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during primed CRISPR adaptation
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Type | CRISPR-Cas loci provide prokaryotes with a nucleic-acid-based adaptive immunity
against foreign DNA. Immunity involves adaptation, the integration of ~30-bp DNA frag-
ments, termed prespacers, into the CRISPR array as spacers, and interference, the targeted
degradation of DNA containing a protospacer. Interference-driven DNA degradation can be
coupled with primed adaptation, in which spacers are acquired from DNA surrounding the
targeted protospacer. Here we develop a method for strand-specific, high-throughput
sequencing of DNA fragments, FragSeq, and apply this method to identify DNA fragments
accumulated in Escherichia coli cells undergoing robust primed adaptation by a type I-E or type
I-F CRISPR-Cas system. The detected fragments have sequences matching spacers acquired
during primed adaptation and function as spacer precursors when introduced exogenously
into cells by transformation. The identified prespacers contain a characteristic asymmetrical
structure that we propose is a key determinant of integration into the CRISPR array in an
orientation that confers immunity.
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ARTICLE

RISPR interference in the Escherichia coli type I-E sys-

tem is performed by the Cascade complex, composed of

a crRNA and several Cas proteins!~3. Initial binding of
Cascade to a protospacer flanked by a 3-bp protospacer adja-
cent motif (PAM)* results in the formation of an R-loop con-
taining an RNA-DNA heteroduplex formed between the
crRNA and target strand, and extrusion of single-stranded
DNA derived from the nontarget strand?°-10. Cas3, a single-
stranded nuclease and 3’-5" helicase, is recruited to the
Cascade—protospacer complex and cleaves the nontarget strand
to initiate unwinding and degradation of the targeted
DNA®I0IL In vitro, Cas3 can translocate on DNA as a com-
ponent of a larger complex that includes Cascade and the key
proteins of CRISPR adaptation, Casl and Cas2 2.

CRISPR adaptation in the E. coli I-E system is mediated by a
Casl-Cas2 complex that can facilitate spacer acquisition in the
absence of interference, a process termed naive adaptation!3-16,
The Casl-Cas2 complex incorporates synthetic double-stranded
DNA fragments associated with consensus 5'-AAG-3'/3'-TTC-5’
PAM (PAMAAG) into the CRISPR array in orientation dictated
by the PAM sequence and conferring immunity!”. However, the
state of the natural prespacers captured by Cas1-Cas2 in cells and
the mechanism ensuring integration of a prespacer in a specific
orientation remains unknown.

In primed CRISPR adaptation, interference-driven DNA
degradation initiated at a priming protospacer (PPS) is coupled
with acquisition of spacers from DNA in the PPS region!8-20.
One hallmark of primed adaptation is that nearly all PPS-region
sequences from which spacers are acquired contain a consensus
PAMAAGI8-20 A second hallmark of primed adaptation is that
spacer acquisition occurs in a Dbidirectional, orientation-
dependent manner relative to the PAM of the PPS. In parti-
cular, the non-transcribed strand of spacers acquired from the
PAM-proximal region (upstream) or PAM-distal region (down-
stream) is derived from the nontarget strand or target strand,
respectively?l. Available in vivo models of primed adaptation that
contain a plasmid-borne PPS or phage-borne PPS are limited due
to difficulties in detecting bidirectional spacer acquisition or by
high rates of cell lysis!®!1921, In particular, analysis of spacer
acquisition from circular targets, especially small plasmids, is
complicated due to overlapping gradients of protospacers located
both upstream and downstream of the PPS!81921  Use of long
linear PPS-containing phage genomes imposes difficulties asso-
ciated with phage biology such as the inability to detect adapta-
tion for some phages or high rates of cell lysis caused by the
others?l.

Here we construct a robust in vivo model for primed adapta-
tion consisting of an E. coli type I-E CRISPR-Cas self-targeting
locus encoding a crRNA that targets a chromosomal protospacer.
We develop a strand-specific, high-throughput sequencing
method for analysis of DNA fragments, FragSeq, and use this
method to detect short fragments derived from the DNA sur-
rounding the targeted protospacer. The detected fragments have
sequences matching spacers acquired during primed adaptation,
contain ~3- to 4-nt overhangs derived from excision of genomic
DNA within a PAM, are generated in a bidirectional, orientation-
dependent manner relative to the targeted protospacer, require
the functional integrity of machinery for interference and adap-
tation to accumulate, and function as spacer precursors when
introduced exogenously into cells by transformation. DNA frag-
ments with a similar structure accumulate in cells undergoing
primed adaptation in a type I-F CRISPR-Cas self-targeting sys-
tem. We propose that the asymmetrical structure of the spacer
precursors detected in this work is a key determinant of spacer
integration into the CRISPR array in orientation conferring
immunity.

Results

Type I-E self-targeting leads to robust primed adaptation. To
overcome limitations of primed adaptation systems with plasmid-
borne PPS or phage-borne PPS, we constructed a derivative of E.
coli K12 with a type I-E CRISPR-Cas locus containing a spacer,
SpYihN, encoding a crRNA targeting a chromosomal protospacer
in the non-essential gene yihN (Fig. 1a; Supplementary Table 1).
Induction of cas gene expression in self-targeting cells leads to
inhibition of cell growth accompanied by an increase in cell
length (Fig. 1b). Furthermore, analysis of chromosomal DNA by
high-throughput sequencing shows that induction of cas gene
expression causes a dramatic loss of ~300kb of chromosomal
DNA in the PPS region (Fig. 1lc, Supplementary Fig. 1a, b, Sup-
plementary Table 2). Loss of PPS-region DNA is also observed in
cells containing a catalytically inactive Casl variant (Cas1H2084)
22 but is not observed in cells containing a nuclease-deficient Cas3
variant (Cas3H744)10 or cells in which Sp¥N is replaced by a
spacer targeting M13 phage (SpM13)? (Supplementary Fig. 1a,
Supplementary Table 3). Similar results are obtained using
methods for analysis of double-stranded or single-stranded DNA
(Supplementary Fig. 1b, Supplementary Table 2), indicating that
interference-driven degradation of both the target and nontarget
strands occurs in the self-targeting strain. The results establish
that induction of cas gene expression results in interference-
driven degradation of PPS-region DNA in the type I-E
CRISPR-Cas self-targeting system.

To determine whether interference-driven degradation of PPS-
region DNA is coupled with spacer acquisition from PPS-region
sequences, we analyzed CRISPR arrays by PCR (Fig. 1d). Results
indicate that ~20% of arrays acquire a spacer in cells in which cas
gene expression is induced, while no spacer acquisition is detected
in cells in which cas gene expression is not induced (Fig. 1d).
Furthermore, no spacer acquisition is detected in cells in which
SpYPN s replaced by SpM!3 (Fig. 1d), indicating that spacer
acquisition requires interference-driven degradation of PPS-
region DNA. High-throughput sequencing analysis of amplicons
derived from arrays that have acquired a spacer indicate that the
self-targeting system exhibits the defining hallmarks of primed
adaptation. In particular, >95% of spacers are acquired from a
PAMAAG_containing protospacer in the PPS region and,
furthermore, spacer acquisition occurs in a bidirectional,
orientation-dependent manner characteristic of the E. coli I-E
system?! (Fig. le, Supplementary Tables 4, 5). We conclude that
the type I-E CRISPR-Cas self-targeting strain provides a robust
in vivo model system for primed adaptation.

FragSeq detects PPS-region-derived fragments. It has been
proposed that interference-driven DNA degradation produces
fragments that serve as spacer precursors in primed
adaptation!®23, To test this model, we developed a method for
strand-specific, high-throughput sequencing of DNA fragments,
FragSeq. To perform FragSeq, we isolated genomic DNA frag-
ments <700 bp in length, denatured the fragments, ligated single-
stranded adapters to the 5 and 3’ ends of the fragments,
amplified the ligation products by PCR, and analyzed the
sequences of the fragments by high-throughput sequencing.
Because the library construction steps in FragSeq do not involve
tailing—i.e,, the addition of non-templated nucleotides onto
fragment ends—the 5'- and 3’-end sequences of the fragments
can be identified with single-nucleotide resolution. We applied
FragSeq to identify products of degradation in self-targeting cells
undergoing primed adaptation (Fig. 2a, Supplementary Figs. 2-4,
Supplementary Tables 6-12 and Methods). Results show accu-
mulation of fragments derived from PPS-region DNA in wild-
type cells but not in cells containing inactive variants of Casl or
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Fig. 1 Interference-driven DNA degradation coupled with spacer acquisition in a type I-E self-targeting system. a Type I-E self-targeting system. Shaded
oval, E. coli cell; gray line, chromosome; orange, tan, blue, and green pentagons, cas genes; brown rectangle, CRISPR-array leader sequence; gray diamonds,
repeats; purple rectangle, spacer targeting yihN (SpY'hN); lacUV5 and araB8p, promoters; mauve pentagon, yihN: PPS, priming protospacer within yihN; blue
line, nontarget strand; red line, target strand; black line, crRNA. b Effect of self-targeting on cell growth. Growth curve for cultures in which cas gene
expression is induced (ON) or not induced (OFF). Green, viable cells; red, non-viable cells; scale bar, 20 um. Boxplot: the central line, median; hinges, the
first and third quartiles; whiskers, 1.5 x IQR; n =125. ¢ Effect of self-targeting on genomic DNA content. oriC, site of replication origin; terA and terC, sites of
replication termination; dot, coverage per 1kb; red line, Loess smoothing; pink shading, 99% confidence interval. d Effect of self-targeting on spacer
acquisition: PCR. Schematics depict an extended array containing SpYi"N and acquired spacer Sp*, a nonextended array containing SpYN, or an array
containing a spacer targeting M13 phage (SpM13). Blue line, non-transcribed strand of Sp¥ihN: red line, transcribed strand of SpYihN (directs synthesis of
crRNA); R, repeats. Arrows below arrays represent the positions of primers used in PCR; sizes of PCR amplicons are indicated. Results show PCR analysis
of cells containing an array with Sp¥ihN or SpM13. M, double-stranded DNA marker. e Effect of self-targeting on spacer acquisition: high-throughput
sequencing analysis. Top, extended arrays with spacers acquired from PPS-region protospacers. Bottom, results. SpNT, spacer with non-transcribed strand
derived from nontarget strand (NT, blue) and transcribed strand derived from target strand (T, red); Sp', spacer with non-transcribed strand derived from
target strand (T, red) and transcribed strand derived from nontarget strand (NT, blue). PSNT, protospacer for SpNT; PST, protospacer for SpT. Plot shows

percentage of spacers per 1kb derived from PSNT (blue) or PST (red). Mean of three biological replicates is shown. Source data are provided as a Source

Data file

Cas3, or cells in which SpYN is replaced by SpM!3 (Fig. 2a,
Supplementary Fig. 3a, Supplementary Table 7). Thus, accumu-
lation of PPS-region-derived fragments in cells undergoing
primed adaptation requires the functional integrity of both
interference and adaptation.

Analysis of length distributions of the PPS-region-derived
fragments indicates that they are produced in a bidirectional,
orientation-dependent manner reminiscent of spacer acquisition
(Fig. 2b). The most abundant nontarget-strand fragments
(FragNT) and target-strand fragments (Fragl) emanating from
the PAM-proximal region of the PPS (upstream) are 32- to 34-nt
and 36- to 38-nt, respectively, and the most abundant FragN" and
Fragl emanating from the PAM-distal region of the PPS
(downstream) are 36- to 38-nt and 32- to 34-nt, respectively

(Fig. 2b). In addition, the relative abundance of complementary
32- to 34-nt and 36- to 38-nt fragments shows a positive
correlation (Pearson correlation coefficient 0.48, Supplementary
Table 11), suggesting that the fragments identified by FragSeq
represent individual strands of double-stranded DNA products
having lengths similar to that of spacers (~30 bp). Alignments of
the chromosomal sequences associated with the 5" or 3’ ends of
complementary fragments reveals the presence of a consensus 5’-
AAG-3'/3'-TTC-5" PAM derived from sequences associated with
the 5" ends of 32- to 34-nt fragments and the 3’ ends of 36- to 38-
nt fragments (Fig. 2c, Supplementary Tables 9, 10). Thus, the
results of FragSeq suggest that cells undergoing primed adapta-
tion accumulate 33- or 34-bp double-stranded DNA fragments
containing a 3’ end, 4- or 3-nt overhang derived from excision of
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Fig. 2 FragSeq detection of DNA fragments in cells with the type I-E self-targeting system. a Effect of self-targeting on PPS-region DNA fragment
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a PAM-containing sequence (Fig. 2c). Furthermore, the relative
abundance of these fragments and spacers acquired during
primed adaptation that have an identical sequence shows a
positive correlation (Pearson correlation coefficient 0.5-0.6,
Supplementary Table 12). Accordingly, the results strongly
suggest the fragments accumulating in cells undergoing primed
adaptation are products of an intermediate step between
protospacer selection and spacer integration.

PPS-region-derived fragments function as prespacers. To
directly test whether the PPS-region-derived fragments detected
by FragSeq serve as substrates for spacer integration, we per-
formed a prespacer efficiency assay!” (Fig. 3a). We tested syn-
thetic mimics corresponding to the most abundant PPS-region-
derived fragments (Fig. 3b, Supplementary Tables 13-16). Results
show that 33- or 34-bp synthetic mimics containing a 3'-end, 4-
or 3-nt overhang on the PAM-derived end, respectively, and a
blunt PAM-distal end were integrated into arrays with an effi-
ciency similar to a control fragment containing a consensus
PAMAAG (~10% prespacer efficiency; Fig. 3b, Supplementary
Tables 14, 15). In addition, the synthetic mimics and PAMAAG-
containing control fragment were integrated in a direct orienta-
tion with the G:C of the PAM positioned adjacent to the first
repeat in the array (Fig. 3, Supplementary Table 15). Introduction
of a 5'-end, 1-nt overhang on the PAM-distal end reduced pre-
spacer efficiency by ~45-fold (Fig. 3b, Supplementary Table 15).
The results establish that PPS-region-derived fragments con-
taining a 3’-end overhang on the PAM-derived end and blunt
PAM-distal end function as efficient spacer precursors.

Prespacers in I-E and I-F systems exhibit similar structures. In
a prior work, we developed an E. coli strain that provides a model
system for studies of self-targeting by the type I-F CRISPR-Cas
system from Pseudomonas aeruginosa®* (Fig. 4a). Compared with
the orientation bias in spacer acquisition observed in type I-E
systems, orientation bias in type I-F systems is reversed. In par-
ticular, the non-transcribed strand of spacers acquired from the
PAM-proximal region of the PPS (upstream) or PAM-distal

region of the PPS (downstream) are derived from the target
strand or nontarget strand, respectively in type I-F. To determine
whether spacer precursors could be detected in the type I-F
system, we performed FragSeq analysis in cells undergoing
primed adaptation (Fig. 4b, Supplementary Tables 17-21).
Similar to the type I-E system, we detect accumulation of spacer-
sized double-stranded DNA fragments containing a 3’-end, 5-nt
overhang on the PAM-derived end (Fig. 4b). Thus, in spite of
exhibiting opposite orientation bias in spacer acquisition, primed
adaptation in type I-E and type I-F systems involves generation of
spacer precursors with a similar structure (Fig. 4c).

Discussion

In summary, we have identified spacer precursors produced as
products of an intermediate step (or steps) between protospacer
selection and spacer integration for type I-E and type I-F
CRISPR-Cas systems. Accumulation of spacer precursors in the
type I-E system requires the functional integrity of components of
interference and adaptation (Fig. 5) indicating that protospacer
selection involves coordination between the interference
machinery and adaptation machinery (Fig. 5a). Strikingly, spacer
precursors detected during primed adaptation in both type I-E
and type I-F systems share an asymmetrical structure character-
ized by a 3’-end overhang on the PAM-derived end. Thus, we
propose that spacer precursors detected in this work are products
generated during universal steps of prespacer processing in type I
CRISPR-Cas systems relying on Casl and Cas2 and lacking
auxiliary adaptation proteins. We further propose that the
asymmetrical structure of the spacer precursors detected in this
work is a key determinant of the sequential integration of pre-
spacers into the CRISPR array (Fig. 5b). In addition, the FragSeq
method reported in this work should be applicable, essentially
without modification, to identify spacer precursors that form
in vivo in any CRISPR-Cas system.

Methods

Bacterial strains and plasmids. The E. coli strains used in this study are listed in
Supplementary Table 1. Red recombinase-mediated gene-replacement technique
was used to obtain strains KD403, KD518 and KD753%°.
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Plasmid pCasl + 2 for the expression of type I-E casl and cas2 genes as well as
plasmids pCas and pCsy for expression type I-F cas and csy genes were described
earlier!324,

Growth conditions. For analysis of CRISPR-mediated self-targeting by the type I-E
system, overnight culture of KD403 strain grown at 37 °C in LB medium was
diluted 100-fold into 10 ml of fresh LB and incubated at 37 °C until ODgq, reached
0.3. The culture was divided into two portions, cas genes inducers, IPTG and L-
(+)-arabinose were added at 1 mM concentration to one portion, and cultures with
and without inducers were incubated at 37 °C for 7 h. At various time points

postinduction, the cells were plated with serial dilutions on 1.5% LB agar plates for
counting colony forming units (CFUs) or were monitored using fluorescent
microscopy.

In assays using strains KD403, KD518, KD753 and KD263 that were followed
by sequencing of total genomic DNA, short DNA fragments or newly acquired
spacers, similar conditions of culture growth and cas genes induction were applied,
except that overnight cultures were diluted 100-fold in 100 ml of LB and grown at
30 °C. Five hours postinduction, 10 ml of cells were pelleted by centrifugation at
3000xg for 5 min at 4 °C, washed with 10 ml of PBS, pelleted by centrifugation at
3000xg for 5 min at 4 °C and resuspended in 1 ml of PBS. The cells were divided
into 125-pl aliquots and stored at —70 °C before they were used for DNA isolation.

For analysis of short DNA fragments generated during self-targeting by the type
I-F system, cultures of strain KD675 transformed with plasmids pCas and pCsy
were grown at 37 °C in LB supplemented with 100 pg/ml ampicillin and 50 ug/ml
spectinomycin. Overnight cultures were diluted 200-fold into 10 ml of LB without
antibiotics, grown at 37 °C until ODgq, reached 0.3 and supplemented with 1 mM
IPTG and 1mM L-(+)-arabinose. The cells were harvested 24 h postinduction and
prepared for DNA isolation as described above for strains KD403, KD518, KD753
and KD263.

Fluorescence microscopy. Cultures grown with or without induction of cas gene
expression were analyzed using a LIVE/DEAD viability kit (Thermo Scientific) at 5
h after induction. Viable cells in each culture were detected by addition of 20 uM
SYTOY, green fluorescent dye that can penetrate through intact cell membranes.
Non-viable cells in each culture were detected by addition of 20 uM propidium
iodide dye, which cannot enter viable cells. Sample chambers were made using a
microscope slide (Menzel-Glaser) with two strips on the upper and lower edges
formed by double-sided sticky tape (Scotch TM). To obtain a flat substrate required
for high-quality visualization of bacteria, a 1.5% agarose solution was placed
between tape strips and covered with another microscopic slide. After solidification
of the agarose, the upper slide was removed and several agarose pads were formed;
1 pl of each cell suspension (with and without induction) was placed on an agarose
pad. The microscopic chamber was sealed using a coverslip (24 x 24 mm,
Menzel-Gliser).

Fluorescence microscopy was performed using Zeiss Axiolmager.Z1 upright
microscope. Fluorescence signals in green (living cells) and red (dead cells)
fluorescent channels were detected using Zeiss Filter Set 10 and Semrock mCherry-
40LP filter set, respectively. Fluorescent images of self-targeting cells were obtained
using Cascade I1:1024 back-illuminated EMCCD camera (Photometrics). The
microscope was controlled using AxioVision Microscopy Software (Zeiss). All
image analysis was performed using ImageJ (Fiji) with Object] plugin used for
measurements of cell length26.

High-throughput sequencing of total genomic DNA. Total genomic DNA was
purified by GeneJET Genomic DNA Purification Kit (Thermo Fisher Scientific).
Sequencing libraries were prepared either by NEBNext® Ultra™ II DNA Library
Prep Kit for Illumina (NEB) or by Accel-NGS® 1S Plus DNA Library Kit (Swift
Biosciences) and sequenced on a NextSeq 500 platform.

Raw reads were analyzed in R with ShortRead and Biostrings packages®’. Reads
with no more than two bases with quality <20 were mapped to the KD403
reference genome using Unipro UGENE platform?8. Bowtie2 was used as a tool for
alignment with end-to-end alignment mode and 1 mismatch allowed?®. The BAM
files were analyzed by Rsamtools package and reads with the MAPQ score equal to
42 were selected and used for downstream coverage analysis®’. Mean coverage over
non-overlapping 1 kb bins was calculated and normalized to the total coverage (the
sum of means).

High-throughput sequencing of newly acquired spacers. Cell lysates were
prepared by resuspending cells in water and heating at 95 °C for 5 min. Cell debris
was removed from lysates by centrifugation at 16xg for 1 min. For the analysis of
spacer acquisition in strains KD263 and KD403, lysates were used in PCR reactions
containing primers LDR-F2 (ATGCTTTAAGAACAAATGTATACTTTTAG) and
Ec_minR (CGAAGGCGTCTTGATGGGTTTG) (25 cycles, T, =52°C) (Supple-
mentary Table 22). Reaction products were separated by agarose gel electrophoresis
(Fig. 1d; the uncropped image of the gel is available in the Source Data file). To
obtain amplicons derived from extended CRISPR arrays in strain KD403, PCR
reactions were performed using primers LDR-F2 (ATGCTTTAAGAACAAATGT
ATACTTTTAG) and autoSp2_R (AATAGCGAACAACAAGGTCGGTTG) (30
cycles, T, = 52 °C) (Supplementary Table 22). Reaction products were separated by
agarose gel electrophoresis, and the amplicon derived from the extended array was
purified from the gel using a GeneJET Extraction Kit (Thermo Fisher Scientific)
and sequenced on a NextSeq 500 system.

Bioinformatic analysis was performed in R using ShortRead and Biostrings
packages?”. Bases with quality <20 were substituted with N and spacer sequences
were extracted from the reads containing two or more CRISPR repeats. Spacers of
length 33 bp were mapped to the KD403 genome to identify 33-bp protospacer
sequences with 0 mismatches. Spacers that aligned to a single position in the
chromosome were used to determine protospacer distribution along the genome.

6 | (2019)10:4603 | https://doi.org/10.1038/s41467-019-12417-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12417-w

ARTICLE

a Spacer precursor generation

Cas3

CRISPR array

b PAM-dependent
spacer precursor integration

NNNNCTTNN

@Oy

Koy

Qo

KoY

Fig. 5 Model of primed adaptation in type I-E CRISPR-Cas systems. a Generation of spacer precursors involves coordination between interference and
adaptation. Pathway on left depicts direct coordination between interference and adaptation in which Cas1-Cas2 associates with Cas3 as it moves along
DNA1234, pathway on right depicts indirect coordination between interference and adaptation in which Cas1-Cas2 captures products of Cas3-mediated
DNA degradation'®23. Both pathways generate spacer precursors containing a 3'-end overhang on the PAM-derived end and blunt PAM-distal end. Model
depicts rapid degradation of DNA not selected as a spacer precursor by Cas3 and an unknown nuclease (brown). Binding of prespacers to Cas1-Cas2
prevents prespacer degradation. b Sequential integration of spacer precursors. First, binding of IHF to the leader stimulates integration of the blunt PAM-
distal end between the leader and first repeat sequence3®. Second, the 3’-overhang present on the PAM-derived end is cleaved by Cas13¢ or DnaQ
exonucleases37:38 facilitating integration between the first repeat sequence and first spacer of the array. The order of events depicted results in integration
of the spacer precursor in a direct orientation with respect to the PAM (see Fig. 3a)

Spacers arising from protospacers due to potential slippage or flippage were
removed from analysis’! (Supplementary Tables 4, 5).

Prespacer efficiency assay. Prespacer efficiency assay was performed according
to the following protocol!’. Overnight culture of BL21-AI cells containing a
plasmid pCasl + 2 was diluted 30-fold into 9 ml of LB supplemented with 50 pg/ml
streptomycin, 13 mM L-(+)-arabinose and 1 mM IPTG and grown at 37 °C for 2 h.
Cells were harvested by centrifugation at +4 °C (1 ml of cells per transformation),
washed twice with cold water and resuspended in 50 pl of a solution containing
3.125 uM complementary oligonucleotides (Supplementary Table 13). Electro-
poration was carried out in a 1-mm gap cuvette at a voltage of 1.8 kV. 3 ml of LB
supplemented with 50 pg/ml streptomycin was added to the electroporated cells
and the cultures were incubated at 37 °C during 2 h. Lysates of cell cultures were
prepared and used in PCR reactions containing a primer BLCRdir complementary
to the leader sequence (GGTAGATTGTGACTGGCTTAAAAAATC) and a primer
BLCRreverse complementary to the preexisting spacer in the array
(GTTTGAGCGATGATATTTGTGCTC), respectively (Supplementary Table 22).
Amplicons corresponding to extended and nonextended CRISPR arrays were
isolated using GeneJET PCR Purification Kit (ThermoFisher Scientifc) and
sequenced on a NextSeq 500 platform. Bioinformatic analysis was performed in R
using ShortRead and Biostrings packages?’. Reads containing the bases with Phred
quality <14 were removed from analysis and reads containing at least one CRISPR
repeat were further analyzed. Newly acquired spacers were extracted from the
expanded reads and mapped to the genome, plasmid and transforming oligonu-
cleotide sequence with two mismatches allowed; 33-bp oligo-derived spacers that
were cut between AA and G before integration were considered as properly pro-
cessed. For simplicity, only properly processed oligo-derived spacers inserted into
the CRISPR array in direct (GCCCAATTTACTACTCGTTCTGGTGTTTCTCGT)
or reverse (ACGAGAAACACCAGAACGAGTAGTAAATTGGGC) orientation
were included into analysis.

Isolation of DNA fragments generated in vivo. Total genomic DNA was isolated
from cultures of strains KD403, KD518, KD753, KD263 and KD675 by collecting
1.25 ml of cell suspensions by centrifugation, resuspending cells in 125 ul of PBS,
adding 2 ml of lysis buffer (0.6% SDS, 12 pg/ml proteinase K in 1x TE buffer) and
incubating at 55 °C for 1 h. Two milliliters of phenol:chloroform:isoamyl alcohol
(25:24:1) (pH 8) was added to the lysate, the solution was gently mixed, and the

aqueous and organic phases separated by centrifugation at 7000xg for 10 min at
room temperature. The upper aqueous phase containing total genomic DNA was
collected and the residual phenol was removed by the addition of 2 ml of
chloroform:isoamyl alcohol (24:1). The solution was gently mixed, centrifuged at
7000xg for 10 min at room temperature. The upper DNA-containing fraction was
transferred to a fresh tube; 0.2 M NaCl, 15 ug/ml of Glycoblue (Invitrogen) and two
volumes of cold 100% ethanol were added, and the solution was incubated at —80 °
C overnight. Precipitated DNA was recovered by centrifugation at 21,000xg for 30
min at 4 °C. Pellets were washed twice with 80% ethanol, resuspended in 200 pl of
1x TE buffer, and treated with 1 mg/ml RNase A at 37 °C for 30 min to remove the
residual RNA. DNA was isolated by phenol:chloroform:isoamyl alcohol extraction
and ethanol precipitation as described above.

DNA fragments <700 bp in length were isolated from 9 pg of total genomic
DNA using a Select-a-Size DNA Clean & Concentrator kit (Zymo Research)
according to manufacturer’s recommendations. To ensure the binding of fragments
<50 bp to the column filter, the volume of 100% ethanol added to the fraction prior
to on-filter purification was increased from 290 pl to 600 ul. DNA fragments were
eluted with 2 x 50 pl of elution buffer, pooled and purified by ethanol precipitation.
A total of 100 pl of DNA was mixed with 10 pl of 3 M NaOAc (0.1xV), 1 ul of 10
mg/ml glycogen (0.01xV) and 330 pl of 100% ethanol, vortexed, and incubated
overnight at —80 °C. DNA was recovered by centrifugation at 21,000xg for 30 min
at 4 °C. Pellets were washed three times with 80% cold ethanol, air dried for ~5
min, and resuspended in 5 pl of nuclease-free water.

High-throughput sequencing of DNA fragments: FragSeq. The DNA oligo i116
that served as a 3’ adapter was adenylated using 5' DNA Adenylation Kit (NEB),
purified by ethanol precipitation as above and diluted to 10 uM with nuclease-free
water (Supplementary Table 23).

DNA fragments <700 bp (in 5 pl of water) were heat-denatured at 95 °C for 5
min, cooled to 65 °C, and mixed with 0.5 uM adenylated oligo 1116, 1x NEBuffer 1,
5mM MnCl, and 10 pmol of thermostable 5 App DNA/RNA ligase (NEB) in 10-
ul reaction volume. The mixture was incubated at 65 °C for 1 h, heated at 90 °C for
3 min, and cooled to 4 °C on ice. Ligated products were combined with 1x T4 RNA
ligase buffer, 12% PEG 8000, 10 mM DTT, 60 pg/ml BSA and 10 U of T4 RNA
ligase 1 (NEB) in a 25-pl reaction volume. The reaction was incubated at 16 °C for
16 h; 25 ul of 2x loading dye was added, and the products were separated by
electrophoresis on 10% 7 M urea slab gels (equilibrated and run in 1x TBE buffer).
The gel was stained with SYBR Gold nucleic acid gel stain, bands were visualized
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on a UV transilluminator, and products of ~40 to ~500 nt were excised from the
gel and recovered as described in Vvedenskaya et al.32. Briefly, the excised gel slice
was crushed, 400 pl of 0.3 M NaCl in 1x TE buffer was added, and the mixture
incubated at 70 °C for 10 min. The eluate was collected using a Spin-X column.
After the first elution step, the elution procedure was repeated, eluates were pooled,
and DNA was isolated by ethanol precipitation and resuspended in 15 pl of
nuclease-free water.

Next, the 3’ adapter-ligated DNA fragments were adenylated using 5 DNA
Adenylation Kit (NEB) in a 20-pl reaction following the manufacturer’s
recommendations. Nuclease-free water was added to 100 ul, DNA fragments
were purified by ethanol precipitation and resuspended in 5 pl of nuclease-free
water. The two-step ligation procedure described above was repeated using 5 ul
of adenylated 3’-ligated DNA fragments, 0.5 uM of barcoded oligos i112, i113,
i114 or i115 that served as 5’ adapters (barcodes were used as internal controls;
Supplementary Table 23), 10 pmol of thermostable 5° App DNA/RNA ligase at
the first ligation step, and 10 U of T4 RNA ligase 1 at the second ligation step.
Reactions were stopped by addition of 25 pl of 2x loading dye, and the products
were separated by electrophoresis on 10% 7 M urea slab gels (equilibrated and
run in 1x TBE buffer). DNA products of ~70 to ~500 nt in size were excised and
eluted from the gel as described above, isolated by ethanol precipitation, and
resuspended in 20 ul of nuclease-free water.

To amplify DNA, 2-8 pl of adapter-ligated DNA fragments were added to a
mixture containing 1x Phusion HF reaction buffer, 0.2 mM dNTPs, 0.25 uM
Ilumina RP1 primer, 0.25 uM Illumina index primer and 0.02 U/pl Phusion
HF polymerase in a 30-pl reaction (Supplementary Table 24). PCR was
performed with an initial denaturation step of 30 s at 98 °C, amplification for
15 cycles (denaturation for 10 s at 98 °C, annealing for 20 s at 62 °C and
extension for 15s at 72 °C), and a final extension for 5 min at 72 °C. Amplicons
were isolated by electrophoresis using a non-denaturing 10% slab gel
(equilibrated and run in 1x TBE). The gel was stained with SYBR Gold nucleic
acid gel stain and species of ~150 to ~300 bp were excised. DNA products were
eluted from the gel with 600 ul of 0.3 M NaCl in 1x TE buffer at 37 °C for 3 h,
purified by ethanol precipitation, and resuspended in 25 pl of nuclease-free
water. Barcoded libraries were sequenced on Illumina NextSeq 500 platform in
high output mode.

Bioinformatic analysis was performed in R using ShortRead and Biostrings
packages?”. Bases with quality <20 were substituted with N. After adapter
trimming, all reads were compared to each other to reveal clusters of overamplified
reads containing the same insert and combination of unique molecular identifiers
conjugated to adapters. For each cluster, a consensus sequence was extracted and
used together with non-overamplified reads for further alignment to KD403
reference genome with two mismatches allowed. Only reads with a length 16-100
nt uniquely aligned to the genome were further analyzed (Supplementary Fig. 4).
Logos were generated using ggseqlogo package33.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

A reporting summary for this Article is available as a Supplementary Information file.
Raw sequencing data obtained in this study are available in Sequence Read Archive
(BioProject Accession: PRINA552808). The source data underlying Figs. 1b, d, e, 2a, b, 3b
and Supplementary Figs. 1a and 3a are provided as a Source Data file. All data are
available from the corresponding author upon reasonable request.

Code availability
Custom code and information about software used in this study is available at GitHub
(https://github.com/AnnaBioLogic/Shiriaeva_et_al_2019).
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