipocytes derived from human BAT (Figure 1m and Supplementary Figure 

6e). These in vitro results confirmed the cell-autonomous effects of 4-MU on Ucp1 
regulation and suggests potential translational relevance, since the effect was also observed 

in primary human brown adipocytes (although the number of patients has yet to be increased 

for statistical analysis).

Furthermore, we investigated 4-MU effects in thermoneutrality (30°C), where BAT 

thermogenesis is minimized. After one month of adaptation, mice received either only DD 

or DD supplemented with 4-MU for two weeks. Interestingly, 4-MU treatment reduced 

weight gain as observed before at 21°C (Supplementary Figure 7a). The identical effects 

were seen at 30°C in pair-fed groups (DD (30°C) 105.5% ± 2.75% weight gain versus DD 4-

MU (30°C) 103.9% ± 3.69% weight gain, mean ± s.e.m.). Likewise, 4-MU reduced BAT 

weight, decreased adipocyte size (Supplementary Figure 7b,c), and increased Ucp1 
expression in BAT while Cidea and Ppargc1a mRNA expression were not affected 

(Supplementary Figure 7d-f) at 30°C.

Next, we investigated whether 4-MU`s effects were restricted to BAT or whether effects also 

occur in WAT. Indeed, beiging of inguinal adipose tissue (AT) was observed in 4-MU-treated 

animals, as seen in the gene expression of previously described beige adipocyte markers21 

Ucp1, Ppargc1a, Tnfrsf9, Tbx1, and Tmem26 was upregulated (Supplementary Figure 8a-e). 
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The presence of multilocular, UCP1-positive adipocytes in 4-MU-treated mice was further 

confirmed by immunohistological staining of inguinal AT (Supplementary Figure 8f, g).

4-MU improves glucose tolerance and insulin resistance

In line with 4-MU`s strong effects on body weight gain and BAT activation, glucose 

homeostasis was beneficially affected, and insulin sensitivity was improved in 4-MU-treated 

mice (Figure 2a,b). Further, plasma insulin was decreased in fasted mice (Figure 2c). Thus, 

4-MU treatment prevents the weight gain and the development of insulin resistance (IR) that 

is normally observed in mice on DD.

4-MU reduces white AT hypertrophy and inflammation

Since different types of AT (white, brown, beige) in concert regulate energy balance and 

metabolic homeostasis, we examined 4-MU effects on WAT in more detail. Analyzing the 

epididymal AT revealed a strong effect of 4-MU: we detected reduced fat pad weight and 

decreased adipocyte size, paralleled with reduced numbers of AT macrophages and 

decreased mRNA expression of pro-inflammatory cytokines such as Ccl2 and Il1β 
(Supplementary Figure 9a-e). In accordance with these results and supporting 4-MU’s 

beneficial effect on energy and glucose homeostasis, insulin-stimulated glucose uptake 

increased in freshly isolated adipose cells from 4-MU-treated mice (Supplementary Figure 

9f).

4-MU halts obesity and reverses IR

In order to evaluate the therapeutic potential of 4-MU treatment, mice were first fed with DD 

for 8 weeks in order to develop obesity and IR. Animals were then randomized to two 

groups equivalent in body weight and fasting blood glucose (Supplementary Figure 10a,b). 

Then the groups were fed either DD alone or DD 4-MU for additional two weeks. As shown 

in Supplementary Figure 10c, 4-MU prevented further weight gain and reduced fasting 

blood glucose while glucose tolerance was slightly affected (Supplementary Figure 10d,e). 

These results underline 4-MU’s beneficial effects even on already established obesity and 

IR.

4-MU increases BAT`s thermogenic capacity

Collectively, the results strongly suggest increased BAT capacity in 4-MU treated mice. 

Next, energy expenditure at room temperature and at 4°C was analyzed in detail. 

Surprisingly, although UCP1 was significantly upregulated on mRNA and protein levels 

(Figure 1i,j), experiments at 21°C room temperature indicated that 4-MU-treated mice 

display reduced metabolic rates (Figure 3a). However, when challenged by cold exposure 

(switching them to 4°C), mice on DD 4-MU diet increased their metabolic rate by greater 

extent than controls (Figure 3b,d). In this way, differences in energy expenditure observed at 

21°C were abolished after cold exposure (Figure 3c,d). These results pointed towards a 

higher thermogenic capacity of BAT after treatment with 4-MU, which was further 

confirmed by measuring the maximum energy expenditure of 4-MU-treated and control 

mice following stimulation with norepinephrine (NE). When corrected for body weight by 

using ANCOVA, the maximum NE-stimulated energy expenditure in 4-MU-treated mice 
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was greater than in controls (Figure 3e-g), suggesting they had a disproportionately 

increased thermogenic capacity. In line and in support of these hypotheses of increased 

thermogenic capacity in 4-MU treated mice, the UCP1 protein content per gram of BAT was 

increased despite the lower total BAT weight, in both mice cohorts, after long-term-

treatment for 22 weeks (Figure 3h) and after acute 24- hour 4-MU application (Figure 3i).

MRI of increased BAT capacity

Because 4-MU reduced weight gain rapidly within the first week of feeding (Figure 1), 

including under pair-feeding conditions (Supplementary Figure 1), we analyzed the 

underlying mechanisms of short-term treatment. To monitor the acute impact of 4-MU on 

BAT function, we validated a novel MRI approach for non-invasively visualizing BAT 

activity.

For this, we harnessed the susceptibility of the MRI relaxation time T2 to regional magnetic 

field inhomogeneities. Due to its heterogeneous tissue composition, high iron content, and 

rich vasculature, BAT’s baseline T2 values are substantially lower than in WAT (Figure 4a,c; 

Supplementary Figure 11,12). We expected this effect would be even more pronounced 

under BAT activation, resulting in higher metabolic turnover, heat production, and perfusion. 

To test this assumption, mice were subjected to T2 mapping immediately before and 1 hour 

after pharmacological β3-adrenergic stimulation (CL-316,243). Application of the β3 

agonist resulted in substantially decreased T2 in dorsocervical BAT, as represented by a shift 

from yellow to red in the color-coded maps (Figure 4a). Quantification of the entire BAT 

area (Figure 4b and Supplementary Movie) revealed significantly lower T2 values after β3-

adrenergic stimulation. Importantly, this T2 reduction was restricted to BAT segments: 

neither skeletal muscle nor WAT T2 was significantly altered by CL-316,243 (Figure 4c). 

The T2 sensitivity for BAT activation was corroborated in mice challenged by cold 

exposure: After 2.5 h at 4 °C, BAT T2 dropped to a similar magnitude as observed for 

CL-316,243 (Figure 4d and Supplementary Figure 12a). Further, we compared BAT volume 

as detected by MRI with the BAT weight after harvesting interscapular BAT tissue, revealing 

a strong correlation between the BAT mass predicted by MRI and based on biopsy 

(Supplementary Figure 12e,f)

After confirming the specificity and sensitivity of this approach for BAT activation, mice 

treated for 24 h with 4-MU were examined by T2 mapping. Supplementary Figure 15c 

shows that 4-MU treatment results in a drop of T2 confirming BAT activation. 

Quantification revealed that BAT T2 decreased to approximately 60% of the effect found for 

β3-adrenergic stimulation and cold exposure (Figure 4d). Planimetry of the BAT segments, 

including all interscapular and dorsocervical depots (Figure 4b, Supplementary Movie), 

showed that 4-MU treatment for 24 h substantially reduced total BAT volume (Figure 4e), 

thereby indicating enhanced lipolysis.

Also using this novel MRI approach, activation of the SNS could be excluded using 4-MU in 

combination with a β3-specific antagonist, L-748,337. While L-748,337 inhibited the 

CL-316,243-mediated increase of Ucp1 mRNA expression (CL-316,243: 2.473 ± 0.603 fold 

increase versus control; L-748,337 + CL-316,243: 0.124 ± 0.02; mean ± s.e.m.), treating 

mice with 4-MU for 24 h in the presence of L-748,337 demonstrated that 4-MU acutely 
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activates BAT independently of β-adrenergic stimulation (Figure 4d). These results strongly 

underline that 4-MU’s long-term and short-term effects on BAT are direct and do not depend 

on sympathetic stimulation.

4-MU enhances mitochondrial function

Given the impact of 4-MU on NE-stimulated energy expenditure, we investigated whether 4-

MU increases mitochondrial function and cellular respiration. For this purpose, BAT 

mitochondria were isolated after 24 hours of 4-MU treatment, and increased state 3 

respiration with complex I substrates was detected in isolated BAT mitochondria (Figure 

4h). In line with this result, increased amounts of complex I were found by western blot in 

BAT from 4-MU treated mice (Supplementary Figure 13a). In contrast, no effects were 

detectable in isolated mitochondria from inguinal AT (Figure 4j). In both AT depots, citrate 

synthase activity (CSA), a marker of mitochondrial density, was not significantly altered 

(Figure 4i,k). 4-MU activation of BAT respiration was also detected in lysed BAT tissue by 

measuring O2 flux after 22 weeks of feeding (Supplementary Figure 13b). Specifically, also 

in these tissue lysates, complex I-linked respiration increased in BAT isolated from 4-MU-

treated mice while CSA was not significantly different between the treatment groups 

(Supplementary Figure 13c). Thus, both short-term (Figure 4h, i) and long-term exposure 

(Supplementary Figure 13b,c) to 4-MU increased respiration in BAT.

4-MU increases glycolysis and vascularization in BAT

Next, the underlying mechanisms leading to enhanced BAT activation were investigated. 

Since HA synthesis is dependent on activated sugar precursors, we considered that inhibition 

of HA synthesis will interfere with the glucose metabolism. Indeed, Slc2a4 mRNA 

expression and multiple glycolytic enzymes were increased in BAT of animals treated with 

4-MU for 24 hours (Figure 5a-f). In line, elevated glucose and lactate levels were found in 

BAT after acute treatment with the compound (Figure 5g). To corroborate that 4-MU-

mediated effects depend on glycolysis, we used the glucose derivate 2-deoxy-D-glucose (2-

DG). 2-DG is metabolized into 2-DG-phosphate, which cannot be further metabolized, 

resulting in the inhibition of glycolysis. Co-treating mice with 2-DG and 4-MU completely 

abolished 4-MU-induced Ucp1-mRNA expression (4-MU: 3.62 ± 0.83 fold increase versus 

control; 2-DG+ 4-MU: 0.41 ± 0.07 fold increase versus control; mean ± s.e.m.) as well as 

the decrease in BAT weight/body weight ratio. Importantly, the glycolytic end product 

lactate, which is also increased in T37i brown preadipocytes treated with 4-MU, has been 

previously described as a browning agent in subcutaneous adipose tissue. In this study, 

lactate stimulated Ucp1 expression in T37i brown preadipocytes after 24 hours in a dose-

dependent way (Figure 5h,i).

Further evidence for changes in substrate usage of 4-MU treated mice is seen in the 

respiratory exchange ratio (RER): while the RER in 4-MU-treated mice was reduced at 21°C 

(indicating greater lipid oxidation), increased RER during cold exposure (compared to the 

DD-fed control group) indicates enhanced carbohydrate oxidation (Supplementary Figure 

12a). In line with this observation, lipolysis was increased in BAT of 4-MU fed mice at 21°C 

as detected by induction of hormone-sensitive lipase RNA and protein (Supplementary 
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Figure 12a,b). Furthermore, plasma levels of non-esterified fatty acids were increased 

(Supplementary Figure 12c).

As a proof of concept showing that UCP1 upregulation is responsible for the metabolic 

phenotype of 4-MU-treated mice, Ucp1-deficient mice were fed either DD or DD plus 4-

MU. No effects of 4-MU were observed in Ucp1-deficient mice with respect to body weight 

gain, glucose homeostasis as well as BAT T2 relaxation time and tissue weights of BAT and 

liver (Supplementary Figure 15).

In addition to the mechanisms described above, glycolysis is also known to promote 

angiogenesis, another crucial process for BAT activation. Indeed, Vegfa mRNA expression 

was strongly augmented, and isolectin staining confirmed higher BAT vascularization after 

chronic 4-MU treatment for 22 weeks (Figure 5j-l).

Has2/3 DKO mice mimic 4-MU`s beneficial metabolic phenotype

Finally, we asked whether inhibition of HA synthesis is indeed responsible for the increase 

of BAT`s thermogenic capacity by 4-MU. First, we analyzed HA-synthesizing enzyme 

expression: Has2 and -3 were the most abundant HA synthase isoenzymes in BAT 

(Supplementary Figure 16a). Of note, after cold exposure for 8 hours, known to acutely 

stimulate BAT activity, a strong downregulation of all HAS isoenzymes was observed 

(Supplementary Figure 16b). This may be the physiological equivalent to the herein 

postulated interrelationship between BAT activity and HA synthesis.

Analyzing mouse strains with only a single HA synthase isoenzyme knockout revealed no 

major changes in the metabolic phenotype (Supplementary Figure 17 - 19).

However, mice with genetic deficiency in the two most abundant HAS isoenzymes, Has2/3 
DKO, exhibited significantly less weight gain on DD (Figure 6a), similar to the effects of 4-

MU treatment. In line with this, body fat content declined (Figure 6b). However, glucose 

tolerance tests showed no significant effect of Has2/3 DKO (Figure 6c). We also observed 

lower BAT volume, BAT weight and a significantly decreased T2 time in BAT from Has2/3 
DKO versus respective control animals. In contrast, T2 of WAT and muscle were not altered 

between the genotypes, thereby underlining the BAT-specific effects of Has2/3 deficiency 

(Figure 6d-g). The mRNA expression of Ucp1 was increased, together with trends in 

elevated Cidea and Ppargc1a mRNA (Figure 6h). In inguinal AT, Ppargc1a and Tmem26 
mRNA expression were increased while other beiging markers showed no changes 

(Supplementary Figure 20). However, energy expenditure was not significantly altered in 

Has2/3 DKO (Figure 6i) compared to WT controls. The RER was slightly shifted towards 

carbohydrate consumption (Figure 6j).

Together, these results suggest that inhibition of HA synthesis shifts the metabolic flux 

towards glycolysis, possibly supporting mitochondrial respiration. Additional effects of FA 

(derived from de novo lipogenesis) and lactate further promote these effects. Genetic 

deficiency of Has2 and -3 largely mimicks the effects of the pharmacological inhibitor of 

HA synthesis, 4-MU, although not in all aspects. A summarizing scheme of 4-MU`s 

postulated mechanisms of action is provided in Figure 7.
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Discussion

Developing agents that safely and effectively activate BAT is an exciting frontier in obesity 

and diabetes research. In the last years, the development of compounds activating BAT as a 

novel therapeutic option has been fostered for treating obesity and T2DM. Indeed, BAT 

activation has been shown to effectively reduce blood glucose in diabetic patients7,22.

Two options are currently favoured when trying to increase BAT thermogenesis: either 

increasing the amount of BAT or increasing BAT activity. However, the therapeutic success 

of increasing the amount of BAT depends upon ensuring simultaneous activation by 

respective mechanisms which might lead to concomitant unfavourable systemic responses. 

Indeed, strategies trying to target BAT function pharmacologically can have serious side 

effects, especially due to parallel SNS activation.

Here we show that inhibiting HA synthesis increases BAT`s thermogenic capacity. Deletion 

of a single HA synthase was not sufficient to impose any effects on systemic metabolism. 

However, if the two most abundant HAS isoenzymes in BAT, namely HAS2 and HAS3, 

were deleted, a reduction in total amounts of HA were achieved and the beneficial metabolic 

effects of 4-MU were mimicked, thereby uncovering the interrelationship of BAT 

thermogenic capacity and HA synthesis.

Importantly, 4-MU-induced effects were independent of sympathetic activation, thereby 

being of major relevance to the compound’s potential use in humans. This was shown by 

using a β3-specific antagonist (L-478,337) as well as the unselective β receptor antagonist 

propranolol: both substances did not prevent the 4-MU-induced increase in Ucp1 mRNA 

expression while Ucp1 upregulation by the beta3 receptor -specific agonist was effectively 

blunted by both β receptor antagonists. In line, 4-MU effects were also seen at 

thermoneutrality and 4-MU also increased Ucp1 mRNA expression in vitro by cell-

autonomous mechanisms. The potential effectiveness in humans is underlined by 4-MU 

effects on Ucp1 mRNA expression in primary human brown adipocytes, although the limited 

number of patients included here has to be taken into account as a limitation.

In our study, 4-MU attenuated body weight gain, improved glucose homeostasis and BAT`s 

thermogenic capacity in mice. We did not observe any changes in food intake during chronic 

treatment, and also demonstrated reduced body weight gain in pair-fed mice, in mice 

receiving 4-MU independently by oral gavage and in Has2/3 DKOs and wildtype mice. In 

addition, effects on BAT and increased Ucp1 mRNA expression were already detected as 

early as 6-9 hours after 4-MU treatment before changes in body weight. In sum, all of these 

points suggest that 4-MU’s beneficial long-term metabolic effects are mediated directly by 

the compound`s inhibition of HA synthesis.

Mechanistically, it was found that BAT`s maximum thermogenic capacity was increased 

when challenged by cold exposure or NE. This was further confirmed by the finding of an 

increased total UCP1 amount per BAT depot in 4-MU treated mice. The causal role of UCP1 

was demonstrated in Ucp1–deficient mice, where 4-MU showed no metabolic effects as 

observed before in C57BL/6 wildtype mice.
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Consistent with its effects on maximum NE-stimulated energy expenditure, 4-MU increased 

BAT respiration and specifically increased the activity of mitochondrial complex I, shown in 

both, BAT and isolated BAT mitochondria derived from 4-MU-treated mice. Complex I 

activity is directly linked to increased respiratory chain activity and UCP1-mediated 

thermogenesis in BAT23.

In searching for the upstream mechanism that leads to increased BAT respiration, we 

considered enhanced substrate flow into the glycolytic pathway. Glucose is an important 

substrate for BAT thermogenesis, especially during cold exposure, thereby also regulating 

systemic glucose homeostasis and increasing energy expenditure4,19,22. HA synthesis 

consumes activated UDP-sugars24 and inhibiting HA synthesis might increase the glycolytic 

pathway thereby providing more substrates for mitochondrial respiration. In line, the 

glycolysis inhibitor 2-DG abolished 4-MU-induced increase in BAT activity and RER was 

increased by 4-MU at 4°C indicating more carbohydrate consumption under conditions of 

acute stimulation. Furthermore, and in support of increased glucose utilization, 4-MU 

increased Slc2a4 mRNA expression.

We also detected elevated lactate levels – corresponding to enhanced glycolysis – in 

response to 4-MU ex vivo and in vitro. Indeed, lactate itself has been proposed as a 

browning agent in subcutaneous AT25. In murine brown preadipocytes, lactate directly 

upregulated Ucp1 expression in vitro pointing towards direct effects. Of note, a recent paper 

also reported on the relevance of circulating lactate as an important TCA substrate26 which 

might also drive the increased flux to the respiratory chain. Further, since glucose is not the 

primary substrate for thermogenesis, de novo lipogenesis (DNL) and subsequent fatty acid 

oxidation likely also contribute as previously described27,28 in 4-MU treated mice.

Of note, activating effects of 4-MU were mainly observed in BAT while the beiging effects 

on inguinal AT were much less pronounced or even missing such as the effect on complex I 

activation. This might be due to the fact that beige adipocytes are dispersed within the 

subcutaneous AT depot so that the mixture of cells may have masked the 4-MU effect seen 

in pure brown adipocytes or even side-specific actions of 4-MU in BAT. This will be 

addressed in further studies. Therefore, we think that beiging might contribute to the overall 

4-MU induced phenotype but to a lesser extent than BAT.

In addition to its acute effects, 4-MU also induced long-term effects that could support 

improved BAT activity. We detected enhanced Vegfa expression and augmented BAT 

vascularization after 22 weeks of 4-MU treatment. Interestingly, angiogenesis has also been 

reported to contribute to BAT activation and depend strongly on glycolysis10,29,30. The 

aforementioned increase in glycolytic substrates might therefore also contribute to BAT 

vascularization in the presence of 4-MU. In addition, a recent study also described the 

autocrine effects of VEGF-A on mitochondrial function and thermogenesis; these effects 

might contribute to the observed phenotype23. Furthermore, and in line with previous 

reports, we detected reduced WAT mass and WAT inflammation following 4-MU treatment. 

These reductions likely contribute to the systemically-improved metabolic phenotype in 

chronically treated mice31,32.
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Characterizing 4-MU’s effect on BAT in vivo was facilitated by the present T2 mapping 

approach. The current gold standard for functional BAT imaging is CT-guided 18F-FDG-

PET2. Recent MRI studies mainly focused on the relaxation parameter T2* to assess the 

metabolic activity of BAT33,34. However, alterations in T2* are balanced by two opposing 

effects under BAT activation: while deoxyhemoglobin, produced by oxidative metabolism, 

reduces T2*, the enhanced blood flow increases T2*. Compared to T2*, T2 mapping is less 

prone to susceptibility artifacts especially at high magnetic fields and, thus, seems to be 

more robust for monitoring BAT activation. Validated by both pharmacological and 

physiological stimulation, this method facilitated the characterization of 4-MU in this study. 

Further, T2 mapping has the potential to assess BAT activity in humans without any harmful 

contrast agent or radiation and could also facilitate the development of new BAT activators.

In summary, we describe here 4-MU as a new small molecule inhibitor increasing BAT 

activatibility and promoting its thermogenic capacity by inhibition of HA synthesis which 

causes redirection of substrates into the glycolytic pathway. This increases DNL thereby 

providing substrate for lipolysis and beta oxidation as well as also increasing levels of 

lactate/pyruvate which in turn serve as substrates for mitochondrial complex I respiration 

and increase UCP1 expression (Figure 7). At later stages, other factors, such as increased 

BAT vascularization and decreased WAT inflammation, might contribute to the overall 

protective effects against the development of obesity and IR.

Limitations of the current study include the lack of more extensive human data including in 

vitro experiments in isolated brown preadipocytes as well as a first translation of the novel 

T2 mapping approach in humans. These will be addressed in more detail in the future. In 

this context it is yet unclear how much of the beneficial effects seen in mice might also 

translate to humans where the amount of BAT is highly variable between different subjects 

and different comorbidities.

Despite these limitations the present study clearly underlines the importance of BAT for 

whole body metabolism and the opportunity to prevent obesity as well as T2DM with BAT-

focussed approaches. For the first time a regulatory role of the HA-rich ECM is shown in 

regulating BAT activity by changing intracellular substrate fluxes. Therefore, HA might be a 

valuable novel target in the attempt to improve BAT activity which might be even preferable 

compared to therapeutic approaches solely focusing on increasing BAT mass.

Of note, inhibiting HA synthesis by either 4-MU treatment or by genetically deleting HAS 

isoenzymes improves BAT capacity independently from sympathetic stimuli. Thus, 

unfavorable side-effects as reported for many other recently described BAT activators can be 

excluded. In line, also chronic BAT stimulation which in turn might also have harmful 

effects on systemic metabolism was avoided. Both, the T2 mapping protocol and the use of 

4-MU to pharmacologically activate BAT, have clear translational utility because 4-MU has 

been used for many years in clinical practice35,36,37.
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Methods

Animal studies

All animal experiments were conducted according to the guidelines for the use of 

experimental animals as given by “Deutsches Tierschutzgesetz” and approved by the local 

Research Board for animal experimentation (Landesamt für Natur, Umwelt und 

Verbraucherschutz NRW; State Agency for Nature, Environment and Consumer Protection). 

All experiments were conducted in at least three independent groups of mice with free 

access to water and food (except for pair-feeding experiments) and were conducted at 22° C 

± 1° C ambient temperature (except for experiments under thermoneutral conditions) and a 

12 h day-night cycle. Investigators were not blinded to the group allocation or the genotype 

of the mice. Blinded data collection and/or analysis were performed in following 

experiments: histological stainings, qPCR, MRI measurements in vivo and ex vivo, ELISA 

and fluorometric assays, western blot analysis, the CSA/BAT and the oxygraph 

measurements.

Mouse strains

For all experiments only male mice were used. Female mice were not used due to major 

differences in the development of obesity and insulin-resistance. Littermate controls were 

used for experiments. Pre-established exclusion criteria were defined stating that all mice 

with an insufficient knock down of the target genes by tamoxifen-treatment (> 70%) were 

excluded from the experiments. Further, mice were excluded from the experiment when 

certain criteria of suffering were observed. These included weight loss greater than 20 % of 

body weight, cessation of food and water ingestion or lack of voluntary movement.

C57BL/6J wild-type mice were obtained from Janvier Labs (Le Genest-Saint-Isle, France) 

or from an in-house breeding of the same strain. For determination of maximum energy 

expenditure C57BL/6 were purchased from Charles River UK. This research has been 

regulated under the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012 

following ethical review by the University of Cambridge Animal Welfare and Ethical 

Review Body (AWERB). Animals were housed in a specific pathogen free facility with 12 

hour light and 12 hour dark cycles.

Ucp1-deficient mice (B6.129-Ucp1tm1Kz/J; on C57BL/6J background – originally from 

Jackson Laboratory) were kindly provided by Martin Jastroch (Helmholtz-Zentrum 

München, Germany). Mice were bred, born and weaned at 30°C. All subsequent analyses 

were performed at 30°C.

Ubiquitous Has1-deficient mice (C57BL/6J.Cg-Has1tm)38 and Has2flox/flox mice, kindly 

provided by Yu Yamaguchi39, were all on C57BL/6J background. Rosa26CreERT2+/- mice 

(Taconic; Hudson, NY, USA)40 were crossed with Has2flox/flox mice39 to generate 

ubiquitous conditional Has2-deficient mice (Rosa26CreERT2+/-;Has2flox/flox), on C57BL/6J 

background.

Mice floxed for HAS3 (HAS3KIflox/flox) were generated by GenOway (Lyon, France) and 

used for generation of ubiquitous constitutive Has3-deficient (Has3 KO) mice, both 
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backcrossed on C57BL/6J background. Generation of these mice is described in detail in 

Kiene et. al, 2016.41

Ubiquitous Has2/Has3 double-deficient (Has2/3-DKO) mice were generated by crossing the 

Rosa26CreERT2+/-;Has2flox/flox mice with ubiquitous Has3-KO) mice.

Feeding

Starting at the age of 8 – 10 weeks, age-matched C57BL/6J mice were randomly assigned to 

two treatment groups receiving either standard diabetogenic diet (DD; composed of 59 % 

kcal derived from fat and 26 % kcal derived from carbohydrates; ssniff, Soest, Germany) 

supplemented with either 50 g/kg 4-methylumbelliferone (4-MU; Sigma Aldrich, St. Louis, 

MO, USA) or DD with respective placebo for up to 22 weeks.

Feeding experiments of Has1,-2 or -3 single-deficient, Has2/Has3 double-deficient and 

Ucp1-deficient mice started at 16-20 weeks. For induction of the Has2-knockout, 16 – 20 

weeks old Rosa26CreERT2+/-;Has2flox/flox, Rosa26CreERT2+/-;Has2flox/flox/Has3-/- and 

respective Rosa26CreERT2+/- control mice were treated daily with 4 mg tamoxifen (Sigma 

Aldrich, St. Louis, MO, USA) by oral gavage for 5 days. One week after the last tamoxifen 

treatment mice were fed with DD up to 22 weeks. Afterwards, mice were sacrificed and 

tissues were taken for further analysis.

Food intake was analyzed during the first 11 weeks of feeding by weighing the food that was 

consumed within one week.

For pair-feeding experiments, C57BL/6J mice in the DD control group received the same 

amount of diet per day as consumed by the DD 4-MU-treated mice at start of the experiment 

at 8-10 weeks of age. Body weight was recorded every second day for one week.

For studying the acute effects of 4-MU treatment, mice received 4-MU or respective placebo 

via oral gavage (300 mg/mouse/day) for the indicated period of time.

For the experiments under thermoneutral conditions, 16 week old C57BL6/J mice were 

housed for 4 weeks at 30° C in a constant climate chamber (HPP770life, Memmert, 

Schwabach, Germany) before starting feeding DD or DD supplemented with 4-MU for 

additional two weeks.

NMR analysis of whole body composition

Total body fat content of mice was determined with a nuclear magnetic resonance (NMR) 

Analyzer Minispec and Minispec plus software (both Bruker Corporation, Billerica, MA, 

USA) after 11 or 17 weeks of feeding. Intraperitoneal glucose tolerance (ipGTT) and insulin 

tolerance tests (ITT) were performed after 13 or 19 and 14 or 20 weeks of feeding, 

respectively. After undergoing starvation for 6 hours, mice were injected with 1 g/kg BW 

glucose or 0.75 U/kg BW insulin. Blood glucose concentration was assessed before (fasting 

blood glucose) and (5,) 15, 30, 60 and 120 minutes post injection of glucose or insulin bolus.

For determination of therapeutic effects of 4-MU treatment on established glucose 

intolerance and obesity, 8-10-week-old C57BL/6J mice were fed with DD for 8 weeks. 
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Subsequently mice were randomly assigned to two groups which did not differ with regard 

to fasting blood glucose and body weight and treated for two weeks with DD or DD-4MU.

Metabolic measurements

Basal and cold-induced energy expenditure (Volume O2) and the corresponding respiratory 

exchange ratios (RER) were assessed with a customized indirect calorimetry system (TSE 

PhenoMaster) and TSE PhenoMaster Software (both TSE Systems GmbH, Bad Homburg, 

Germany). For analysis of basal energy expenditure, C57BL/6J (fed with DD or DD 4MU 

for 11 weeks), Has1,-2,-3 single-deficient, Has2/-3 double-deficient mice and their 

respective control mice (fed with DD for 11 weeks) were allowed to adapt to their new 

environment for 72 hours, after which measurements were performed for additional 72 

hours. For analysis of cold-induced energy expenditure, mice were allowed to adapt for 24 

hours and were then exposed to cold (4° C) for additional 8 hours. All variables were 

assessed every 30 minutes during measurement.

Metabolic rate was calculated from energy expenditure by correcting for body weight using 

ANCOVA with body weight as a covariate, diet or genotype as a fixed factor and energy 

expenditure as the dependent variable. All analyses were performed using the general linear 

modelling function of SPSS 25.

Calorimetric measurements were performed at the following sites: the animal facilities at the 

HHU Düsseldorf, the German Diabetes Center Düsseldorf, Germany.as well as the Disease 

Model Core (MRC Metabolic Diseases Unit [MRC_MC_UU_12012/5], Cambridge, United 

Kingdom.

Thermogenic capacity measurement

8-10 week old C57BL/6 mice were fed DD 4-MU or DD control diet for 28 days as 

described before. To measure thermogenic capacity, mice were anaesthetised with 90 mg/kg 

pentobarbital and placed in a 2.7 l calorimetry chamber with a flow rate of 400 ml/min 

which was maintained at a temperature of 30°C. Room and chamber CO2% and O2% were 

measured every 4 minutes. Energy expenditure was calculated from VCO2 and VO2 using a 

modified Weir equation

Basal energy expenditure was measured until three stable readings were observed, which 

took ~24 minutes. Mice were then injected subcutaneously with 1mg/kg norepinephrine 

bistartrate and a further 30 mg/kg of pentobarbital. Energy expenditure was measured for a 

further 28 minutes until it plateaued.

The maximal NE-stimulated energy expenditure was determined as the average of the three 

largest readings post injection. The maximal NE-stimulated EE was highly correlated with 

body weight (P=0.001) and we corrected NE stimulated energy for body weight using 

ANCOVA with body weight as a covariate, diet as a fixed factor and NE-stimulated EE as 

the dependent variable. It was noted that one control animal exhibited a NE-stimulated EE 

that had a residual in the regression model that was 2.95 SD from the mean and was 

excluded from the analysis. All analyses were performed using the GLM function of SPSS.
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Magnetic resonance imaging (MRI)

General setup—MRI data were recorded at a vertical Bruker AVANCEIII 9.4 T wide bore 

NMR spectrometer (Bruker, Rheinstetten, Germany) operated by ParaVision 5.1. Images 

were acquired using the Bruker microimaging unit Micro2.5 with actively shielded gradient 

sets (1.5 T/m) and a 25-mm birdcage resonator. Mice were anesthetized with 1.5 % 

isoflurane in a water-saturated gas mixture of 20 % oxygen in nitrogen applied at a rate of 

75 ml/min by manually restraining the animal and placing its head in an in-house-built nose 

cone. Respiration was monitored by means of a pneumatic pillow positioned at the animal’s 

back. Vital function was acquired by a M1025 system (SA Instruments, Stony Brook, NY, 

USA) and used to synchronize data acquisition with respiratory motion. Throughout the 

experiments mice were breathing spontaneously at a rate of approximately 100 min-1 and 

were kept at 37 °C. Animals were placed within the resonator that the field of view (FOV) in 

z-direction (~25 mm) covered a region from just below the cerebrum down to the heart.

Fat imaging—The localization of the brown adipose tissue (BAT) was determined by 

acquisition of images from the neck region using 2D 1H multi-slice turbo spin echo (TSE) 

sequences with and without fat suppression. Data were taken from a FOV of 25.6×25.6 mm2 

with a matrix size (MS) of 256×192 resulting in a spatial resolution of 100×100 μm2 after 

zero filling (TSE factor, 8; echo time (TE), 4.4 ms; repetition time (TR), 3500 ms; slices, 16; 

slice thickness (ST), 1 mm; acquisition time (TAcq), 84 s. Using the same receiver gain, two 

image sets were recorded with and without chemical shift selective fat suppression.

T2 mapping—Acquisition of T2 maps was carried out using a respiratory gated multi-slice 

multi-echo (MSME) sequence covering the entire BAT (8 slices, 16 echos, separated by a 

ΔTE of 3.805 ms; TR = 525 ms, ST = 1 mm, FOV = 25.6×25.6 mm2, MS = 256×256 after 

zero filling, averages = 4, TAcq ≈ 5 min). Only one early trigger per expiration phase was 

used to provide constant conditions for the recording of the echo train. In order to create the 

T2 maps, an exponential decay curve was fitted to the intensity decline of each pixel within 

the 16 echo images using the image sequence analysis (ISA) tool of ParaVision 

(Supplemental Figure 9). For color coding of calculated T2 maps, a slightly modified 

version of the default color look-up table of ParaVision was applied. Demarcations for white 

and brown adipose tissue as well as muscle were manually drawn with the ParaVision 

Region-of-Interest (ROI) tool and tissue-specific T2 times were calculated from the 

respective ROIs (see supplemental Figure 9). For each of the 8 slices, 2 separated ROIs were 

evaluated for white adipose tissue (WAT) and muscle, respectively, while for BAT as many 

ROIs were used as required for entire coverage of all tissue parts (cf. supplemental Figure 

9). From the area of these ROIs (multiplied with the slice thickness), the total BAT volume 

was calculated. To obtain tissue-specific T2 values for BAT, WAT, and muscle, data were 

averaged over the respective ROIs from all slices. For analysis of inguinal fat depots, the 

slice package was placed in axial orientation at the level of the hips and acquisition/

calculation of T2 maps was carried out as described above.

3D projections—For the 3D visualization of WAT and BAT in the upper part of the body, 

MR data were acquired with a 3D TSE sequence from the cerebrum down to the heart (TE = 

3.5 ms; TR = 2500 ms, FOV = 25.6×25.6×25.6 mm2, MS = 256×256×128 after zero filling, 
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resulting in a voxel size of 0.1×0.1×0.2 mm3, averages = 3, TAcq = 32 min). Reconstructed 

image stacks were imported for further processing into the 3D visualization software Amira 

version 4.0 (FEI Visualization Sciences Group, Burlington, USA). MR signals were 

associated to the respective anatomical structures (BAT, WAT, spinal cord, brain, heart, and 

surrounding tissue) using the Segmentation Editor of Amira. For segmented areas, individual 

surfaces were calculated with unconstrained smoothing. Subsequently, semi-transparent 

surface views with “fancy alpha” were generated. Fade-out of the projections and 

concomitant rotation of the surface views were coordinated with the DemoMaker of Amira.

Analysis of substrate selection—Determination of tissue metabolite concentrations 

was essentially carried out by high-resolution MR spectroscopy using a 5-mm 1H probe as 

previously described42. Blood-free tissues were rapidly excised, snap-frozen, and 

subsequently extracted with 1 mM perchloric acid (PCA). The extracts were neutralized, 

lyophilized, and stored at 20°C. Lyophilized PCA extracts were redissolved in 0.6 ml D2O 

and transferred into a 5-mm NMR tube. The pool size of various metabolites was quantified 

from fully relaxed high-resolution 1H MR spectra. Trimethylsilyl-propionic-2,2,3,3d4-acid 

(TSP, 1 mM) was used to standardize the concentrations, and the results were correlated 

with the protein content of the samples.

BAT stimulation—All C57BL/J6 mice served as their own control, in that they were 

subjected to MRI measurements at baseline and after exposure to the adrenergic β3 agonist 

CL-316,243 solution (CL-316; 1 mg/kg; Tocris Bioscience, Bristol, UK), cold, and 4-MU 

respectively. This might implicate a certain limitation with regard to the accurate relocation 

of the MR slices for spatial correlation before and after BAT activation. However, at both 

time points all datasets were recorded over the entire BAT area, so that this does not 

introduce a bias into the comparison of the different stimuli. After the baseline MRI 

measurements, mice either (i) received for pharmacological β3 adrenergic activation an 

intraperitoneal bolus injection of CL-31643 and were reintroduced into the scanner after 1 h, 

(ii) were exposed for 2.5 h to 4 °C and thereafter immediately subjected to MRI, or (iii) were 

treated with 4-MU for 24 h followed by the 2nd MRI session. For some experiments the 

unselective β receptor antagonist propranolol (0.5 mg/day) or the β3 adrenergic antagonist 

L-748,337 (100 μg/kg; Tocris Bioscience, Bristol, UK)44 or respective vehicle control 

treatments were given either by drinking water (propranolol) or by i.p. 30 minutes prior to 

the application of 4-MU (L748,337 or respective vehicle). Efficacy of both β adrenergic 

receptor antagonists used was confirmed by complete inhibition of CL316,243-induced 

Ucp1 mRNA expression in BAT. Has2/3 double deficient mice and the respective wildtype 

control mice were measured without any additional BAT stimulation.

Blood and plasma analysis

Blood was drawn from the heart and was anti-coagulated with 100 mM 

ethylenediaminetetraacetic acid (EDTA) in isotonic sodium chloride solution. Plasma was 

collected after two centrifugation steps: at 800 × g for 15 minutes, and at 15,700 × g for 5 

minutes at 4°C. Insulin concentration in plasma was analyzed by Ultra Sensitive Rat Insulin 

ELISA Kit (Crystal Chem, Inc, Downers Grove, IL, USA). Plasma leptin concentration was 

detected by an ELISA assay performed according to the manufacturer`s instructions 
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(Biotechne R&D Systems, Minneapolis, MN, USA). Cholesterol, HDL and VLDL + LDL 

cholesterol plasma concentration was determined by HDL and LDL/VLDL Quantification 

Colorimetric/Fluorometric Kit (Biovision, Inc., Milpitas, CA, USA). The concentration of 

triglycerides and nonesterified fatty acids (NEFA) in plasma was analyzed by Triglyceride 

Colorimetric Assay Kit (Cayman Chemical Company, Ann Arbor, MI, USA). Plasma non-

esterified fatty acids (NEFA) were assessed photometrically using enzymatic kit (Autokit 

NEFA C, Wako, Neuss, Germany). Synergy Mx microplate reader and Gen5™ software 

(both BioTek, Berlin, Germany) were used for data analysis.

Liquid chromatography/tandem mass spectrometry (LC-MS/MS)

In order to determine circulating and tissue concentrations of 4-methylumbelliferone, plasma 

as well as white and brown adipose tissue (WAT, BAT) were harvested from mice treated for 

24 hours with 4-MU or respective placebo. 4-methylumbelliferone was quantified in mice 

plasma by a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method (lower 

limit of quantification: 0.00240 μg/mL for 4-methylumbelliferone).

The liquid chromatography system consisted of a binary LC-pump (Agilent 1200 Series, 

Agilent Technologies, Waldbronn, Germany) and an analytical column (Ascentis Express 

RP-Amide 4.6 x 50 mm 2.7 um, Sigma-Aldrich Chemie GmbH, Germany). Gradient elution 

was performed with 0.05% formic acid and acetonitrile. Determination was performed using 

an AB SCIEX API 5000 triple quadrupole mass spectrometer (AB SCIEX, Concord, 

Ontario, Canada) and Analyst software version 1.6.2 (AB SCIEX, Concord, Ontario, 

Canada). In brief, 10 μL of each sample was placed in a polypropylene-tube. Samples were 

deproteinized with 100 acetonitrile (containing the internal standard umbelliferone), 

subsequently vortex-shaked and centrifuged. The supernatant was further diluted with 0.05% 

formic acid and 30 μL for the mice plasma samples were injected into the LC-MS/MS 

system. The samples were detected with MRM (Multiple Reaction Monitoring) as follows: 

precursor → product ion for 4-methylumbelliferone 175.10 → 133.00 m/z, 4-

methylumbelliferone-ß-glucuronide 351.20 → 174.90 m/z, 4-methylumbelliferyl-sulfate 

255.30 → 175.00 m/z and for umbilliferone (internal standard) 161.00 → 133.00 m/z; for 

all analytes in negative mode. Under these conditions 4-methylumbelliferone, 4-

methylumbelliferone-ß-glucuronide, 4-methylumbelliferyl-sulfate and umbilliferone eluted 

after approximately 1.3 minutes, 0.9 minutes, 1.5 minutes and 1.1 minutes, respectively.

Calibration standards and spiked quality controls samples (SQC) were prepared by adding a 

defined amount of analyte-solution to mice free plasma. Calibration was performed by 

weighted (1/concentration2) linear regression.

Linearity for 4-methylumbelliferone could be demonstrated over a calibration range from 

0.00240 to 0.299 μg/mL in mice plasma. No interferences were observed for 4-

methylumbelliferone and the internal standard. The precision and accuracy for the 4-

methylumbelliferone SQCs in mice plasma ranged from 4.2 to 5.6% and 101.1 to 104.2%.

4-Methylumbelliferone, concentrations were quantified in mice white epididymal AT by a 

liquid chromatography/tandem mass spectrometry (LC-MS/MS) method (lower limit of 

quantification in homogenate: 0.00174 μg/mL for 4-methylumbelliferone).
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The homogenate of the tissue samples were analyzed as described for plasma. 20 mg of each 

tissue sample were homogenized with 300 acetonitrile (containing the internal standard 

umbelliferone). After homogenization the samples were vortex-shaked and centrifuged. The 

supernatant was further diluted with 0.05% formic acid and were injected into the LC-

MS/MS system.

Calibration standards and spiked quality controls samples (SQC) were prepared by adding a 

defined amount of analyte-solution to mice free white epididymale AT. Calibration was 

performed by weighted (1/concentration2) linear regression.

Linearity for 4-methylumbelliferone could be demonstrated over a calibration range from 

1.67 to 188 μg/mL in mice white epididymale AT homogenate. No interferences were 

observed for 4-methylumbelliferone and the internal standard. The precision and accuracy 

for the 4-methylumbelliferone SQCs in mice white epididymale AT homogenate ranged 

from 1.1 to 2.8% and 96.4 to 101.4%. The precision and accuracy for the 4-

methylumbelliferone SQCs in mice BAT homogenate ranged from 0.6 to 3.1% and 92.2 to 

108.9%.

Immunohistochemical staining and determination of adipocyte size

Epididymal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT) were 

removed and fixed for 24 hours in 4 % neutral buffered formalin, dehydrated and embedded 

in paraffin. For representative analysis of adipocyte size in white adipose tissue, tissue from 

three separate areas was cut into 5-μm sections. After the first sections had been collected, 

300 μm of the tissue was discarded before the next sections were collected. This procedure 

was repeated again to obtain a total of three sections per object plate. White adipose tissue, 

brown adipose tissue, and liver sections (all 5 μm) were stained with hematoxylin and eosin 

(H&E). Adipocyte size in white adipose tissue was calculated from six pictures of different 

areas by using Fiji and Biovoxxel (Mutterstadt, Germany)45. Adipocyte area in BAT was 

calculated by using the AxioVision SE64 Rel. 4.8 software (Carl Zeiss Microscopy, 

Thornwood, NY, USA) as the mean area of a total of 50 cells per tissue. Staining with the 

uncoupling protein UCP-1 in brown adipose tissue was conducted with anti-UCP-1 primary 

antibody (1:500; ab10983, polyclonal, Lot GR130362-9, Abcam, Cambridge, UK) and goat 

anti-rabbit horseradish peroxidase (HRP)-coupled secondary antibody (1:200; sc-2004, LOT 

F2308, Santa Cruz Biotechnology, Dallas, TX, USA). Resident macrophages in white 

adipose tissue were stained with anti-Mac2 primary antibody (1:600; CL8942AP, clone 

M3/38, Lot 1442218A, Cedarlane, Burlington, Ontario, Canada) and goat anti-rat IgG2a 

HRP-coupled secondary antibody (1:600; nb7126, LOT P27, Novus Biologicals, Littleton, 

CO, USA). Macrophages were quantified by counting the number of Mac2-positive crown-

like structures per 100 cells. For both UCP-1 and Mac2 stainings, diaminobenzidine (DAB) 

reagent was used for detection and hemalaun was used for staining of nuclei. Epitopes of α-

galactose on endothelial cells in brown adipose tissue were bound by biotinylated isolectin 

B4 (1:100, Vector Laboratories, Burlingame, CA, USA), followed by staining with 

streptavidin-Cy5 (1:50, ZyMax™, Invitrogen™ by Thermo Fisher Scientific, Waltham, MO, 

USA). Nuclei were stained with Roti®-Mount FluorCare DAPI (Carl Roth GmbH & Co 
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KG, Karlsruhe). Validation of primary antibodies provided by/on the manufacturers' 

websites.

Respiration measurements in permeabilized BAT and isolated mitochondria

BAT was removed as described above. Ex vivo mitochondrial function was measured in 

fresh BAT using the Oxygraph-2k (Oroboros Instruments, Austria) as described before46. 

BAT was chemically permeabilized with digitonin. Defined respiratory states were obtained 

by the following protocol: 2 mmol/L malate, 10 mmol/L pyruvate (state 2, complex I), 10 

mmol/L succinate (state 2, complex I+II), 2.5 mmol/L ADP (state 3, complex I+II), 10 

μg/ml oligomycin (state 4o), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone 

(stepwise increments of 0.25 mmol/L up to the final concentration of maximum 1.25 

mmol/L, state u), and 2.5 mmol/L antimycin A. Data were normalized per tissue weight.

Citrate synthase activity (CSA), a marker of mitochondrial density, was assessed 

spectrophotometrically (Citrate Synthase Assay Kit, Sigma-Aldrich, St. Louis, MO, USA) 

and normalized to protein content measured with bicinchoninic acid assay.

To isolate mitochondria from BAT or beige adipose tissue, tissue was sliced in 1 mm thick 

pieces. BAT pieces were resuspended in 10 ml buffer I (0.3 M Sucrose, 10 mM HEPES 

(pH=7.2), 0.2 mM EDTA) and digested with trypsin (f.c. 0.06 mg/ml, Sigma, Deisenhofen, 

Germany, T8003) for 15 min at 4°C. During digestion each sample was further dispersed 

with an ULTRA-TURRAX (5 sec, level 6). After 15 min trypsin reaction was stopped with 5 

ml trypsin-inhibitor (0.02 mg/ml, Sigma, T9128) in buffer II (0.25 M Sucrose, 20 mM 

HEPES (pH=7.4), 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA). Samples were 

centrifuged for 9 min at 800 x g 4°C. The supernatants were transferred into new tubes and 

centrifuged for 15 min at 10.000 x g 4°C. After centrifugation pellets were transferred into 

new tubes and centrifuged again for 5 min at 10.000 x g 4°C. Supernatant was entirely 

removed and resulting pellet was washed twice with buffer II and resuspended in buffer II. 

250 - 500 μg mitochondria were used for respiration measurements with an OROBOROS 2k 

followed by data analysis using DatLab Software (OROBOROS instruments GmbH, 

Innsbruck, Austria) as described previously47. Defined respiratory states were obtained by 

the following protocol: 1 mmol/L malate and 1 mmol/l glutamate, 0.5 mmol/L (state 2 

complex I) ADP (state 3 complex I), 0.4 nmol/L rotenone pyruvate (state 2, complex I),

Ex vivo glucose uptake into isolated mouse adipose cells

Epididymal fat pads were excised and pooled in 4 ml of Krebs Ringer bicarbonate HEPES 

(KRBH) buffer supplemented with 5% bovine serum albumin (BSA) and 2 mg/ml 

collagenase type I (Worthington Biochemical Corporation, Lakewood, NJ, USA). The fat 

pads were minced with scissors, and the suspension was shaken in a water bath at 160 rpm 

for 1 hour at 37° C. The cells were strained through a 400 μm sterile mesh and washed three 

times with KRBH buffer supplemented with 5 % BSA. Thereafter, cells were gently 

resuspended in KRBH buffer supplemented with 5 % BSA to yield a 6% cell suspension for 

the glucose uptake assay. Next, 200 μl of cell suspension was distributed to each vial 

containing 200 μl KRBH buffer supplemented with 5 % BSA with or without insulin and 

was then incubated for 30 minutes at 37° C in a gyratory bath. After the addition of 100 μl 
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hot medium with D-Glucose14C (U) (final concentration, 0.06 μCi/ml), cells were incubated 

for additional 30 minutes at 37°C. Glucose uptake was terminated by transferring 250 μl of 

the cell suspension to 100 μl of dinonyl phthalate (Merck KGaA, Darmstadt, Germany) in a 

microcentrifuge tube. The cells were centrifuged for 10 minutes at 10 000 rpm in the 

microcentrifuge. The cells (top layer) were cut away from the buffer (bottom layer) and 

transferred into scintillation tubes. Radioactivity was determined by scintillation counting. 

Each condition was assayed in five replicates.

An aliquot of the cell suspension from each group was taken before glucose uptake assay, 

and total lipids were extracted from these cells. Therefore, cell suspension was mixed with 

2.7 ml extraction solution (80 % 2-propanol, 20 % N heptane, 2 % sulfuric acid) before the 

addition of 1.2 ml N heptane and 0.8 ml distilled water. Mixture was vortexed and 

centrifuged at 1000 rpm at room temperature for 5 minutes. Next, 1 ml of the organic phase 

was taken to a pre-weighed tube and dried with nitrogen, after which the tube with lipids 

was weighed again and the total lipid weight of the adipocytes was calculated. The counts 

per minute (CPM) values from the uptake assay were finally normalized to the 

corresponding lipid weight.

Cell culture

All results were confirmed in at least 3 independent experiments. The exact number of 

biological replicates is stated in the respective figure legend.

Primary murine preadipocytes—For isolation of murine preadipocytes from stromal 

vascular fraction of BAT, interscapular BAT from 4 – 5 mice was pooled to obtain 0.25 – 0.5 

g of adipose tissue. Tissue was minced to a very fine consistency and digested with 

collagenase I (1000 U/ml) for 90 minutes at 37° C. After centrifugation for 5 minutes at 50 x 

g, the infranatant containing stromal vascular cells was collected and centrifuged for further 

10 minutes at 200 x g. Erythrocyte lysis was performed for 5 minutes at room temperature. 

Afterwards, cell suspension was filtered through a 20 μm nylon mesh and centrifuged in a 

final step for 5 minutes at 200 x g. Pellet was resuspended and cells were seeded at a density 

of 50 000 cells / cm2. Adipogenic differentiation was performed after cells had reached 

confluency. Differentiation of brown adipocytes was induced with 2 μg/ml dexamethasone, 5 

μg/ml insulin, 125 μM indomethacin, 0.5 mM 3-isobutyl-1-methylxanthin (IBMX), 1 nM 

3,3’,5-triiodo-L-thyronine (T3) and 0.5 μM rosiglitazone (all substances obtained from 

Sigma Aldrich, St. Louis, MO, USA). After 2 days, maintenance medium containing 5 

μg/ml insulin and 1 nM T3 was added and henceforth changed every 2 – 3 days. For brown 

adipocyte culture and differentiation, Dulbecco’s modified Eagle’s Medium (DMEM) 

supplemented with 4.5 g/l glucose and 10 % fetal calf serum (FCS; GibcoBRL, Rockville, 

MD, USA) was utilized.

Primary human preadipocytes—For human preadipocytes, the stromal vascular 

fraction was obtained using collagenase digestion from brown adipose tissue from four 

female patients undergoing deep neck surgery (Age: 48, 55, 19, 34 years; procedure: 

hemithyroidectomy, hemithyroidectomy, lymph node excision, lymph node excision, 

respectively). The protocol was reviewed and approved by the ethics committee of 
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Maastricht University Medical Center (METC 10-3-012, NL31367.068.10; 

ClinicalTrials.gov identifier: NCT03111719) and all procedure complied with the relevant 

ethical regulations. Informed consent was obtained before surgery. Inclusion criteria 

included: indication for surgery in the supraclavicular and neck region (more specific 

patients diagnosed with hyperparathyroidism, struma, benign thyroid gland tumours, 

implantation of a vagal neurostimulator for epilepsia and cervical neurologic disorders); in 

the thyroid gland group, euthyroid function. Exclusion criteria were: pre-operatively 

diagnosed malign tumour and patients undergoing acute surgery because of critical illness. 

Collected cells were grown in DMEM/F12 medium supplemented with 10 % FBS and 

antibiotics to confluence before differentiation was initiated. Differentiation was initiated for 

7 days via differentiation medium containing biotin (33 mM), pantothenate (17 mM), insulin 

(100 nM), dexamethasone (100 nM), IBMX (250 mM), rosiglitazone (5 mM), T3 (2 nM), 

and transferrin (10 mg/ml). Cells were transferred to maintenance medium consisting of 

biotin (33 mM), pantothenate (17 mM), insulin (100 nM), dexamethasone (10 nM), T3 (2 

nM), and transferrin (10 mg/ml) until lipid-rich adipocytes had formed. During the entire 

differentiation process, cell media was replaced every other day.

For incubations with 4MU, in vitro differentiated adipocytes were incubated for 24 h with 

the 100 μM 4-MU (4-Methylumbelliferone sodium salt; Sigma Aldrich) in plain 

DMEM/F12 medium. Adipocytes were washed with PBS and harvested in trizol.

Lactate-Assay—After excluding mycoplasma contamination, T37i brown preadipocytes, 

kindly provided by Marc Lombes48, were incubated with 100 μM 4-MU or lactate in the 

indicated concentrations for 24 h as described above. As a positive control cells were 

incubated with the complex I inhibitor rotenone (2 μM; Sigma Aldrich) for 4h. Afterwards, 

cells were harvested and the lactate assay was performed according to the manufacturers 

protocol (Sigma Life Science, St. Louis, MO, USA).

Western blots

For Western blots, 20 mg BAT tissue were homogenized in 200 μl modified RIPA buffer 

(150 mM NaCl, 50 mM Tris/HCl pH 7.4, 1% Nonidet-P40, 0.5% sodium deoxycholate, 

0.1% SDS, 2 mM PMSF). Homogenates were centrifuged at 4°C, 10 000 x g for 10 min. 

The top fat layer was descarded and the lysate was mixed with an equal amount of reducing 

sample buffer. For protein determination 100 mg BAT tissue were lysed in 200 μl RIPA 

buffer (25 mM Tris/HCl, 140 mM NaCl, 1% triton X100, 0,5% SDS, 1 mMEDTA, pH 7,4 1 

mM NaF, 1 mM β-Glycerophosphat, 150 nM Aprotinin, 1 mM PMSF) and mechanical 

disrupted using FastGene Tissue Grinder NG010 (NIPPON Genetics EUROPE) for 15 

seconds. After a centrifugation step (10000 x g, 10 minutes, 4°C) the fat layer was 

discarded. Protein concentration was determined using the BCA Assay Kit (Thermo 

Scientific #23227).

Proteins were separated by SDS-PAGE and transferred to PVDF (polyvinyliden difluoride 

membrane, GE Healthcare Life Sciences) using a semi-dry electrophoretic transfer cell. For 

the western blot of total oxphos SDS-PAGE was performed using a gradient gel (5-20% 

SDS) followed by treansfer to a nitrocellulose membrane using a semi-dry electrophoretic 
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transfer cell, After blocking in Odyssey® Blocking Buffer (TBS) (LI-COR), anti-tyrosine 

hydroxylase antibody (ab112, polyclonal, Lot GR286793-17, Abcam), total OXPHOS 

Rodent WB Antibody Cocktail (Abcam, ab110413), HSL Antibody (Cell Signaling, #4107, 

Lot 3, Danvers, MA, USA) or anti-UCP1 antibody (ab10983, polyclonal, Lot GR249119-7, 

Abcam) were used in a dilution of 1:1,000 at 4° C o/n, anti-β-tubulin I (T7816, clone SAP.

4G5, Lot 025M4776V, Sigma-Aldrich, St. Louis, MO, USA) 1:10,000 at RT for 1 h. 

Immunoblots were visualized by infrared fluorescent-coupled secondary antibodies (Goat 

anti-mouse IRDye® 800CW, 926-32210, LOT C40826-01; Goat anti-rabbit IRDye® 

800CW, 926-32211, LOT C50331-05; Goat anti-mouse IRDye® 680LT, 926-68020 LOT 

C50113-11; all LI-COR Biosciences, Lincoln, NE, USA) allowing fluorescent detection on a 

LI-COR Odyssey infrared imaging system using Odyssey application software version 3.0 

(both LI-COR). Validation of the antibodies is provided by the manufacturer.

RNA analysis

RNA from cells and tissue was isolated with peqGOLD TriFast (PEQLAB Biotechnologie 

GmbH, Erlangen, Germany). RNA concentration and quality was determined via 

photometric measurement at absorbance 260/280 nm (Nanodrop ND1000, PeqLab, 

Erlangen, Germany). 1000 ng of RNA was transcribed into cDNA with the QuantiTect 

Reverse Transcription Kit (Qiagen, Hilden, Germany). For analysis of mRNA expression the 

Applied Biosystems 7300 Real-Time PCR System with the Sequence Detection Software 

Version 1.4 (Applied Biosystems, Foster City, CA, USA) or the StepOnePlus Real-Time 

PCR System with StepOne Software v2.3 and SYBR Green PCR master mix (Life 

Technologies Thermo Fisher Scientific, Waltham, MA, USA) were used. Primers used in 

quantitative real-time polymerase chain reaction (qPCR) were designed with the help of 

Primer3Plus Software (Free Software Foundation, Boston, MA, USA)49 and NCBI Primer 

Blast (National center for biotechnology information, Bethesda, MD, USA)50; respective 

sequences are listed in the Supplementary Table 1 and 2. Quantification of qPCR was 

performed by the ΔΔCq method. All values are normalized to the expression of 18S.

Statistics and Reproducibility

Sample size estimation was based upon our own previous results in comparable studies, 

assuming to achieve 90% power at a significance level of 0.05. If applicable, mice were 

allocated into experimental groups by randomization. Specifications of how many 

independent biological samples/animals were included in the experiment or how many times 

experiments were repeated independently are given in the respective figure legend.

GraphPad Prism 7 software was used for analysis of statistical significance. All data are 

presented as means ± standard error of the mean (SEM), unless otherwise indicated. Values 

identified as outliers by Grubbs’ test (α = 0.05) were excluded from analysis. Sample size 

for each experiment and statistical tests used are indicated in the respective figure legend. 

For comparison of two independent groups unpaired two-tailed Student`s t-tests or Mann-

Whitney test were used. Repeated measurements in the same mouse were analyzed by paired 

Student`s t-tests. Comparison of more than two groups was performed using One-way 

ANOVA with Sidak`s post-hoc test, or Two-way ANOVA with Sidak`s post-hoc test. 

Statistical testing for qPCR results was performed with log-transformed data. Statistical 
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significance was set at the level of P < 0.05. Only significant results are stated in the 

respective figures as exact values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 4-MU prevents diet-induced obesity and increases markers of brown adipose tissue 
(BAT) activation in mice and humans.
(a) Body weight gain of male C57BL/6J mice after start of feeding diabetogenic diet (DD) 

supplemented with or without 4-MU at 8-10 weeks of age; n = 8 (DD),8 (DD 4-MU) mice; 

except week 3 + 4: n = 7,6 mice; week 9 + 10: n = 5,6 mice. (b) Percentage of body fat (n = 

9,8 mice) after 17 weeks of feeding and (c), food intake (FI) per mouse per week during the 

first 11 weeks of feeding; n = 11,11 mice. After 22 weeks of feeding either DD or DD 4-MU 

the following parameters were analyzed: (d) plasma leptin; n = 8,7 biologically independent 
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samples; (e) BAT weight corrected for body weight (BW); and (f) representative images of 

the right BAT lobe from n = 5,5 biologically independent samples. (g) Quantification of 

brown adipocyte area and (h) respective representative H&E staining of BAT from n = 5,6 

biologically independent samples. (i) BAT Ucp1 (n = 6,6 biologically independent samples) 

and Cidea (n = 7,6 biologically independent samples) mRNA expression as determined by 

qPCR. (j) UCP1 protein expression in BAT normalized to β-tubulin; n = 6,6 biologically 

independent samples. (k) Representative images of BAT UCP1 staining after 17 weeks of 

feeding DD or DD 4-MU from n = 6,6 independent biological samples respectively. (l) 
Tyrosin hydroxylase protein expression in BAT normalized to β-tubulin; n = 6,6 biologically 

independent samples. (m) UCP1, CIDEA, and PPARGC1A mRNA expression, as 

determined by qPCR, in human differentiated brown preadipocytes isolated from 4 patients 

(Pat) and treated with 4-MU (100 μM) or respective vehicle (control) for 24 h. Scale bars 

indicate 100 μm (h) and 200 μm (k). Data are presented as means ± s.e.m.. (a) Two-way 

ANOVA with post hoc Sidak`s multiple comparison test; P: DD 4-MU versus DD; (b) 

Mann-Whitney test or (c, d, e, g, i, j, l) two-tailed unpaired Student’s t-test. n.s.: not 

significant.
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Figure 2. 4-MU treatment improves insulin sensitivity.
(a) Intraperitoneal glucose tolerance test performed after 13 weeks of feeding diabetogenic 

diet (DD) supplemented with or without 4-MU in male C57BL/6J mice; n = 7,8. Absolute 

values of blood glucose concentration (left) at 0, 5, 15, 30, 60, and 120 minutes, and 

respective area under the curve (AUC; right) are shown. (b) Insulin tolerance test performed 

after 14 weeks of feeding; n = 8,8 biologically independent samples. Absolute values of 

blood glucose concentration (left) at 0, 15, 30, 60, and 120 minutes, and respective area 

under the curve (AUC; right) are shown. (c) Fasting plasma insulin concentrations measured 

after 22 weeks of feeding; n = 7,6 biologically independent samples. Data are presented as 

means ± s.e.m.. (a, b left) Two-way ANOVA with post hoc Sidak`s multiple comparison 

test, P: DD 4-MU versus DD; (a, b right, c) two-tailed unpaired Student’s t-test.
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Figure 3. 4-MU increases BAT`s thermogenic capacity.
Male, 8-week-old C57BL/6J mice were fed diabetogenic diet (DD) supplemented with or 

without 4-MU (DD 4-MU) for 11 weeks followed by energy expenditure (EE) assessment at 

(a) 21°C and (b) 4°C; n = 13 DD, n = 11 DD 4-MU mice. (c) EE at 21°C and 4°C and (d), 

the delta Δ increase in EE for 21°C versus 4°C corrected for body weight using ANCOVA. 

Data are presented as means ± s.e.m.. Covariates assessed at BW = 36.6 g. n = 13 DD, n = 

11 DD 4-MU mice. (e-g). After 4 weeks of feeding DD supplemented without or with 4-MU 

(DD 4-MU), maximum thermogenic capacity was assessed after injection of 1 mg/kg 

norepinephrine subcutaneously followed by measurement of the EE. Data are presented as 

(e) uncorrected EE, (f) uncorrected EE plotted against body weight, (g) EE corrected for 

body weight by ANCOVA covariates assessed at BW = 26.4 g ± s.e.m.; n = 7 (DD), 8 (DD 

4-MU) mice for thermogenic capacity. Data are presented as means ± s.e.m.. After (h) 11 

weeks of feeding either DD or DD 4-MU, n = 4,4 biologically independent samples, or (i) 
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24 hours of 4-MU treatment, body and BAT weight were measured and BAT protein lysates 

were used to detect UCP1 expression, n = 4,4 biologically independent samples. Total 

amounts of UCP1 protein were calculated per BAT depot according to the calculations 

described by Kalinovich et al., Biochimie 2017. (a, b, f, h, i) linear regression, (c) one-way 

ANOVA with Sidak`s multiple comparison test, (d, g) unpaired Student’s t-test.

Grandoch et al. Page 30

Nat Metab. Author manuscript; available in PMC 2019 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Acute 4-MU treatment increases respiration and mitochondrial complex I activity in 
brown adipose tissue (BAT).
(a) In vivo visualization of β3 agonist CL-316,243 (CL-316; 1 mg/kg intraperitoneal (i.p.); 1 

h)-induced BAT activation by T2 maps (right) calculated from multi-slice multi-echo 

(MSME) magnetic resonance images (MRI, left) from 3 independently repeated experiments 

in C57BL/6J mice at 8-10 weeks of age. (b) Reconstruction of a 3D MR dataset illustrating 

shape and localization of BAT in the mouse torso showing the interconnection of 

interscapular (i.s.) and dorsocervical (d.c.) brown fat depots (cf. Supplementary video) from 
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3 independently repeated experiments. Red borders specify MR slice positionings in (a). (c) 

Quantification of T2 values for white adipose tissue (WAT), BAT, and skeletal muscle before 

and 1 h after CL-316 stimulation; n = 6 mice. (d) Compilation of T2 decrease (ΔT2) in BAT 

after exposure of mice to CL-316, cold (4°C), 4-MU, and the β3 antagonist L-748,337 

(L-748; 100 μg/kg), respectively (n = 6 mice). (e) Decrease in total BAT volume after 24 h 

of 4-MU administration as determined from multi-slice MRI datasets; n = 6 mice. (f) 
Increased mRNA expression of BAT activation markers Ucp1 (n = 6 biologically 

independent samples) and Cidea (n = 5 biologically independent samples) after 24 h of 4-

MU treatment. (g) Ucp1 mRNA expression in BAT from mice treated for 24 h with 4-MU 

alone or in combination with L-748 or respective control; n = 6,7,5 biologically independent 

samples. Complex I respiration was measured in isolated mitochondria from (h) BAT and (j) 
inguinal adipose after 24 h of treatment with 4-MU or respective control using an 

OROBOROS 2k; n = 4 biologically independent samples. Citrate synthase activity (CSA) in 

(i) BAT and (k) inguinal AT was measured as a marker of mitochondrial density (n = 4 

biologically independent samples) after 24 h of treatment with 4-MU or respective control. 

Data are presented as means ± s.e.m. (except (e): means ± s.d.). (c) Paired Student’s t-test, 

(e, f, h, i, j) two-tailed unpaired Student’s t-test or (g) one-way ANOVA with post hoc Sidak

´s multiple comparison test. rot: rotenone.
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Figure 5. 4-MU increases glycolysis and vascularization in brown adipose tissue (BAT).
Increased mRNA expression of (a-f) glycolytic enzymes in BAT of C57BL/6J mice after 24 

h treatment with 4-MU or respective control; n = 5,5 biologically independent samples. (g) 

Mice were treated for 24 h with 4-MU or respective control, followed by detection of 

glucose and lactate concentrations in BAT by high-resolution 1H magnetic resonance (MR) 

spectroscopy; n = 6,8 biologically independent samples (BAT of two mice pooled in each 

sample). (h) Measurement of lactate concentrations in T37i brown preadipocytes after 24 h 

of 4-MU (100 μM) treatment; n = 6,6 biologically independent samples. (i) Ucp1 mRNA 

expression after stimulation of T37i cells with increasing concentrations of lactate for 24 h 

(n = 4 biologically independent samples). Dashed line indicating control level (=1). (j) Vegfa 
mRNA expression in BAT from mice treated for 22 weeks with DD or DD 4-MU; n = 7,6 

biologically independent samples. (k) Quantification and (l) representative pictures of 

isolectin B4 staining of BAT from n = 5,6 biologically independent samples are shown. 

Scale bars indicate 200 μm; Data are presented as means ± s.e.m.. (a-h, j, k) Two-tailed 

unpaired Student’s t-test or (k) Mann-Whitney test. n.s.: not significant.
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Figure 6. Has2/3-double deficient mice resemble the 4-MU-induced metabolic phenotype.
(a) Body weight gain in male Has2/3-double deficient mice (Has2/3-DKO) or respective 

control mice after start of feeding diabetogenic diet (DD), n = 5,8 mice. **P = left 0.003, 

right 0.007, ***P = 0.001, 0.0001, ****P < 0.0001 versus control. (b) Total body fat content 

of Has2/3-DKO after 5 weeks of feeding DD; n = 5,9 mice. (c) Intraperitoneal glucose 

tolerance test performed after 11 weeks of feeding DD; n = 4,9 biologically independent 

samples. Absolute values of blood glucose concentration (left) and respective area under the 

curve (AUC; right) are shown. (d) In vivo visualization of brown adipose tissue (BAT) 

activation of Has2/3-DKO versus respective control mice without BAT activation by T2 

maps (right) calculated from multi-slice multi-echo (MSME) magnetic resonance images 

(MRI, left) from 2 independently repeated experiments. (e) Quantification of T2 values for 

white and brown adipose tissue (WAT, BAT), and skeletal muscle of Has2/3-DKO and 
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respective wildtype control mice; n = 3,3 mice. (f) Decrease in total BAT volume after 11 

weeks of feeding DD as determined from multi-slice MRI datasets interscapular (i.s.) and 

dorsocervical (d.c.) BAT depots; n = 3,3 mice. (g) BAT weight normalized to body weight of 

Has2/3-DKO vs. control mice after 11 weeks of feeding DD; n = 4,9 mice. (h) BAT Ucp1 (n 

= 3,5 biologically independent samples), Cidea (n = 3,6 biologically independent samples), 

and Ppargc1a (n = 3,6 biologically independent samples) mRNA as determined by qPCR. (i) 
Energy expenditure (EE) corrected for BW using ANCOVA. Covariates assessed at BW = 

41.5 g, n = 6,9 mice. Linear regression. (j) Respiratory exchange ratio (RER = V(CO2) / 

V(O2)) during measurement of basal energy expenditure at room temperature after 9 weeks 

of feeding DD; n = 5,9 mice. Data are presented as means ± s.e.m.. (a, c left) Two-way 

ANOVA with post hoc Sidak`s multiple comparison test or (b, c right, e, f, g, h, j) two-tailed 

unpaired Student’s t-test. n.s.: not significant.

Grandoch et al. Page 35

Nat Metab. Author manuscript; available in PMC 2019 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7. Proposed mechanism of action of 4-MU in brown adipose tissue.
Hyaluronan (HA) is synthesized from the UDP-sugar precursors, UDP-glucuronic acid 

(UDP-GlcUA) and UDP-N-acetyl-glucosamine (UDP-GlcNAc) by three HA synthase 

(HAS) isoenzymes, HAS1, -2 and -3. 4-MU inhibits HA synthesis by competing with the 

HA precursors for UDP-glucuronosyltransferase (UGT) thereby changing the intracellular 

substrate flux as indicated by red, dashed arrows. Sugar precursors, which are no longer 

used for HA synthesis, are directed into glycolysis finally leading to increased amounts of 

pyruvate and lactate. Lactate itself increases Ucp1 mRNA expression while pyruvate is 

directed into the mitochondria and utilized by the TCA cycle, providing NADH for the 

mitochondrial respiratory chain, subsequently resulting in increased state 3 respiration of 

complex I. In addition, TCA-derived citrate is used for de novo lipogenesis followed by free 

fatty acid-dependent UCP1 uncoupling.

HA: hyaluronic acid; HAS 1-3: hyaluronan synthase 1-3; UCP: uncoupling protein; GLUT: 

glucose transporter; HK: hexokinase; UDP: Uridine diphosphate glucose; UGT: UDP-

glucuronosyltransferase; UDP-GlcUA: UDP-glucuronic acid dehydrogenase; UDP-GlcNAc: 

uridine diphosphate N-acetylglucosamine; Glucose 6-P: glucose 6-phosphate; Fructose 6-P: 

fructose 6-phosphate; FASN: fatty acid synthase; CoA: coenzyme A; FA: fatty acids; FFA: 

free fatty acids; TG: triacylglycerol; ATP: adenosine triphosphate; ADP: adenosine 

diphosphate; AMP: adenosine monophosphate; Pi: phosphate; NAD: nicotine amide adenine 

dinucleotide; NADH: nicotine amide adenine dinucleotide hydride; TCA: tricarboxylic acid 

cycle.
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