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Abstract 

Cell-free DNA (cfDNA) next-generation sequencing has the potential to capture tumor heterogeneity and genomic 
evolution under treatment pressure in a non-invasive manner. Here, we report the detection of EGFR L792 mutations, 
a non-covalent mechanism of osimertinib resistance, using Guardant360 cfDNA testing in a patient with metastatic 
EGFR-mutant non-small cell lung cancer (NSCLC) whose disease progressed on osimertinib. We subsequently ana-
lyzed a large cohort of over 1800 additional patient samples harboring an EGFR T790M mutation and identified a 
concomitant L792 mutation in a total of 22 (1.2%) cases. In vitro functional assays demonstrated that the EGFR L858R/
T790M/L792F/H mutations conferred intermediate-level resistance to osimertinib. Further understanding of potential 
acquired resistance mechanisms to targeted therapy may help inform treatment strategy in EGFR-mutant NSCLC.
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Background
Epidermal growth factor receptor (EGFR)-mutant non-
small cell lung cancer (NSCLC) is a distinct molecu-
lar subtype with sensitivity to EGFR-selective tyrosine 
kinase inhibitors (TKIs) [1–4]. However, tumors invari-
ably develop resistance to these EGFR TKIs, mediated 
by on-target genetic alterations within the EGFR tyros-
ine kinase domain, EGFR-independent mechanisms, 
or small cell transformation [5, 6]. In initial reports of 
acquired resistance to first-generation EGFR TKIs erlo-
tinib and gefitinib, 50–60% of cases harbored an EGFR 
T790M gatekeeper mutation [5, 6]. Osimertinib, an irre-
versible, third-generation EGFR inhibitor, was developed 
to target T790M mutation-positive, first-generation 

TKI-refractory tumors and demonstrated robust efficacy 
with objective response rates of 61–71% among T790M-
positive NSCLC patients [7–9]. More recently, osimerti-
nib became the new standard initial therapy in advanced 
EGFR-mutant NSCLC [10]. Despite its efficacy, patients 
acquire resistance to osimertinib through various mecha-
nisms including EGFR C797S mutations which eliminate 
the covalent bonding site for osimertinib, and amplifica-
tion of MET or ERBB2 (HER2), among others [11–13]. 
The prevalence of C797S mutations may differ depending 
on the clinical setting and is more common in patients 
with a pre-existing T790M mutation [14, 15]. Serial 
assessment of the molecular characteristics of EGFR-
mutant NSCLC with each line of therapy will assist in 
understanding the evolution of on- and off-target mecha-
nisms of resistance and can help guide the development 
of new therapeutic strategies for patients with resistant 
disease.

Historically, tumor tissue biopsies have been stand-
ard for detection of resistance mechanisms. However, 
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tissue biopsies are inevitably limited by their invasive 
procedural risk, high cost, treatment delays related to 
procedure and processing, and inability to capture spa-
tial tumor heterogeneity. In contrast, plasma cell-free 
DNA (cfDNA) next-generation sequencing (NGS) from 
peripheral blood allows for safe, global, and repeated 
longitudinal assessment of mutation dynamics through-
out the course of disease and treatment. Therefore, this 
approach has the potential to accelerate our understand-
ing of TKI resistance.

Here, we report the detection of EGFR L792 resistance 
mutations via cfDNA sequencing in a patient progress-
ing on osimertinib, their prevalence in a large clinically 
tested NSCLC cfDNA cohort, and in  vitro functional 
characterization.

Case report
A 68-year-old male former smoker with EGFR L858R-
mutant metastatic NSCLC presented after progression 
on multiple lines of therapy, including first-line erlotinib, 
carboplatin/pemetrexed, docetaxel, followed by afatinib. 
cfDNA droplet digital PCR identified the EGFR T790M 
resistance mutation (Fig.  1a). After a short course of 
cetuximab + afatinib, the patient began osimertinib with 
disease control; 7  months later, imaging demonstrated 
progressive disease (Fig.  1b, c). At this time, cfDNA 
profiling was performed using Guardant360, a highly 
sensitive and ultra-specific 70-gene NGS panel, which 
interrogated the entire EGFR coding sequence for SNVs, 
indels, and gene amplification (Additional file  1: Fig-
ure  S1) [16]. Twelve somatic alterations were identified, 
including seven alterations in EGFR (Additional file  1: 
Table S1). The original L858R activating EGFR mutation 
was present at a variant allele fraction (VAF) of 16.9%, 
and the T790M mutation was present at a VAF of 8.4%. In 
addition, this analysis revealed EGFR C797S (4.6%) and 
L718Q (0.7%) mutations, both of which have been pre-
viously reported as osimertinib resistance mechanisms 
[11, 12, 17, 18]. Interestingly, three additional tyrosine 
kinase domain mutations were identified: L792H (1.4%), 
F795C (0.4%), and L792F (0.1%) (Fig.  1d). While EGFR 
L792 mutations have recently been reported as resistance 
mechanisms to osimertinib [19, 20], at the time of this 
patient’s clinical presentation these were novel findings 
which spurred further investigation.

Given their genomic proximity, the T790M and C797S 
mutations were phased to determine allelic origin and 
found to be in cis, and the F795C mutation appeared on 
that allele. In contrast, the L792H and L792F variants 
were in cis to T790M but arose in trans to C797S and 
to each other. While multiple tissue biopsies over time 
were not available to determine the temporal sequence 
of mutational emergence, when mapped against the 

patient’s treatment history the clonal phylogeny of these 
EGFR alleles suggested that at least the L792H and L792F 
mutations arose during osimertinib treatment at the 
same branch point as the known osimertinib resistance 
mutation C797S (Fig.  1e). Moreover, structural mod-
eling indicated that each mutation affects a residue that 
impinges on the ATP-binding pocket (Fig. 1f, g).

Prevalence in a large cfDNA cohort
Given the evidence linking L792H and L792F muta-
tions to osimertinib resistance, the Guardant360 clinical 
genomic cfDNA database of EGFR-mutant lung cancer 
samples from 10/14/2015 through 2/4/2019 was retro-
spectively analyzed to investigate the prevalence of these 
alterations. 1851 patients were identified whose samples 
contained EGFR T790M mutations. While detailed clini-
cal information including treatment history is unavailable 
for this cohort, somatic EGFR T790M mutations are rare 
outside of the setting of resistance to early-generation 
TKIs [21]. Of these patients, 22 (1.2%) also had at least 
one nonsynonymous EGFR L792 alteration identified 
(Table 1, Additional file 1: Table S2). Of these L792-posi-
tive patients, 11 (50%) also had at least one EGFR C797S 
clone identified. Notably, of the overall cohort of EGFR 
T790M-positive lung cancer patients, 151 (8.2%) had 
EGFR C797S identified in their clinical cfDNA testing, 
considerably more frequent versus the 1.2% prevalence of 
L792 variants.

Besides the initial case described above, only one other 
patient was found to have a nonsynonymous EGFR 
F795 alteration in conjunction with an L792 mutation; 
this patient’s sample had 14 nonsynonymous EGFR 
alterations (Additional file  1: Table  S2). One additional 
patient’s sample harbored an EGFR L792R alteration in 
the absence of a co-occurring EGFR T790M mutation; six 
other nonsynonymous EGFR alterations were detected in 
this sample (L717V, L718Q, G796S, C797S, G796R, and 
S1036R).

Phasing analysis was performed on 27 samples from 
the 22 unique patients containing an L792F/H/V/P/R 
or F795C/L mutation. As in the initial case described 
above, the L792 F/H/V/P/R and F795C/L alterations were 
invariably present subclonal to and frequently in cis with 
EGFR T790M, but independent of one another, C797S, 
and other osimertinib resistance alterations (Additional 
file 1: Table S3). The recurrence of these mutations across 
multiple patients supports the hypothesis that these vari-
ants confer a selective advantage compatible with osimer-
tinib resistance. However, the relatively low frequency 
with which these variants are observed and lower VAFs 
at which they occur suggest that this advantage may be 
less potent than that conferred by C797S.
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Fig. 1  Identification of EGFR L792F and L792H mutations by cfDNA sequencing in osimertinib-resistant NSCLC. Somatic cfDNA profiling of a patient 
progressing on osimertinib revealed the known resistance mutation C797S, as well as novel EGFR mutations L792F, L792H, and F795C. a Patient 
treatment history. b Abdominal CT 2 months after initiation of osimertinib, showing stable hepatic metastases. c Abdominal CT 7 months after 
initiation on osimertinib, showing multifocal progression throughout the liver. d Schema of somatic EGFR mutations identified by cfDNA NGS and 
corresponding predicted amino acid alterations. e Presumptive evolutionary history inferred by dollo parsimony analysis of phased mutations. G 
germline, Af afatinib, Osi osimertinib. f The structural location of L792H mutation (magenta) in EGFR relative to T790M (red) and bound TKI (yellow). 
g The structural location of L792F mutation (purple) in EGFR relative to T790M (red) and bound TKI (yellow)
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Functional studies
To test the hypothesis that the L792F/H mutations confer 
resistance to osimertinib, we characterized the oncogenic 

activity of the mutants using a high-throughput func-
tional in  vitro assay [22]. Cells were transfected with 
EGFR expression constructs encoding an L858R sensi-
tizing mutation, T790M resistance mutation, and one 
additional putative resistance mutation. Downstream 
signaling pathway activation—namely, MAPK/ERK and 
JAK-STAT—was assessed by measuring nuclear translo-
cation of two reporters (ERK2 and STAT3) which shuttle 
from the cytoplasm to the nucleus upon pathway activa-
tion [22]. As expected, L858R/T790M induced activation 
of both MAPK/ERK and JAK-STAT pathways, which 
was inhibited by osimertinib in a dose-dependent man-
ner (Fig. 2b, c). In contrast, L858R/T790M/C797S dem-
onstrated resistance to osimertinib at all doses (p = 0.004 
for the MAPK pathway and p = 0.004 for the JAK\STAT 
pathway, students t = test), compatible with irrevers-
ible loss of the osimertinib binding site. Importantly, the 
addition of L792H (p = 0.086 for the MAPK pathway, stu-
dents t = test) and, to a lesser degree, L792F (p = 0.085 for 

Table 1  Nonsynonymous EGFR L792 alterations 
co-occurring with  EGFR T790M mutations identified 
in the Guardant360 database of patients with lung cancer

a  Initial patient whose case is described in detail

Alteration(s) Number 
of patients

L792H 9

L792F 6

L792P 2

L792R 1

L792H and L792V 2

L792V and L792F 1

L792H and L792F 1a

Fig. 2  Functional assessment of L792F/H EGFR mutations and sensitivity to osimertinib. Functional evaluation of the L792F/H mutations was 
performed using an in vitro assay which uses high-content microscopy to assess activation of oncogenic signaling pathways represented by the 
nuclear-to cytoplasmic ratio (NCR) of signaling pathway reporters. Activity was assessed for the MAP Kinase pathway (ERK2-reporter) and JAK-STAT 
pathway (STAT3-reporter). a Baseline functional activity of EGFR mutations compared to wild-type EGFR. Values are average NCR for each condition, 
*p < 0.05 (students T test) with bracket indicating that the difference in activation between WT EGFR and each of the four mutations is significant. 
Presented is a representative experiment of 3 repeats. b, c Sensitivity to osimertinib was measured in escalating nMol concentrations. Values are 
the mean percentage (%) activation of ΔNCR (MTtx − WTut)/(MTut − WTut) normalized for each condition. 100% is the over-activation due to MT 
construct activity and 0% represent wild-type untreated activity at baseline. Means represented calculated from 7 independent repeats (Additional 
file 1: Figures S2, S3). MT mutant construct. WT wild-type construct, tx drug treated, ut untreated. d Total area under the curve (AUC) calculations for 
the MAP kinase pathway calculated using Graph Pad Prism. Also presented is the ratio of the AUC calculation of the tested EGFR L792 mutations 
and C797S-positive control versus T790M-negative control
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the MAPK pathway, students t = test) to L858R/T790M 
induced intermediate levels of resistance that were over-
come by increasing levels of osimertinib. This can be 
also seen in a 2-times higher AUC value as compared to 
L858R alone (Fig. 2d).

Discussion
In this report, through clinical cfDNA NGS we iden-
tify EGFR L792 mutations in 22 of 1851 (1.2%) NSCLC 
patient cases with an EGFR T790M mutation. These L792 
mutations appear to be a non-covalent mechanism of osi-
mertinib resistance in which alterations in the EGFR ATP 
binding pocket diminish, but do not entirely prevent, osi-
mertinib binding. In vitro assays suggest that increasing 
doses of osimertinib may overcome this resistance and 
inhibit EGFR activity, compatible with steric hindrance of 
drug binding or altered affinity to the drug or ATP rather 
than elimination of the binding site.

These results are consistent with recent reports of 
EGFR L792 mutations. Chen et  al. [19] reported L792 
mutations identified through cfDNA testing of plasma or 
pleural effusion in three patients with NSCLC progress-
ing on osimertinib, with a follow-up study from the same 
group [20] identifying mutations at this residue in 11/93 
(12%) of Chinese patients with osimertinib-resistant lung 
cancer.

There are inherent limitations to examining the preva-
lence of EGFR L792 mutations in the context of co-occur-
ring T790M mutations. This approach was used due to 
the unavailability of treatment history details for genomic 
data from a commercial laboratory. With the recent 
approval of osimertinib for first-line use, this genomic 
context may not apply moving forward. Nishino et  al. 
[23] found that EGFR L792 mutations in combination 
with L858R but in the absence of T790M conferred mod-
erate resistance to osimertinib in  vitro. Future studies 
examining the prevalence and functional effect of EGFR 
L792 mutations in the absence of T790M may clarify how 
broadly this data may be extrapolated in the dynamic 
landscape of drug approvals and treatment sequences.

Notably, the case described in detail above was found 
to have multiple EGFR mutations on cfDNA NGS, as did 
many other cases subsequently identified in the cohort 
prevalence analysis (Additional file 1: Table S2). The emer-
gence of multiple alterations across the course of disease 
and treatment makes it increasingly difficult to deline-
ate the isolated impact of any individual mutation in the 
acquired resistance process; this limitation of traditional 
analysis heightens the need for repeated comprehensive 
genomic profiling in the setting of clinical progression to 
capture the full context of changes under treatment pres-
sure. The evolution of multiple on-target alterations under-
scores the complexity of the genomic landscape that can 

emerge in the setting of TKI resistance and highlights the 
importance of repeat genomic analysis, and in particu-
lar cfDNA NGS to non-invasively capture heterogene-
ous resistance, in detecting potentially targetable genomic 
alterations over the disease course.
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