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Abstract

Eukaryotic transcription factors (TFs) from the same structural family tend to bind similar DNA 

sequences, despite the ability of these TFs to execute distinct functions in vivo. The cell partly 

resolves this specificity paradox through combinatorial strategies and the use of low-affinity 

binding sites, which are better able to distinguish between similar TFs. However, because these 

sites have low affinity, it is challenging to understand how TFs recognize them in vivo. Here, we 

summarize recent findings and technological advancements that allow for the quantification and 

mechanistic interpretation of TF recognition across a wide range of affinities. We propose a model 

that integrates insights from the fields of genetics and cell biology to provide further conceptual 

understanding of TF binding specificity. We argue that in eukaryotes, target specificity is driven by 

an inhomogeneous 3D nuclear distribution of TFs and by variation in DNA binding affinity such 

that locally elevated TF concentration allows low-affinity binding sites to be functional.
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INTRODUCTION

The study of gene regulation by transcription factors (TFs) dates back more than half a 

century, to the pioneering work by Jacob & Monod (1961), the isolation of Escherichia coli 
and phage repressors (Gilbert & Muller-Hill 1966, Ptashne 1967a), and the subsequent 

realization that these proteins bind DNA at specific sites (Gilbert & Maxam 1973, Ptashne 
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1967b). This last discovery raised a new fundamental question: How do these repressors 

recognize and bind to a specific stretch of DNA from among the millions of possible sites in 

the E. coli genome? Early X-ray crystallography structures for the Lac and λ repressors 

(Anderson et al. 1981, Ohlendorf et al. 1982, Steitz et al. 1982) suggested that TFs primarily 

recognize DNA sequences by forming hydrogen bonds with base pairs in the DNA major 

groove. Initially, it seemed that simple rules might predict which DNA sequences are bound 

by any TF (Pabo & Sauer 1984). However, with more structures solved, it became apparent 

that TFs use a variety of structural mechanisms to recognize DNA (Garvie & Wolberger 

2001, Luscombe et al. 2001) and that a simple DNA recognition code might not exist (Pabo 

& Sauer 1992, Slattery et al. 2014).

TFs can be grouped into distinct structural families on the basis of their DNA binding 

domains (DBDs). In eukaryotes, the largest of these are the zinc finger (ZF), homeodomain 

(HD), basic leucine zipper (bZIP), and basic helix-loop-helix (bHLH) families (Lambert et 

al. 2018). With the exception of ZF proteins, TF paralogs from the same DBD family tend to 

recognize similar DNA sequences in vitro (Jolma et al. 2013, Weirauch et al. 2014) (Figure 

1a). Early genetic experiments that swapped closely related homeobox DBDs resulted in 

severe homeotic transformations (reviewed in Mann et al. 2009, Merabet & Mann 2016), 

indicating that TFs with very similar DBDs nevertheless execute distinct functions in vivo. 

Moreover, many TFs have crucial functions as master regulators of cell fate (Vierbuchen & 

Wernig 2012) and perform their functions reliably, despite highly similar sequence 

recognition. For instance, family members of the bHLH class of TFs control essential 

processes as different as myocyte differentiation [bHLH MyoD (Tapscott et al. 1988)], 

regulation of the circadian clock [bHLH Clock and BMAL1 (Dierickx et al. 2018)], and the 

decision to proliferate or differentiate [bHLH Max (Carroll et al. 2018)], despite recognizing 

very similar binding sites (Figure 1b).

To solve this specificity paradox, it is necessary to develop a thorough understanding of the 

DNA binding mechanisms that TFs employ. In contrast to initial expectations, the majority 

(approximately two-thirds) of contacts between TFs and DNA are van der Waals (VdW) 

interactions as opposed to direct hydrogen bonding to bases; the latter occurs as frequently 

as water-mediated bonds (i.e., in approximately one-sixth of contacts) (Luscombe et al. 

2001). This finding implies that sequence specificity emerges not only from specific 

hydrogen bonding patterns but also from DNA shape readout, which—through VdW, water-

mediated, and DNA backbone bonds—contributes significantly to the total free energy of 

binding (Rohs et al. 2009, 2010).

Multiple studies have demonstrated the importance of DNA shape readout in conferring both 

binding affinity and DNA binding specificity (reviewed by Rohs et al. 2010, Slattery et al. 

2014). For instance, analysis of the crystal structure and binding preferences of the 

Drosophila TALE (three-amino-acid loop extension) TF Extradenticle (Exd) in complex 

with the Hox HD factor Sex combs reduced (Scr) revealed that positively charged amino 

acids within the N-terminal arm of the Hox HD insert into the DNA minor groove, sensing 

its electrostatic potential (Abe et al. 2015, Joshi et al. 2007). Intrinsic geometric and physical 

properties of DNA, such as helical twist and electrostatic potential, can be readily predicted 

from the DNA sequence (Li et al. 2017, Yang et al. 2017) and used to analyze DNA 

Kribelbauer et al. Page 2

Annu Rev Cell Dev Biol. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recognition mechanisms (Rube et al. 2018, Zhou et al. 2015). Deviations from classical 

Watson-Crick base pairing (Nikolova et al. 2011) can also be critical for TF recognition, as 

exemplified by the presence of Hoogsteen base pairs in the structures of Matα (Aishima et 

al. 2002) and the p53 tetramer bound to DNA (Kitayner et al. 2010). These examples 

underscore the idea that, despite being constrained by particular DBD structures, TFs exploit 

a wide range of mechanisms to bind to a particular DNA sequence.

The notion that any one TF can bind different DNA sequences also dates to early work in 

prokaryotes. For instance, sequence degeneracies were identified within the λ operator of 

the E. coli promoter −10 element (Maniatis et al. 1975), and the binding affinity of the λ 
phage Cro and λ repressors was found to directly depend on the operator sequence 

(Hochschild et al. 1986). These observations were initially summarized using consensus 

sequences, which specify degenerate positions with IUPAC ambiguity symbols, and were 

later summarized using more refined position weight matrices (PWMs) (Stormo et al. 1982), 

which tabulate nucleotide base frequencies for each position within the TF-DNA interface. 

A theoretical framework in which competition between mutation and selection defines the 

information content of the PWM relative to a random genomic background (Berg & von 

Hippel 1987) in turn led to a widely used visualization known as DNA sequence logos 

(Schneider & Stephens 1990), in which letter height corresponds to the information gain 

measured in bits (Figure 1).

Today, TF binding preferences are best determined by performing high-throughput in vitro 

binding assays (see sidebar titled (Experimental Methods for Detecting Low-Affinity 

Binding Sites). The two most popular technologies are (a) methods such as protein binding 

microarrays (PBMs) (Badis et al. 2009, Berger et al. 2008, Bulyk 2007, Mukherjee et al. 

2004, Weirauch et al. 2014) and cognate site identifier (Rodriguez-Martinez et al. 2017, 

Warren et al. 2006), in which binding is quantified for tens of thousands of immobilized 

DNA probes in parallel, and (b) methods such as high-throughput systematic evolution of 

ligands by exponential enrichment (HT-SELEX) (Jolma et al. 2010, Zhao et al. 2009), 

SELEX-seq (Slattery et al. 2011), Spec-seq (Stormo et al. 2015), SMiLE-seq (Isakova et al. 

2017), and DAP-seq (Bartlett et al. 2017), in which high-complexity libraries consisting of 

either random DNA or genomic fragments are subjected to one or more rounds of selection 

for TF binding followed by deep sequencing. PWMs derived from these data have been 

collected in databases such as CIS-BP (Weirauch et al. 2014), JASPAR (Khan et al. 2018), 

HOCOMOCO (Kulakovskiy et al. 2018), and UniPROBE (Hume et al. 2015).

Direct comparison between in vitro DNA binding specificities and genome-wide in vivo TF 

binding profiles, as assayed using high-throughput methods such as ChIP-seq (Barski et al. 

2007, Johnson et al. 2007, Mikkelsen et al. 2007) and related methods (Cheetham et al. 

2018, He et al. 2015, Rhee & Pugh 2011, Skene & Henikoff 2017, Southall et al. 2013, van 

Steensel et al. 2001, Wang et al. 2007), has revealed that a majority of in vivo binding events 

are not accompanied by an obvious match to the corresponding PWM (Wang et al. 2012, 

Yang et al. 2006). This observation underscores the TF specificity paradox and suggests that 

current PWM models are missing a crucial aspect of TF–DNA sequence recognition. 

Binding sites alternatively referred to as low affinity (Crocker et al. 2015, 2016), suboptimal 
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(Farley et al. 2015), or submaximal (Bhimsaria et al. 2018), which are poorly predicted by 

most PWM models, have been suggested as an important potential solution to this problem.

Here, we review evidence for the role played by low-affinity binding sites in eukaryotic gene 

regulation. We discuss how these sites are recognized by TFs and how recently developed 

computational tools can be used to distinguish them from nonspecific binding sites (see 

sidebar titled Sequence-Based Models of Low-Affinity Binding). We argue that low-affinity 

sites can help solve the problem of TF specificity but that this solution requires TF 

concentrations to be locally boosted to a sufficiently high level for low-affinity sites to be 

effectively bound. We suggest that eukaryotic nuclear architecture and transcriptional hubs 

may have coevolved with functional low-affinity binding sites to solve the eukaryotic TF 

specificity paradox.

THE UNIQUE CHALLENGES OF EUKARYOTIC GENE REGULATION

Most early examples of TFs and their DNA binding sites came from prokaryotes such as E. 
coli and its phage. Consequently, theories regarding gene regulation were developed in the 

context of these organisms, which differ significantly from multicellular eukaryotes. Most 

prokaryotic TFs consist of only a DBD and an effector domain that mediates direct 

interactions with RNA polymerase (Perez-Rueda et al. 2018). The TFs of prokaryotes with 

larger genome sizes—and thus more genes to regulate—have additional DBD architectures, 

resulting in novel TF families and DNA recognition mechanisms (Minezaki et al. 2005). 

Consequently, a typical prokaryotic DBD binds with sufficient specificity to almost uniquely 

specify its target sites in the genome (Wunderlich & Mirny 2009). Use of the same strategy 

in eukaryotes would require DBDs with much larger binding sites and greater specificity to 

deal with much larger genomes. Surprisingly, however, the opposite phenomenon is 

observed: On average, eukaryotic DNA binding sites tend to be small, degenerate, and 

insufficiently specific to uniquely define a small number of genomic locations (Wunderlich 

& Mirny 2009).

To begin to reconcile this discrepancy, it is informative to ask whether there are differences 

in TF composition in eukaryotes and prokaryotes that might play a role in diversifying DNA 

recognition beyond single, short motifs. Indeed, a systematic comparison of TFs across the 

kingdoms of life (Charoensawan et al. 2010) noted that the number of non-DBDs, the total 

number of unique domain architectures, the average number of DBDs per TF, and the 

average length of TFs increased in eukaryotes and, to an even greater extent, in metazoans 

(Figure 2a). In contrast, however, both the average length of DBDs and the number of DBD 

families remained largely constant (roughly 60 amino acids per DBD and approximately 60–

70 DBD families per organism) (Figure 2a). These observations suggest that structural 

constraints may place an upper bound on family diversity and DBD size and, consequently, 

on the achievable specificity of TF binding. However, instead of increasing DBD diversity, 

eukaryotes dramatically increased the number of paralogs within individual TF families 

(Figure 2a). Most notably, the human TF repertoire is dominated by two major families: the 

C2H2 ZF proteins, with >700 members, and HD proteins, with roughly 200 members 

(Lambert et al. 2018). The existence of so many structurally related members of the same 
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DBD family makes it even more challenging to understand how individual specificities and 

TF functions are achieved.

EUKARYOTES EXPLOIT COMPLEX DOMAIN STRUCTURES TO ENHANCE 

TRANSCRIPTION FACTOR DNA BINDING SPECIFICITY

Eukaryotes use several distinct combinatorial strategies to increase genomic target 

specificity. One strategy equips individual TFs with more than one DBD of the same family 

(Figure 2b) and, less frequently, with DBDs from different families (Lambert et al. 2018). In 

principle, this can lead to longer protein-DNA footprints with higher binding specificity, 

approaching that of prokaryotes. For example, human C2H2 ZF TFs can contain as many as 

40 ZF domains, each recognizing 3 to 4 bp (Fedotova et al. 2017, Lambert et al. 2018). 

However, most ZF TFs have fewer fingers or use only subsets of fingers to recognize 

particular binding sites (Barazandeh et al. 2018, Fedotova et al. 2017, Najafabadi et al. 

2015). Nevertheless, some ZF protein binding sites can be as long as 60 bp; an example is 

CTCF, which helps orchestrate chromosome architecture (Nakahashi et al. 2013). In a 

variant of this strategy, the human tumor suppressor p53 combines a DBD with a 

tetramerization domain (Wang et al. 1994, Weinberg et al. 2004), creating a four-subunit 

complex that recognizes an unusually long (>20-bp) binding site (Funk et al. 1992, Rastogi 

et al. 2018). It is noteworthy that both ZF TFs and p53 tetramers often exert highly 

specialized functions in the cell that are not restricted to specific cell types, thus allowing for 

a prokaryotic-type approach to recognize genomic target sites.

An alternative strategy combines DBDs with domains that mediate homo- or heterotypic 

interactions with other proteins (Figure 2b). This type of interaction is seen in some of the 

heavily expanded TF families in the human genome. For instance, bZIP proteins form a 

large variety of homo- and heterodimers (Miller 2009, Rodriguez-Martinez et al. 2017, 

Vinson et al. 2002). Cooperative TF complexes can also be formed by exploiting novel 

architectures beyond the DBD, such as the use of short linear motifs to mediate protein-

protein interactions (Davey et al. 2012, Jolma et al. 2015, Merabet & Mann 2016, Slattery et 

al. 2011). Although new sequence specificities are created and footprints are extended by 

combining two TFs in this manner, this mechanism is typically not sufficient to bind a 

unique set of sites in vivo.

A few known examples of complexes consist of three or more cooperatively interacting TFs. 

The most prominent example is the IFN-β enhanceosome, in which eight factors are 

assembled on a DNA sequence with very stringent constraints on binding site position and 

orientation (Thanos & Maniatis 1995); given the paucity of protein-protein contacts seen in 

IFN-β crystal structures (Panne 2008, Panne et al. 2007), the assembly of the enhanceosome 

appears to be driven by a highly optimized DNA sequence. However, large-scale assemblies 

with strict constraints on binding site architecture seem to be the exception rather than the 

norm: While there are many examples of cooperatively bound TF pairs within enhancers 

(Jolma et al. 2015, Merabet & Mann 2016), most eukaryotic enhancers tolerate a much 

looser binding site arrangement (Arnosti & Kulkarni 2005, Panne 2008, Spitz & Furlong 

2012).
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Complex formation by pairs of TFs can reveal latent specificities (Slattery et al. 2011), 

whereby the binding preferences of the complex cannot simply be explained as a 

combination of the individual TF specificities (Ansari & Peterson-Kaufman 2011, Jolma et 

al. 2015, Mann & Chan 1996, Slattery et al. 2011). For instance, the Drosophila 
melanogaster Hox protein Scr is sensitive to variations in the DNA minor groove width only 

when bound in complex with its HD cofactor Exd (Abe et al. 2015, Zhou et al. 2015); Exd 

positions the N-terminal arm of Scr near the minor groove through a direct protein-protein 

interaction, which explains why this sensitivity is not observed when Scr binds as a 

monomer (Joshi et al. 2007). While latent specificity extends the classical concept of 

cooperative binding (Oehler et al. 1990) and thus contributes to the diversification of TF 

specificities, this gain in specificity is not sufficient to define a small subset of specific 

binding sites in eukaryotic genomes.

Recently, a direct link was made between DNA shape and TF affinity: By solving the X-ray 

crystal structures of the same Exd-Hox heterodimer bound to four different DNA binding 

sites of different affinity, a relationship between affinity and intrinsic DNA shape was 

revealed (Zeiske et al. 2018). All four ternary complexes had very similar protein and DNA 

structures, regardless of binding site affinity. However, although the predicted structures of 

unbound high-affinity binding sites were similar to the bound DNA shape, the shapes of 

lower-affinity sites were different, making binding energetically less favorable (Zeiske et al. 

2018). Thus, in addition to intrinsic DNA shape playing a role in paralog binding specificity, 

differences in intrinsic DNA shape can also impact TF affinity.

Epigenetic DNA modifications also have the potential to modulate TF binding affinity and 

specificity. The most extensively studied case is the effect of CpG cytosine methylation on 

TF binding. Several studies have shown that methylation can influence TF binding both in 

vivo (Domcke et al. 2015) and in vitro (Kribelbauer et al. 2017, Mann et al. 2013, Yin et al. 

2017, Zhu et al. 2016, Zuo et al. 2017). Depending on the TF, CpG methylation can both 

increase and decrease DNA binding affinity. Moreover, CpG methylation can alter DNA 

binding affinity in a paralog-specific manner, creating new low-affinity binding sites that are 

preferentially bound by specific members of the same TF family (Kribelbauer et al. 2017, 

Yin et al. 2017).

SPECIFICITY-AFFINITY TRADE-OFF: LOW-AFFINITY BINDING FACILITATES 

TRANSCRIPTION FACTOR PARALOG SPECIFICITY

The strategies outlined above help us understand how eukaryotes have been able to exploit 

cooperative binding to increase specificity from the perspective of an individual TF complex 

that binds across the genome. However, such strategies do not resolve the specificity 

problem from the point of view of an individual binding site that must recruit a particular 

TF. This paradox is especially striking for the eukaryote-specific family of HD TFs (Burglin 

& Affolter 2016, Charoensawan et al. 2010): Two large-scale studies comparing HD binding 

specificities found that most HD TFs bind relatively short (6–8-bp) sequences with a high 

degree of overlap between paralogs (Berger et al. 2008, Noyes et al. 2008). Given this 

degeneracy, the optimal site for a given HD will typically also be a high-affinity binding site 
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for many other family members (Crocker et al. 2015). In addition, unless the available set of 

paralogs is restricted by cell type–specific TF expression, high-affinity binding sites appear 

to be useful only when neither paralog specificity nor tissue specificity is required (Mann et 

al. 2009). Therefore, the question is, how can a binding site be created that has high enough 

affinity for its target TF but also favors that TF over its close paralogs?

Recent work has demonstrated the importance of low-affinity sites in paralog-specific gene 

regulation. Two studies showed that replacing low-affinity sites with high-affinity ones 

resulted in ectopic gene activation (Crocker et al. 2015, Farley et al. 2015), suggesting that 

paralogous TFs in other tissues ignore the endogenous low-affinity site, yet occupy the 

artificial high-affinity one. In other work, the modification of Paired HD binding sites 

upstream of Drosophila Rhodopsin gene promoters resulted in altered spatial expression 

patterns, implying that subtle differences in affinity can cause a switch in sequence 

selectivity from one HD TF to another (Rister et al. 2015). More recently, low-affinity sites 

were shown to be important for distinguishing between the binding of and regulation by two 

different K50 HD proteins in Drosophila: Bicoid and Orthodenticle (Datta et al. 2018).

Low-affinity binding sites were also required for the correct interpretation of Hedgehog (Hh) 

signaling: Multiple low-affinity Cubitus interruptus (Ci) sites in Hh-regulated enhancers 

were required for activation in cells receiving low Hh signaling, whereas enhancers with 

artificially generated, high-affinity sites caused Ci to behave as a repressor (Ramos & Barolo 

2013). Other studies have demonstrated the ability of low-affinity sites to distinguish 

between repression (by Senseless) and activation (by Pax2) in the Drosophila peripheral 

nervous system (Zandvakili et al. 2018) and to properly time the expression of important 

developmental genes (Gaudet & Mango 2002).

Another notable example is a Drosophila mesodermal enhancer controlled by the Ets 

domain paralogs Yan and Pnt. High-affinity Yan sites are required for repression, while low-

affinity Pnt sites are required for activation (Boisclair Lachance et al. 2018). Because of 

Yan’s relative preference for the high-affinity sites, low levels of this TF are sufficient to 

prevent activation by Pnt, again suggesting that differences in binding site affinity of 

different TF paralogs can be exploited to fine-tune enhancer activities.

Taken together, these findings indicate that functional low-affinity binding sites (a) are 

common in eukaryotes, (b) contribute to paralog specificity, and (c) are capable of fine-

tuning gene expression patterns both spatially and temporally. Low-affinity binding sites 

also have the advantage of requiring less stringent sequence conservation, as it is easier to 

recreate multiple low-affinity sites than to maintain a single high-affinity site. Consistent 

with this notion, low-affinity sites in functionally conserved enhancers can exhibit rapid 

turnover in closely related species (Crocker et al. 2015, 2016). More generally, weak 

cooperative interactions have been proposed to contribute to the large increase in the number 

of processes that eukaryotic cells need to execute (Gao et al. 2018). However, given that 

genomes contain many more low-affinity sites than high-affinity ones, it is still difficult to 

fathom how TFs can bind to their desired targets in a manner that is not only paralog specific 

but also locus specific.
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THE CRUCIAL ROLE OF LOCAL TRANSCRIPTION FACTOR 

CONCENTRATION

To understand how eukaryotic cells achieve significant binding at low-affinity binding sites, 

it is helpful to consider two parameters that are equally important in determining the average 

TF occupancy at a particular DNA binding site (Figure 3a). The first of these, [TF]free, is the 

local concentration of unbound, or free, DNA binding domains; the second, Kd, is the 

dissociation constant, which quantifies the strength of the protein-DNA interaction and is 

inversely proportional to affinity. The relationship between [TF]free and [TF]total is highly 

context dependent and difficult to predict. However, as long as thermodynamic equilibrium 

conditions hold on the relevant spatial and temporal scales, average TF occupancy depends 

only on the ratio of [TF]free to Kd (i.e., is proportional to both [TF]free and the affinity of the 

binding site). When [TF]free equals Kd, the bound state and the unbound state are equally 

probable, resulting in an average occupancy of 50%. At low TF concentrations, the 

occupancy is proportional to [TF]free; at high concentrations, occupancy saturates at the 

maximum value of 100%. To maintain significant occupancy at binding sites of lower 

affinity (higher Kd), the TF concentration needs to increase.

It is informative to consider how many molecules of a particular TF would be required to 

reach ~50% occupancy for a given Kd range (Figure 3b). Having one TF molecule in a 

typical eukaryotic nucleus with a diameter of ~6 μm corresponds to a total nuclear TF 

concentration of ~10 pM, which is an upper bound on [TF]free. This value is far lower than 

the typical Kd values (~10 nM) for optimal TF binding sites, which would therefore rarely 

be bound under these conditions. Having 100,000 TF molecules in the nucleus would 

correspond to a concentration of ~1 μM, at which even low-affinity sites with a Kd of ~1 μM 

(i.e., 100-fold weaker than a typical high-affinity site) are significantly bound. However, if 

the distribution of TF molecules within the nucleus is uniform, all binding sites will 

experience the same [TF]free, implying that binding at all high-affinity sites will be saturated 

and that therefore these sites will no longer be responsive to variation in TF concentration. 

That eukaryotes would choose to have their TFs constitutively occupy a large number of 

sites in the genome seems implausible, and indeed TF concentration levels may be tuned to 

the Kd values of their top target sites (Brewster et al. 2014, Gerland et al. 2002). However, 

functionally relevant low-affinity binding sites will not be sufficiently occupied to impact 

gene expression at TF concentrations at which saturated binding is avoided for the strongest 

binding sites in the genome.

PHASE SEPARATION, TRANSCRIPTIONAL HUBS, AND SUBNUCLEAR 

COMPARTMENTS

In any given cell type, only a portion of the genome is accessible for TF binding (Guertin & 

Lis 2013), as shown in both DNase-seq (Hesselberth et al. 2009) and ATAC-seq (Buenrostro 

et al. 2013) datasets. While nonuniform chromatin accessibility may appear to address the 

binding site selection problem, there are still far too many binding sites within accessible 

regions for most TFs. Moreover, accessible regions in chromatin are themselves a 
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consequence of prior TF binding and activity, which further raises the question of how these 

regions are selected to begin with.

A more complete answer to the target specificity conundrum may lie in the highly 

compartmentalized structure of eukaryotic nuclei (Dixon et al. 2012, Furlong & Levine 

2018, Nora et al. 2012). During the past decade, chromosome conformation capture (3C) 

and derived high-throughput assays (Dekker et al. 2002, Lieberman-Aiden et al. 2009) as 

well as DNA imaging studies (Boettiger et al. 2016, Chen et al. 2014, Chen et al. 2015, 

Fraser et al. 2015, Giorgetti & Heard 2016) have revolutionized our understanding of 3D 

genome architecture. Imaging studies with tagged TFs have shown that they are 

nonrandomly distributed within both fixed and unfixed nuclei and form clusters with high 

protein and polymerase content (Cisse et al. 2013, Liu et al. 2014, Mir et al. 2018, Tsai et al. 

2017; see Furlong & Levine 2018 and Liu & Tjian 2018 for recent reviews).

Importantly, these studies suggest the existence of spatial clusters of regulatory elements that 

are potentially coregulated by the same set of TFs. An intriguing advantage of such 

subnuclear compartments, or transcriptional hubs, is that TF concentration is likely to differ 

greatly from the nuclear average. For example, if one restricts a single TF molecule to a 

compartment with a diameter 10% that of the nucleus, its concentration increases 1,000-fold. 

A single TF molecule in a typical nuclear hub with a diameter of ~100 nm (Furlong & 

Levine 2018) corresponds to a local [TF]free of ~1 μM, equivalent to having 100,000 TF 

molecules distributed uniformly throughout the nucleus (Figure 3b).

The 3D compartmentalization of the nucleus thus provides a powerful mechanism for 

increasing local [TF]free for specific regulatory elements inside a hub. It also immediately 

provides a rationale for the pervasiveness of functional low-affinity binding sites: Any 

binding site with a Kd below 1 μM would be fully saturated inside a hub, a quality not 

desirable for tunable gene expression. In contrast, the Kds of low-affinity targets are likely 

within a tunable range, even at the high TF concentrations occurring within hubs. Control of 

specific enhancers inside a hub (Figure 4) can be further refined using latent specificity 

(Slattery et al. 2011), TF cooperativity (Jolma et al. 2015), binding site syntax (i.e., the 

relative order, orientation, and spacing of binding sites) (Farley et al. 2016), and clustering 

of low-affinity sites (also referred to as homotypic clusters of TF binding sites) (Ezer et al. 

2014, Gotea et al. 2010) (Figure 4a). Moreover, the high TF concentration within 

transcriptional hubs allows low-affinity sites to be bound, which in turn provides the 

flexibility for TF paralogs to functionally diverge (Figure 4b,c).

While nuclear hub assembly provides a plausible explanation for how low-affinity binding 

sites can effectively be occupied in cells, it raises the question of how these 

microenvironments form in the first place. Low-complexity protein domains, also termed 

intrinsically disordered regions (IDRs), are present in many nuclear proteins (Shin & 

Brangwynne 2017, Zhu & Brangwynne 2015) and TFs (Chong et al. 2018; see Alberti et al. 

2019 for a recent review). Recent studies suggest that IDRs can promote the creation of 

distinct microenvironments via a process referred to as phase separation (Banani et al. 2016, 

Erdel & Rippe 2018, Hyman et al. 2014, Wheeler & Hyman 2018). Phase separation is 

thought to underlie the formation of heterochromatin via the biophysical properties of HP1 
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(Strom et al. 2017) and the 3D segregation of superenhancers into hubs, driven by specific 

combinations of TFs and mediator proteins (Hnisz et al. 2017, Sabari et al. 2018). Another 

notable example is the regulation of olfactory receptor (OR) gene expression, in which phase 

separation has been proposed to play a role in mediating long-range interchromosomal 

interactions that silence all but one of >1,000 OR genes in olfactory sensory neurons 

(Monahan et al. 2019). Finally, activation domains of several TFs phase-separate together 

with transcriptional coactivator proteins, and the formation of these condensates is involved 

in gene activation (Boija et al. 2018).

Despite these examples, how phase-separated TF hubs are formed is currently unknown. 

Their formation may emerge from a combination of multiple weak protein-protein and 

protein-DNA interactions (Figure 5). Regardless of the mechanism, we suggest that the 

ability of phase-separated hubs to form in higher eukaryotes enabled closely related TFs to 

regulate distinct target genes by taking advantage of paralog-specific low-affinity binding 

sites (Figure 5).

CONCLUDING REMARKS

We discuss above how the occupancy by a particular TF along the genome may be shaped as 

much by the nonuniform 3D distribution of TF molecules within the nucleus as by the 1D 

landscape of DNA binding affinity (Figure 5). A key remaining challenge is to find ways to 

characterize and represent transcriptional hubs and the resulting profile of local TF 

concentration along the genome to enable quantitative predictions of TF occupancy. A 

convergence between genetics and cell biology, two fields that are historically distinct, will 

likely be required to achieve this goal.
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Glossary

Transcription factor (TF)
a protein containing at least one DNA binding domain along with domains that mediate 

interactions with cofactors and transcriptional machinery

Paralogs
related transcription factors in the same organism that belong to the same family; paralogs 

typically have similar DNA binding domains, yet different biological functions

DNA binding specificity
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a quantification of the relative binding affinity of a transcription factor (or transcription 

factor complex) across all possible DNA sequences

Consensus sequence
a DNA sequence pattern specifying the frequently observed nucleotides at each position of a 

transcription factor binding site

IUPAC
International Union of Pure and Applied Chemistry (https://iupac.org/)

Position weight matrix (PWM)
a mathematical model that predicts binding affinity by quantifying the effect of base 

substitution at each position in the binding site

Protein binding microarray (PBM)
a method to characterize the DNA binding specificity of a transcription factor by using <105 

immobilized DNA probes

Systematic evolution of ligands by exponential enrichment (SELEX)
a method for characterizing the DNA binding specificity of a transcription factor by using a 

random DNA library

Low-affinity binding site
a DNA site bound up to 1,000-fold more weakly than the optimal DNA sequence, but still 

more strongly than the immediately surrounding sequence

Transcriptional hub
a type of subnuclear compartment characterized by a high concentration of RNA polymerase 

and the site of active transcription

Intrinsic DNA shape
the structure of a DNA binding site prior to binding of a transcription factor; this shape may 

be different from the DNA shape in the transcription factor–bound complex

Transcription factor paralog specificity
the ability of a DNA ligand to recruit a particular paralog among multiple available 

transcription factors from the same structural famil

Transcription factor locus specificity
the ability of a specific genomic site to preferentially bind a transcription factor as opposed 

to other potential sites in the genome

Binding saturation
a situation that arises whenever the local free transcription factor concentration is much 

larger than the dissociation constant of the DNA binding site

Subnuclear compartment
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a three-dimensional membraneless volume within a nucleus with distinct molecular 

composition; this compartment is transiently created by a complex network of protein-

protein and protein-DNA interactions
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EXPERIMENTAL METHODS FOR DETECTING LOW-AFFINITY BINDING 
SITES

In recent years, high-throughput in vitro binding assays have been modified to improve 

the detection of low-affinity binding sites, providing an alternative strategy for the 

laborious trial-and-error process of identifying them in vivo; the latter typically requires 

enhancer bashing and a series of binding assays or mutational analyses to narrow down a 

small enhancer fragment (Crocker et al. 2015, Zandvakili et al. 2018). For instance, 

capturing specificity contributions from regions flanking the TF-DNA interface as 

observed in crystal structures (the so-called core binding site) can help resolve subtle but 

important binding preference differences in TF paralogs and TF complexes (Gordan et al. 

2013, Shen et al. 2018) but requires targeted DNA probe designs. Assays such as BET-

seq (Le et al. 2018), HiP-FA (Jung et al. 2018), MITOMI (Maerkl & Quake 2007), and 

Spec-seq (Stormo et al. 2015) yield quantitative affinity measurements that also cover the 

low-affinity range but require prior knowledge about a TF binding site to design the 

sequence pool. Complementary deep-sequencing-based assays such as HT-SELEX 

(Jolma et al. 2010), SELEX-seq (Slattery et al. 2011), and SMiLE-seq (Isakova et al. 

2017) can measure a relative DNA binding affinity (the binding affinity of a transcription 

factor for any particular DNA sequence relative to the optimal sequence for the same 

transcription factor) and show new promise, given the recent emergence of highly 

accurate modeling approaches (for further details, see sidebar titled Sequence-Based 

Models of Low-Affinity Binding).
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SEQUENCE-BASED MODELS OF LOW-AFFINITY BINDING

Despite the availability of high-quality data, the computational identification of relevant 

low-affinity sites from in vitro binding data has proven challenging. For example, 

researchers were unable to identify biologically functional low-affinity binding sites 

(Crocker et al. 2015) from oligomer enrichment tables derived from SELEX-seq data 

(Slattery et al. 2011). To be successful, computational approaches require an optimal 

statistical representation of the data generation process and a flexible representation of 

the features across the full TF-DNA binding interface that determine binding free energy.

A systematic comparison of methods for analyzing PBM data (Weirauch et al. 2013) 

revealed that algorithms that fit biophysically motivated models that use DNA sequence 

features as predictors (Riley et al. 2015, Zhao & Stormo 2011) achieve superior 

quantification of binding affinities. The resulting models can be represented as position-

specific affinity matrices (Bussemaker et al. 2007) and visualized as energy logos (Foat et 

al. 2006), in which letter heights correspond directly to binding energy differences in 

bases at each position (Figure 4b, below).

Although technically more challenging due to the discrete nature of probe counts, 

analogous direct fitting of biophysically motivated feature-based models of protein-DNA 

interaction to SELEX data recently became possible and will help overcome the 

limitations of methods based on the oligomer enrichment tables initially used to analyze 

SELEX data. These feature-based algorithms include (a) an application of convolutional 

neural networks that treats binding site prediction as a classification problem in terms of 

bound and unbound probes (Alipanahi et al. 2015) and (b) two distinct maximum-

likelihood algorithms, BEESEM (Ruan et al. 2017) and NRLB (Rastogi et al. 2018).

Of these, NRLB is currently the only algorithm capable of learning feature-based models 

of arbitrary length that accurately capture the entire range of binding affinity. When 

tested on Drosophila enhancers, NRLB not only successfully identified functional low-

affinity Hox binding sites experimentally demonstrated to be >100-fold weaker than the 

best site in the fly genome, but also accurately predicted the quantitative loss of enhancer 

activity in vivo as individual sites were sequentially mutated (Rastogi et al. 2018).

If these algorithms can be further improved and leveraged to create a comprehensive 

resource of accurate sequence-to-affinity models for all TFs, this approach has the 

potential to transform the way in which enhancers are found and analyzed.
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SUMMARY POINTS

1. There is a trade-off between a DNA sequence (a) having a high binding 

affinity for a particular TF and (b) being able to preferentially recruit that TF 

in favor of closely related, paralogous TFs from the same structural family.

2. The emergence of large TF families in metazoans through duplication and 

divergence has made it necessary for the cell to find ways to make use of low-

affinity binding sites.

3. To what degree a particular binding site in the genome is occupied by a TF 

molecule depends on the ratio of [TF] to Kd, i.e., between the (effective, local, 

free) TF concentration [TF] and the dissociation constant Kd that quantifies 

the protein-TF interaction.

4. When a TF is restricted to a subnuclear volume with a diameter 10% that of 

the entire nucleus, its concentration goes up 1,000-fold, and thus the 

formation of phase-separated subnuclear compartments, or hubs, is a powerful 

strategy for making use of low-affinity sites.

5. Recent advances in high-throughput genomics and statistical learning are 

starting to make it feasible to build highly accurate models of protein-DNA 

interaction that can reliably detect low-affinity binding sites in genomic DNA.

6. To predict which promoters and enhancers are regulated by a particular TF, it 

is not sufficient to know its full genomic affinity profile; information about 

the TF’s 3D distribution within the cell nucleus is also important.
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FUTURE ISSUES

1. New methods are required for estimating local TF concentration, either by 

direct experimental observation or by computational inference.

2. Better strategies are needed to predict which TFs from among a set of close 

paralogs will preferentially bind to a given DNA sequence.

3. Methods are required to quantify the nonuniform distribution of TF hubs 

within eukaryotic nuclei.

4. We need a better understanding of how hubs emerge from a combination of 

weak protein-protein and protein-DNA interactions.
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Figure 1. 
Shared binding mechanisms and sequence recognition among transcription factor (TF) 

paralogs with distinct in vivo functions. (a) Crystal structures, binding motifs, and broad in 

vivo functions of three examples from the Drosophila melanogaster homeodomain TF 

family: All three TFs—Aristaless (PDB ID: 3LNQ), Engrailed (PDB ID: 1DU0), and 

Antennapedia (PDB ID: 4XID)—share a conserved structural fold and recognize similar 

binding motifs, represented as information content logos (motif logos derived from Noyes et 

al. 2008). Despite the similarities in DNA recognition and sequence readout, Aristaless, 

Engrailed, and Antennapedia have distinct in vivo functions: distal leg development 

(Campbell & Tomlinson 1998), posterior compartment identity along the anterior-posterior 

(AP) axis (Nusslein-Volhard & Wieschaus 1980), and thoracic fate specification (Struhl 

1982), respectively. (b) Crystal structures, binding motifs, and broad in vivo functions of 

three homo- and heterodimeric examples from the Mus musculus and Homo sapiens basic 

helix-loop-helix (bHLH) TF family: MyoD:MyoD (PDB ID: 1MDY), Clock:Bmal1 (PDB 

ID: 4H10), and Max:Max (PDB ID: 5EYO). Each of these TF dimers recognizes a highly 

similar, reverse-complement-symmetric motif [consensus = CACGTG; motifs taken from 
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Jaspar (Khan et al. 2018)], yet has a distinct in vivo function: MyoD is a master regulator of 

myocyte fate specification (Tapscott et al. 1988); Clock:Bmal1 are central players in 

establishing a functional circadian clock (Dierickx et al. 2018); and Max is involved in either 

cell proliferation or differentiation, depending on its binding partners (e.g., Myc or TFs from 

the MXD class of bHLH TFs) (Carroll et al. 2018).
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Figure 2. 
Prokaryotic versus eukaryotic transcription factors (TFs): design principles and binding 

mechanisms (Charoensawan et al. 2010).(a) Comparison between prokaryotic and 

eukaryotic TF design principles. (i) Simplified cellular structure of prokaryotic and 

eukaryotic cells. (ii) Similarities in TFs. The average amino acid (aa) length of the DNA 

binding domain (DBD) (~60 aa) and the total number of distinct structural families per 

species are conserved across animal kingdoms. (iii) Differences in TFs. Compared to 

prokaryotes, eukaryotic and metazoan TFs are on average longer (in terms of total aa length) 

and have a higher number of unique domain architectures (i.e., combinations of DBDs and 

non-DBDs). In addition, eukaryotes have a much larger number of TF paralogs per structural 

family of DBDs. (b) Mechanisms of binding site diversification in eukaryotes beyond adding 

new DBDs. Prokaryotic binding sites are tailored to family-specific DBDs, with high 

information content and long binding sites. Following paralog expansion, eukaryotes 

diversified their binding site preferences by adding (left) tandem arrays of DBDs to specify 

longer or more complex sequence footprints and (right) new interaction domains that 

allowed for combinatorial binding logic. Other abbreviations: bHLH, basic helix-loop-helix; 

bZIP, basic leucine zipper; POU, domain shared by Pit-1, Oct-1, and Unc-86.
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Figure 3. 
Transcription factor (TF) occupancy is a function of both binding site affinity and TF 

concentration. (a) TF binding to a specific site depends on both the free TF concentration 

([TF]free) and the Kd (the inverse of affinity) of the binding site. TF occupancy as a function 

of free TF concentration is shown for six different binding site affinities (with Kd from 1 nM 

to 100 μM). Depending on the concentration and Kd, TFs are either unbound ([TF]free ≪ Kd) 

in a responsive regime, where occupancy varies with concentration ([TF]free ~ Kd), or 

saturated ([TF]free ≫ Kd). (b) The influence of nuclear compartment size on TF 

concentration and on the ability of sites of different affinity to be bound by the TF. Three 

different concentration regimes (low, intermediate, and high) are highlighted. On the low-

concentration end, having only a single TF molecule inside a nucleus with a diameter of 2–

10 μm (green) yields [TF]total ~ 10 pM, which represents an upper bound on [TF]free. At 

such a low concentration, a weak binding site (Kd ~ 1 μM) would essentially be unbound; to 
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achieve significant occupancy, 100,000 TF molecules would be required, resulting in a 

nuclear concentration of ~1 μM, similar to the Kd. Eukaryotic nuclear architecture brings 

groups of regulatory elements into proximity in 3D, forming transcriptional hubs of ~100 

nm in diameter (orange). Restricting a single TF molecule to a subnuclear compartment of 

this size also corresponds to a TF concentration of 1 μM. Recruiting a larger number of free 

TF molecules to the hub would allow even ultralow-affinity sites with Kds of up to 100 μM 

to be occupied, while saturation would no longer be limited to just the near-optimal sites (Kd 

~ 10 nM).
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Figure 4. 
Low-affinity binding sites and their importance in guiding transcription factors (TFs) to their 

cognate target sites. (a) The role of clusters of low-affinity sites in guiding TF binding within 

transcriptional hubs. Since local TF concentration inside a hub is >1 μM (see Figure 3b), the 

preferred Kd for responsive TF binding sites is also 1 μM or higher, which is low relative to 

optimal sites. Since many different DNA sequences can be used to realize low-affinity 

binding, each enhancer inside the hub has a high probability of harboring at least one low-

affinity binding site, resulting in ambiguity. (Left) An extreme case in which each of the four 

enhancers has one low-affinity binding site within the appropriate Kd regime. Averaged over 

time or a population of cells, the TF will occupy each enhancer equally, resulting in a 

uniform distribution with no specificity for the target enhancer. (Right) Clusters of low-

affinity binding sites confer target enhancer specificity by increasing its share in TF binding. 

On average, the TF will now predominantly occupy its target enhancer, which has the largest 

cumulative binding affinity. (b,c) The importance of low-affinity sites in paralog-specific 

binding. (b) Sequence specificities of the closely related Drosophila melanogaster TF 

paralogs Labial (Lab) and Ultrabithorax (Ubx), represented as energy logos (Foat et al. 

2006). The optimal, high-affinity site for Lab is strongly bound by both Lab and Ubx (left 
logo) due to their shared DNA recognition strategy. The sequences that maximize specificity 
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for Lab and Ubx, respectively (middle and right logos), are low affinity (~10,000-fold 

weaker than the optimal site) and, unlike high-affinity sites, have equal contributions across 

nucleotide positions within the binding interface. (c) Replacing a low-affinity, yet highly 

specific, binding site within the target enhancer for one paralog (TF1, purple) with a high-

affinity site will cause loss of paralog-specific binding. TF2 (green) will no longer 

predominantly occupy its target enhancer; instead, both TF1 and TF2 will be directed to the 

same enhancer.
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Figure 5. 
Weak protein-protein interactions as a means to concentrate transcription factors (TFs) and 

assemble nuclear hubs. (a) The inhomogeneous 3D nuclear distribution of TFs provides a 

regulatory layer that complements the information encoded in the DNA sequence, by 

limiting TFs to distinct nuclear compartments and boosting their local concentration. (b) The 

assembly of transient, phase-separated protein condensates is mediated by weak protein-

protein interactions between intrinsically disordered regions (IDRs) of both TFs and 

mediator (Med) proteins. (c) These microenvironments allow TFs to bind to paralog-specific 

low-affinity binding sites. A combination of weak protein-protein and protein-DNA 

interactions likely drive hub formation. Whether TF-DNA binding precedes phase 

separation, or vice versa, and what role chromatin plays remain to be determined.
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