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Abstract

Objectives: Approximately 2 billion workers globally are employed in informal settings, which are 
characterized by substantial risk from hazardous exposures and varying job tasks and schedules. 
Existing methods for identifying occupational hazards must be adapted for unregulated and challen-
ging work environments. We designed and applied a method for objectively deriving time-activity 
patterns from wearable camera data and matched images with continuous measurements of per-
sonal inhalation exposure to size-specific particulate matter (PM) among workers at an informal 
electronic-waste (e-waste) recovery site.
Methods: One hundred and forty-two workers at the Agbogbloshie e-waste site in Accra, Ghana, 
wore sampling backpacks equipped with wearable cameras and real-time particle monitors during 
a total of 171 shifts. Self-reported recall of time-activity (30-min resolution) was collected during the 
end of shift interviews. Images (N = 35,588) and simultaneously measured PM2.5 were collected each 
minute and processed to identify activities established through worker interviews, observation, and 
existing literature. Descriptive statistics were generated for activity types, frequencies, and associ-
ated PM2.5 exposures. A kappa statistic measured agreement between self-reported and image-based 
time-activity data.
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Results: Based on image-based time-activity patterns, workers primarily dismantled, sorted/loaded, 
burned, and transported e-waste materials for metal recovery with high variability in activity dur-
ation. Image-based and self-reported time-activity data had poor agreement (kappa = 0.17). Most 
measured exposures (90%) exceeded the World Health Organization (WHO) 24-h ambient PM2.5 
target of 25 µg m−3. The average on-site PM2.5 was 81 µg m−3 (SD: 94). PM2.5 levels were highest 
during burning, sorting/loading and dismantling (203, 89, 83 µg m−3, respectively). PM2.5 exposure 
during long periods of non-work-related activities also exceeded the WHO standard in 88% of 
measured data.
Conclusions: In complex, informal work environments, wearable cameras can improve occupational 
exposure assessments and, in conjunction with monitoring equipment, identify activities associated 
with high exposures to workplace hazards by providing high-resolution time-activity data.

Keywords:   developing countries; electronic-waste; time activity; informal sector; job exposure matrix; particulate 
matter; personal inhalation exposure; wearable camera

Introduction

Improved methods for occupational exposure assess-
ment can contribute to health and well-being among 
the world’s estimated two billion informally employed 
workers (International Labour Office, 2018). These 
workers are not subject to national labour standards and 
are at substantial risk of hazardous work conditions, 
including high levels of exposures to toxic agents with 
little or no social, economic, or occupational protec-
tions (Chen, 2012; International Labour Office, 2018). 
The unregulated and unorganized structure of informal 
worksites limits data collection, establishment of link-
ages with adverse health effects, and design and imple-
mentation of risk-mitigating strategies.

Combining task-specific time-activity measures 
with task-specific exposure concentrations enhances 
the ability to estimate levels of personal occupational 
exposure. Task-specific exposure estimates help estab-
lish exposure groups and dose–response relationships 
between exposures and measured health outcomes 
(Checkoway et al., 2004). Additionally, time-activity can 
reveal risk factors that may affect an employee’s health. 
In informal sectors, collection of time-use data using 
standard methodologies, such as written diaries, may 
lack the precision to detect acute exposures.

In the informal electronic-waste (e-waste) recovery 
sector, hazardous work conditions and environmental 
pollution have raised considerable alarm (Heacock 
et al., 2016). Up- and downstream solutions are ur-
gently needed to redesign the organizational structures 
that handle global e-waste (Bakhiyi et al., 2018). Task-
specific exposure information is needed to identify 
high-risk worker groups, strengthen causal evidence 
of adverse health outcomes, and motivate stakeholder 
action and interventions.

At the Agbogbloshie informal e-waste recovery and 
scrapyard in Accra, Ghana, job titles, schedules, and 
task protocols are unavailable, so previous studies 
derived exposure groups using alternate methods. 
Interviews revealed that most workers participated in 
an average of seven (maximum of nine) different jobs 
(Srigboh et al., 2016). Workers who sorted e-waste had 
blood-lead 2.2 times higher than non-sorting controls, 
and workers who burned e-waste had urinary copper 
and zinc 1.7 times higher than non-burning controls 
(Srigboh et al., 2016). No significant differences were 
found in elemental exposures when comparing workers 
across the primary job of the past 6 months (Srigboh 
et al., 2016). A study on noise exposure and heart rate 
used 15-min time-activity diaries and found that ac-
tivity did not significantly confound or modify the ob-
served positive association between noise and heart 
rate (Burns et al., 2016). The lack of detectable differ-
ences in exposure across self-reported primary job task 
or time-activity recall in these and other studies (Feldt 
et al., 2014; Wittsiepe et al., 2015) may be due to sub-
stantial task misclassification, which may obscure crit-
ical differences in associated health risks.

Airborne pollutants, such as particulate matter of 
aerodynamic diameter of ≤10 or <2.5 µm, PM10 and 
PM2.5, are generated during e-waste recovery practices 
(Daum et al., 2017). The health effects associated with 
PM10 and PM2.5 exposure (Brook et al., 2010; Anderson 
et al., 2012) may be modified by the types of tasks 
workers perform. There are no published comprehensive 
evaluations of general or task-specific personal inhal-
ation exposure among informal e-waste workers. One 
small-scale study (n = 5) sampled the breathing zone 
of informal e-waste recovery workers at Agbogbloshie 
and found levels of aluminium, copper, lead, iron, and 
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zinc that exceeded workplace limits (Caravanos et al., 
2011). Comprehensive data could guide risk-mitigating 
interventions and enhance our understanding of how 
elevated chronic and short-term peak exposures to PM 
typical of other informal sector settings affect health 
(Smith and Peel, 2010).

This study aims to address the gaps in exposure as-
sessment in informal settings by using wearable cam-
eras and personal exposure monitoring equipment to 
generate task-specific exposures. We utilize an ongoing 
longitudinal cohort study based at the Agbogbloshie 
e-waste recovery site, the West Africa-Michigan 
CHARTER II for GEOHealth (GeoHealth-II), designed 
to assess environmental and occupational health hazards 
and overcome limitations of prior studies. Data for this 
study were collected among e-waste worker participants 
(N = 142) between March 2017 and April 2018. Self-
reported and image-based time-activity data are used to 
characterize the type and duration of tasks performed 
by e-waste workers on the Agbogbloshie informal site. 
The agreement between sources of time-activity data is 
quantified. Image-based time-activity is used to identify 
activities strongly associated with high concentrations 

of contemporaneously measured personal PM
2.5, i.e., 

burning and dismantling e-waste. The method described 
in this article for using wearable cameras to derive valid-
ated and time-resolved time-activity data can be adapted 
for occupational settings with an urgent need to identify 
sources of acute exposures and other hazards.

Methods

Study location and worker population
The Agbogbloshie e-waste and metal scrapyard in Ghana 
is a 0.5 km2 area near Accra’s central business district and 
adjacent to a food market, industrial sector, and informal 
community with a population of 79 684 (2009) (Housing 
the Masses, 2009; Oteng-Ababio, 2012). Figure 1 pro-
vides an aerial view of Agbogbloshie. Prevailing winds are 
south, south-westerly. Workstations are not formalized 
and work- and non-work-related activities are adjoined; 
mosques, domiciles, food vendors, cattle, and other sub-
sistence activities are interspersed among individuals or 
groups performing e-waste recovery tasks.

The site is overseen by the Scrap Dealers Association 
(SDA). Its chair reported not knowing the number of 

Figure 1.  Agbogbloshie electronic-waste recovery site map. The Agbogbloshie site is located in Accra, Ghana. The yellow line in-
dicates the main road, Abose Okai Road, adjacent to the site. The highlighted polygon labelled E-Waste Processing Zone is where 
dismantling, sorting, weighing, and some trading of e-waste occur. The highlighted polygons labelled Burning Zone indicates 
where e-waste is burned in open, surface fires. The larger and oldest burning zone is adjacent to the Korle Lagoon. The prevailing 
winds are south, south-westerly. Map created using Google Earth Pro V 7.3.2.5776. (10 July 2015). © Google 2018. Wind rose cre-
ated using Integrated Surface Data collected at the Kotoka International Airport in Accra, Ghana. Data provided by the National 
Oceanic and Atmospheric Administration’s National Centers for Environmental Information (https://www.ncdc.noaa.gov/isd) (ac-
cessed on 9 January 2018).
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workers on-site or if a new worker arrived in the pre-
ceding month. There are also no formal job titles or 
task protocols. The majority of workers who migrate to 
Accra from Ghana’s rural Northern region seeking em-
ployment opportunities are in their 20s (Amoyaw-Osei 
and Agyekum, 2011). They are predominantly Muslim 
and Dagbani-speaking, thus differing from the Twi-
speaking, Christian majority in Accra (Amoyaw-Osei 
and Agyekum, 2011).

Study sample
Participant data come from the GeoHealth-II longi-
tudinal cohort study. Data were collected during three 
study waves (beginning in March 2017, August 2017, 
and January 2018) among e-waste worker participants 
(N = 142).

Following a public presentation on the study, workers 
who were willing to join the study were enrolled (n = 100). 
More workers requested enrolment than the study had re-
sources for. Although recruitment was planned for wave 
I only, new participants were enrolled at wave II (n = 42), 
to replace those that were lost to follow-up between 
waves I and II. Follow-up visits occurred during waves 
II and/or III; participants were located by cell phone and 
with the help of seasoned workers. Of the 142 recruits, 70 
completed all three waves, 35 completed two waves, and 
37 completed one wave.

Informed consent was obtained, and questionnaires 
were administered by trained, local interpreters in the 
participants’ native or preferred language: Dagbani, 
Hausa, Twi, or English. Participants were compen-
sated at each wave with 30 Ghana Cedis (approxi-
mately US$7, roughly an average day’s wage), a T-shirt, 
and lunch. The University of Ghana and University of 
Michigan Institutional Review Boards (IRB) approved 
the study protocols. The local chief of Agbogbloshie, and 
chair and vice-chair of the SDA gave permission and al-
lowed the research team to enter the community.

Data collection
A diagram depicting the stages of data collection is 
available in Supplementary Fig. S1, available at Annals 
of Occupational Hygiene online. Wave I, II, and III 
were aligned with the dry, rainy, and Harmattan (winds 
coming off the desert) seasons, respectively, to achieve 
seasonal variation in work patterns and personal 
exposure.

Survey instruments
A questionnaire administered during baseline visits in-
cluded an extended section on occupational history 

and job tasks. In wave II only, a time-activity diary 
with a 30-min resolution was administered by an in-
terpreter at the end of personal monitoring sessions 
(see Supplementary Fig. S2, available at Annals of 
Occupational Hygiene online). Participants were asked 
to recall their activities from the time they started work. 
The diary included nine pre-selected e-waste recovery 
tasks identified in a prior study among Agbogbloshie 
e-waste workers (Srigboh et al., 2016).

Wearable camera and personal PM monitoring
Three sampling backpacks containing a wearable, time-
lapse camera and personal PM inhalation exposure 
equipment were deployed in the morning on all days 
excluding Sunday. Length of sampling was set to 4 h 
between 8:00 AM and 2:00 PM based on the observa-
tion that non-work activities increased in the latter half 
of the afternoon. Sampling duration was reduced to 
2 h during wave III because of high levels of PM from 
Harmattan winds. Time-lapse images were collected 
in 1-min interval using a wide-angle GoPro Hero4© 
camera mounted to the backpack’s forward facing 
shoulder strap. Minute-by-minute PM was measured 
using a five-channel optical particle counter (Aerocet 
831, Met One Instruments, Inc., Grants Pass, OR), 
which converts counts into size-specific mass measure-
ments (microgram cubic meter) using a proprietary al-
gorithm. The instrument’s concentration range is 0 to 
1000 µg m−3, beyond which particle coincidence error 
leads to under-reporting.

Deriving time-activity patterns from images
Two trained reviewers at the University of Michigan 
categorized images into activities using a data collec-
tion instrument designed on the Research Electronic 
Data Capture (REDCap) secure web platform (for a 
transcript of the instrument, see Supplementary Fig. S3, 
available at Annals of Occupational Hygiene online). 
Reviewer identified activities could come from a single 
image (e.g. smoking) or a group of images depicting 
one sustained activity. A checklist of objects helped 
characterize activities (e.g. flames indicated burning). 
This input and the response to subsequent questions 
about the specific activity that automatically followed 
were used to create time-activity patterns (TAP) for 
each participant.

TAPs are continuous, detailed, and time-specific logs 
of all activities performed by a participant. Each TAP 
comprised a time-ordered series of ‘events’; an event 
comprised one or more consecutive images that iden-
tified a sustained work- or non-work-related activity 
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(Fig. 2, available at Annals of Occupational Hygiene on-
line). Because our focus was on detecting work-related 
activities, brief periods of rest and position changes 
(≤5 min) bounded by the same identifiable activity were 
not recorded as separate events.

TAPs from pilot data were discussed with workers 
during four on-site interviews to confirm the accuracy 
of activity classifications. Workers described the ac-
tivities from a series of images depicting all work- and 
transportation-related activities, in addition to some 
images with unclear classifications. The interviews re-
vealed a distinction in how workers and reviewers clas-
sified some activities. Workers identified a task from 
one sub-task; for example, what a reviewer described as 

‘bicycle transit’, a worker named ‘collecting’—the term 
used for travelling off-site (often by bicycle or tricycle) 
to purchase or scavenge e-waste materials. Reviewers 
unfamiliar with a worker’s intent were instructed to clas-
sify sub-activities to detect specific activities associated 
with high levels of inhalation exposure. This learned 
information was taken into consideration when testing 
agreement with worker’s self-report.

The final instrument’s work-related categories in-
cluded burning wires, burning material other than wires, 
starting or igniting a fire, stripping wires, dismantling/
pounding/breaking, on-/off-loading, gathering/sorting, 
transporting materials (off- or on-site), trading/selling, 
weighing, repairing, and smelting (lead or aluminium) 

Figure 2.  Visual activity dictionary. The images used in this visual task dictionary were taken by wearable cameras worn by 
study participants during their work day as an e-waste recovery worker. The exemplar images demonstrate how time-activity data 
can be derived using time-lapse images.
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(for descriptions, see Supplementary Table S1, available 
at Annals of Occupational Hygiene online). Images, 
which showed that the sampling backpack (including 
the camera and PM monitoring device), was not being 
worn as intended were categorized as ‘unusable’. Images 
of backpack deployment and retrieval were categorized 
as ‘staging area’. For more details of image-processing 
steps and output, see Supplementary Table S2, available 
at Annals of Occupational Hygiene online.

Creating an averaged database of PM and TAP
The minute-by-minute TAP database was merged with 
contemporaneous minute-by-minute size-specific PM 
levels using participant ID, date, and time. Additionally, 
a 5-min average database was made to reduce sam-
pling noise associated with PM measures and a 30-min 
averaged database was made to test agreement with 
self-reported time-activity diaries. For the averaged 
databases, the most frequently occurring activity within 
each 5- or 30-min period was selected to be representa-
tive (further coding details in Supplementary Table S2, 
available at Annals of Occupational Hygiene online). 
‘Unusable’ images were removed post-averaging if they 
were the dominant event for the averaged interval.

Statistical analyses
The baseline questionnaire was used to describe job char-
acteristics and task history. The image-based 1-min TAPs 
were used to describe the type and duration of all activ-
ities performed during waves I, II, and III. To measure 
the agreement between self-reported and image-based 
time-activity, a subset of wave II diaries and 30-min 
TAPs were used. Unweighted kappa statistics were cal-
culated to measure agreement beyond chance. A kappa 
score was calculated for time-activity designation based 
on eight activity categories [burning, dismantling, ma-
terial movement and organization, buy/sell/weigh, re-
pairing, smelting, other (work-related), non-work] (for 
details on activity categories, see Supplementary Fig. S2, 
available at Annals of Occupational Hygiene online).

The 5-min TAPs were used to evaluate the capacity 
of image-based time-activity data to detect job tasks 
that were strongly predicted to have the highest con-
centrations of PM2.5 inhalation exposure. Data collected 
during an urban fire near Agbogbloshie were excluded 
from the 5-min TAPs (n = 695 min) and PM summaries. 
Descriptive statistics of PM2.5, PM1 (aerodynamic diam-
eter ≤ 1 µg), PM10–2.5 (the coarse fraction of PM calcu-
lated using the difference method), and total suspended 
particulate (TSP) are summarized by activity. Exposure 
groups based on cut-off points derived from the 25th, 

50th, 75th, and 95th percentiles of PM2.5 were used to 
examine the amount of time participants spent in each 
exposure group by activity. The non-parametric Mann–
Whitney U test compared PM2.5 concentrations in our 
subsample with those of the excluded ‘unusable’ data in 
which participants removed their sampling backpacks. 
All analyses were accomplished using the statistical soft-
ware R (R Core Team, 2016).

Results

Of the 142 baseline occupational questionnaires, one 
participant was excluded due to missing over 90% 
of responses, resulting in a final selection of 141 par-
ticipants. Personal monitoring with images and PM 
levels was completed in 63 days between March 2017 
and February 2018 (22, 20, and 21 days in waves I, II, 
and III, respectively) by 110 unique participants. Our 
final 1-min database comprised 32 439 classified im-
ages with contemporaneous PM estimates from 109 
unique participants after excluding ‘unusable’ images 
(n = 3,149, which included all images from one partici-
pant) (see Supplementary Fig. S1, available at Annals 
of Occupational Hygiene online). A unique participant 
completed either one (n = 55), two (n = 47), or all three 
(n = 7) waves resulting in 170 partial-shift samples. The 
mean sampling durations per partial-shift were 210 (SD: 
102), 211 (SD: 72), and 153 (SD: 80) min in waves I, 
II, and III, respectively, and close to the targeted sam-
pling duration (240 min in waves I and II and 120 min 
in wave III).

Self-reported and image-based time-activity
Participants were an average of 27 years old, over 90% 
were Muslims originating from the Northern region 
of Ghana with mostly low education and income, and 
over 70% earned the equivalent of less than 10 USD per 
day (see Supplementary Table S3, available at Annals of 
Occupational Hygiene online). Eighty-eight percent of 
participants lived on or within 1 km of the e-waste site 
and worked 6–7 days a week for an average of 10 h per 
day. Participants reported working at Agbogbloshie for 
an average of 8.6 years.

Dismantling e-waste followed by trading/selling and 
burning e-waste are the most commonly reported job 
tasks ever and currently performed at Agbogbloshie 
within the sample (see Supplementary Table S4, available 
at Annals of Occupational Hygiene online). Fewer than 
10% reported repairing e-waste, weighing or smelting 
lead batteries. ‘Other’ jobs included mechanic and taxi 
driver. Almost all participants who reported performing 
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a job in the past were still currently performing the 
same job. On average each participant reported having 
ever performed 3.2 jobs (range: 1–6) and currently per-
forming 2.9 (range: 1–6). Survey data indicated wide dif-
ferences in the percent of workers ‘currently’ performing 
a job with those reporting that job as their primary job 
(e.g. 82 participants reported ‘currently’ performing 
burning and 26 indicated that it was their ‘primary job 
over the past three months’). These conditions reinforce 
the need for a real-time and objective method to accur-
ately document time-activity.

Image-based results on the frequency, type, and 
duration of activities are summarized in Table 1. 
Reviewers classified a total of 910 events. Each TAP in-
cluded an average of 5.6 events (range: 1–16) per par-
ticipant. Event duration varied by activity (for details 
on activity-specific durations, see Supplementary Table 
S5, available at Annals of Occupational Hygiene on-
line). Activity types and durations remained approxi-
mately equivalent across waves I, II, and III; however, 
the overall number of work-related events decreased 
from wave I to wave III, and the number of ‘unusable’ 
images increased.

Among work-related activities, representing 28% of 
sampling time (n = 8,806 images), dismantling (50%), 
sorting and loading (17%), burning (14%), and trans-
porting materials (10%) were most common (Table 1). 
No participants performed smelting. ‘Non-work-related’ 
activities in which participants did not appear to be ac-
tively working represented 53% (n = 17 072 images) of 
the total sampling time. An estimated 66% of non-work-
related activities occurred on the e-waste site based on 
the presence of objects indicative of the site (e.g. e-waste 
materials, tools, fire); however, the proportion is most 
likely higher. For transportation, participants primarily 
walked short distances [mean (SD): 16 (11) min] on or 
near the e-waste site.

Agreement
The self-reported diaries (30-min resolution) and 
matched 30-min TAPs used to test agreement are sum-
marized in Table 2. This subset of wave II data covered 
three hundred and forty-nine 30-min intervals from 51 
participant diaries (mean: 205 min/diary). The agree-
ment was low (0.17), indicating ‘none to slight’ agree-
ment (Mchugh, 2012). Sensitivity analyses examined 

Table 1.  Activities performed by e-waste worker participants during 170 partial-shift samples and derived using wear-
able camera time-lapse images (n = 31 837 images)

Task category No. of eventsa Duration (min) Total (min)

N Mean (SD) N (%)

Work-related events 212 41.5 (48) 8806 (27.7)

  Burning 26 47.7 (42) 1240 (3.9)

  Dismantling 75 58.2 (63) 4362 (13.7)

  Sorting and loading 43 34.5 (43) 1483 (4.7)

  Buy, sell, weigh 16 18.6 (12) 297 (0.9)

  Transporting materials 40 21.3 (21) 851 (2.7)

  Repair 1 16.0 (NA) 16 (0.1)

  Other 11 50.6 (30) 557 (1.7)

Non-work-related events 344 49.6 (52) 17 072 (53.6)

  Sitting 260 56.4 (55) 14 670 (46.1)

  Smoking while sitting 24 43.4 (47) 1041 (3.3)

  Eating or drinking while sitting 44 23.5 (26) 1033 (3.2)

  Other 16 20.5 (18) 328 (1.0)

Transportation-related events 354 16.8 (16) 5959 (18.7)

  Walking 256 16.1 (11) 4126 (13.0)

  Bicycling 28 20.5 (15) 575 (1.8)

  Motorbike or car 70 18.0 (27) 1258 (4.0)

Totalb 910 35.0 (43) 31 837 (100.0)

aAn ‘event’ is defined as a consecutive series of images of variable length depicting one sustained activity; event duration can range from 1 to n minutes.
bOut of a grand total of 35 588 images, 31 837 images were used after excluding n = 3149 unusable images (321, 789, and 2039 images from waves I, II, and III, 

respectively) during which the sampling backpack was removed by the participant, and n = 602 images taken in the staging area where devices were turned on and 

off and participants completed registration.
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sources of misclassification and revealed that agreement 
did not differ depending on the number of activities per-
formed during the shift, but agreement improved if we 
ignored the time during which activities occurred. Under 
this scenario, the percent agreement was highest for 
non-work (96% agreement) and dismantling activities 
(40%) and lowest for buy/sell/weigh (15%) and burning 
(33%). In addition, participants occasionally reported 
performing an activity even if they were sitting near 
to where the activity was being performed by others. 
This was determined by reviewing all images for time-
intervals in which a participant self-reported burning 
and the reviewer did not (n = 6 30-min intervals). In 
50% of the images (n = 90), the participant was sitting 
in a rest-area located in proximity (approximately 10 m) 
to the burning zone, but not actively burning e-waste. 
The remaining images showed no evidence of burning or 
being located near the burning zone.

Personal inhalation exposure to PM2.5

PM2.5 concentration estimates are summarized by activity 
type in Table 3 and Fig. 3. Data excluded due to ‘unusable’ 
images had significantly lower mean PM2.5 concentrations 
than our final sample (73 versus 81 µg m−3, Mann–Whitney 
P-value: <0.001) (discussed further in Discussion section). 
Overall, the PM2.5 arithmetic and geometric mean concen-
trations were 81 (SD: 93) and 60 (SD: 2.1) µg m−3, respect-
ively. The mean PM2.5 concentrations for activities believed 
to have been performed on-site (based on objects identified 

in the images) were significantly higher than those per-
formed off-site (85 versus 72 µg m−3, Mann–Whitney 
P-value: 0.014) despite the fact that most off-site activities 
included travel on major roadways. Work-related activities 
had the highest mean PM2.5 concentrations (100 µg m−3) 
when compared with transportation- and non-work-related 
activities. Burning activities had the highest PM2.5 expos-
ures of all activities (203 µg m−3). The mean concentrations 
for sorting/loading and dismantling were approximately 56 
and 60% lower than burning, but still higher than all other 
tasks. At the same time, median PM2.5 concentrations be-
tween work- and non-work-related activities were largely 
similar; all individuals on the site, regardless of their ac-
tivities, experienced poor air quality. Inhalation exposure 
reached the highest exposure group (PM2.5 > 184 µg m−3) 
during 27% of time spent burning, 7% of time spent 
dismantling and transporting materials, and 6% of time 
spent eating and drinking (see Supplementary Fig. S4, 
available at Annals of Occupational Hygiene online). 
Workers performing burning activities also spent close 
to the longest amount of time in the lowest exposure 
group (PM2.5 < 38 µg m−3). The activity-specific distribu-
tion of coarse particulate and TSP are similar to findings 
related to PM2.5 (see Supplementary Table S6, available 
at Annals of Occupational Hygiene online). One not-
able difference was the increased exposure to coarse PM 
during the transport of e-waste materials and ‘other’ 
work activities. Distinctions across activities were less 
apparent for PM1.

Table 2.  Activity breakdown from self-reported diaries (30-min resolution) and matched image-based time-activity pat-
terns (30-min resolution) collected during wave II from a subset of e-waste worker participants (n = 51)

Self-reporteda Image basedb

 No. of 30-min periods Time (30-min periods) No. of 30-min periods Time (30-min periods)

 N Mean (SD) Total (%) N Mean (SD) Total (%)

Activities       

  Burning 7 4.6 (2) 32 (9.2) 2 4. (3) 8 (2.3)

  Dismantling 21 6.9 (4) 145 (41.5) 11 4.3 (3) 47 (13.5)

  Sorting and loadingc 5 8.0 (5) 40 (11.5) 10 2.8 (2) 28 (8.0)

  Buy, sell, weigh 8 5.1 (3) 41 (11.7) 3 2.3 (1) 7 (2.0)

  Repair NA NA NA 1 2 (NA) 2 (0.6)

  Transporting materialsc 1 9.0 (NA) 9 (2.6) 7 1.3 (0) 9 (2.6)

  Other (work) 2 1.5 (1) 3 (0.9) 3 2.7 (2) 8 (2.3)

Non-work or transport 22 3.6 (3) 79 (22.6) 25 9.6 (8) 240 (68.8)

Total 66 5.3 (4) 349 (100) 62 5.6 (6) 349 (100)

aSelf-reported time-activity diaries (n = 51) from wave II matched with image-based time-activity data by subject ID and date time.
bImage-based time-activity patterns (n = 51) from wave II matched with self-reported time-activity data by subject ID and date time.
cSorting, loading, and transporting materials were combined into ‘Material movement and transport’ prior to testing agreement between the two sources of data 

with a kappa statistic.
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Discussion

Wearable camera images can improve time-activity data 
in an unorganized work environment with substantial 
occupational exposures. Using images to generate an ob-
jective source of high-resolution time-activity data greatly 
reduced participant burden, a strength of this study. The 
use of image-based TAPs combined with continuous and 
contemporaneous measures of size-specific PM estimates 
provided a unique data set from which high-risk job activ-
ities and modifiable work behaviours, such as socializing 
and eating near hazardous work tasks, were identified. 
Notable findings included high variability in the type and 
duration of e-waste recovery tasks performed by a worker 
per shift and over time; poor agreement between self-
reported and image-based time-activity data; the highest 
mean personal PM2.5 exposures occurring during burning 
activities, driven by short-term, peak exposures, followed 
by sorting and dismantling; PM2.5 exposures during long 
periods of non-work-related activities exceeded the WHO 
standard in 88% of measured data.

Improved methods for collecting 
time-activity data
Improved methodologies for collecting accurate time-
activity data in challenging informal work settings are 
needed. In addition to misclassification, social-desirability, 
and participant fatigue, standard time-activity diaries col-
lected in informal sectors may be limited by language and 
literacy challenges and the lack of routines and organiza-
tional structure in which recall can be grounded (Hunt 
and McKay, 2015). A recent trend to improve personal 
exposure estimates in large population-based studies 
with more precise time-activity data has led to the use 
of location tracking technologies including smart phones 
and global positioning system (GPS) devices (Ouidir 
et al., 2015; Glasgow et al., 2016; Milà et al., 2018). The 
quality and relevance of such data depend on many fac-
tors (e.g. phone technology, wireless provider, network 
coverage, and the amount of time the phone is kept on) 
that are particularly problematic in low- and middle-
income countries (Glasgow et al., 2016). GPS data often 

Table 3.  Distribution of size-specific PM2.5 (µg m−3) by activity type (image based)

Activitiesa No. of 5-min 
periods

PM2.5 (µg m−3)

N Geometric 
mean (SD)

Arithmetic 
mean (SD)

Minimum P5 P25 P50 P75 P95 Maximum

Work-related events 1755 66.7 (2.2) 100.2 (144.2) 8.8 22.7 39.9 62.1 96.7 325.9 1501.4

  Burning 249 90.4 (3.3) 202.8 (300.9) 16.1 24.5 35.6 57.0 223.0 912.4 1501.4

  Sorting and loading 301 67.6 (1.9) 82.8 (62.5) 8.8 24.4 45.4 68.2 100.2 183.0 485.6

  Dismantling 864 67.3 (2.0) 89.2 (95.6) 9.1 25.9 44.8 63.5 95.9 221.5 850.5

  Transporting materials 169 55.6 (2.2) 78.3 (95.3) 12.7 18.6 30.2 55.8 87.1 214.7 950.6

  Other 110 50.7 (1.8) 58.7 (32.5) 10.1 19.4 34.6 52.4 76.1 114.8 220.1

  Buy, sell, weigh 61 44.6 (2.3) 61.0 (49.5) 10.6 12.8 22.4 59.1 80.0 156.4 237.1

  Repair 3 41.1 (1.1) 41.1 (2.8) 38.6 38.8 39.6 40.7 42.4 43.8 44.1

Non-work-related events 3311 57.5 (2.0) 72.7 (62.8) 4.0 16.4 37.4 61.0 90.5 161.7 1296.9

  Smoking while sitting 210 66.9 (2.2) 90.8 (85.7) 6.0 13.5 42.1 68.3 111.2 219.8 685.3

  Eating or drinking while 

sitting

201 62.6 (1.9) 80.1 (77.1) 11.2 25.6 41.1 61.0 90.7 195.0 687.7

  Other 64 59.6 (1.9) 72.7 (48.0) 14.1 20.8 35.4 65.0 89.2 153.4 254.2

  Sitting 2836 56.5 (2.0) 70.9 (59.7) 4.0 16.2 36.9 60.1 88.9 156.1 1296.9

Transportation-related events 1171 58.1 (2.0) 73.7 (59.7) 3.1 18.3 37.7 59.2 92.1 174.5 679.5

  Walking 807 62.9 (2.0) 79.8 (63.8) 3.1 18.2 42.7 62.6 99.3 188.1 679.5

  Bicycling 115 50.4 (1.8) 60.4 (42.0) 14.7 19.4 35.3 50.4 76.4 123.3 281.4

  Motorbike or car 249 47.9 (1.9) 60.0 (49.2) 10.8 18.2 29.0 49.0 75.2 135.3 479.0

Totalb 6239 60.2 (2.1) 80.6 (92.9) 3.1 18.6 38.2 61.0 92.5 186.2 1501.4

aActivities used in this table were derived from image-based time-activity patterns.
bOut of a grand total of 7121 five-minute averaged intervals, 6239 were used after excluding n = 629 five-minute intervals that were unusable due to removal of 

the sampling backpack by the participant; n = 114 five-minute intervals taken in the staging area where devices were turned on and off and participants completed 

registration; and n = 139 five-minute intervals recording PM levels on a day with an adjacent urban fire.
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require extensive cleaning particularly in dense urban 
areas and indoors (Ouidir et al., 2015). As an alterna-
tive, wearable cameras, most commonly the ‘SenseCam’, 
have been used to improve memory recall, enhance the 
assessment of physical activities detected by an acceler-
ometer, and classify environmental characteristics and 
health behaviours (Doherty et al., 2013; Mavoa et al., 
2013; Oliver et al., 2013). Wearable camera data are also 
time intensive for the researcher, but can represent an im-
provement over GPS for the purpose of job identification 
in informal sectors since the location of a job may change 
dramatically from day-to-day. Additionally, they elim-
inate the participant burden and literacy requirements as-
sociated with workers keeping active time-activity diaries 
with 5- or 15-min resolutions; such high-resolution 
diaries may be required in job settings with frequent task 
changes and acute exposures.

Other work has been used to match images and videos 
with exposure measurements. In a peri-urban Indian en-
vironment, Salmon et al. (2018) used wearable cameras 
combined with personal PM2.5 monitoring (Salmon et al., 
2018). Similar to our results, the high time-resolution of 
the images afforded the ability to detect short-term, peak 
exposures and revealed activity–exposure relationships 

not captured in self-reported diaries (Salmon et al., 
2018). In an office building, Luoma and Batterman 
(2001) used stationary video recordings in combination 
with area pollutant monitoring to characterize changes 
in emissions due to recorded work activities (Luoma and 
Batterman, 2001). On formal construction sites, video 
recordings have been used for tracking job progress, 
personnel, and safety monitoring; however, develop-
ment of automated methods for object identification and 
tracking are still being developed (Teizer and Vela, 2009; 
Chi and Caldas, 2011).

The methodology in this article to derive image-based 
TAPs from wearable camera images as a tool to improve 
occupational exposure assessment proved effective. The 
TAPs represented the natural flow of activities during 
a work shift, provided a sufficient level of detail with an 
interval of only one photo per minute, documented visual 
details relevant to inhalation exposure and potentially 
other stressors (e.g. ergonomic), facilitated the estimation 
of task-specific exposure concentrations, and enabled the 
transformation of processed image data into a standard 
time-activity diary of any time resolution that is compatible 
with standard risk assessment methods. Prior knowledge of 
e-waste work activities was required to process the images; 

Figure 3.  Personal inhalation exposure to PM2.5 by activity type (image based) and sorted by ascending geometric mean. For 
each boxplot, the midline represents the median value and the labelled blue point describes the geometric mean. The upper and 
lower limits of the box represent the 75th and 25th percentiles, respectively. The ‘whiskers’ extend to 1.5 times the interquartile 
range from the top and the bottom of the box. The points beyond that distance are represented by individual points. The jittered 
black points show the density of data by activity; each point represents a 5-min PM2.5 average value.
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however, previous literature, field visits, and unstructured 
interviews with workers provided sufficient information.

Self-reported and image-based time activity
Participants reported performing multiple jobs at any 
given time during their employment at Agbogbloshie. 
These results are similar to those in previous studies 
among the same population (Feldt et al., 2014; Burns 
et al., 2016; Srigboh et al., 2016). The image-based TAPs 
agreed with the self-reported data with respect to the 
types of job tasks most frequently performed on-site with 
the exception of buying, selling and non-work-related 
activities as per Tables 1 and 2 and Supplementary 
Table S4. The poor observed agreement between self-
reported and image-based data from a subset of partici-
pant diaries, confirmed that self-reported diaries cannot 
achieve the degree of task and time precision needed to 
detect changes in a measured exposure over intervals of 
five, ten, or even fifteen minutes or distinguish groups 
of workers on the basis of their exposures and subse-
quently occupational risks. Diaries may improve survey 
instrument development by broadly characterizing tasks 
workers perform (or intend to perform given the avail-
ability of materials).

Personal inhalation exposure to PM2.5

Worker tasks associated with peak PM2.5 exposures were 
easily identified using the image-based TAP data. In add-
ition to the specific task itself (e.g. burning), worker 
movements while transporting e-waste in and out of the 
fire or periods of variable wind direction and speed may 
also contribute to high exposure levels. Lower exposures 
probably occur while workers are positioned upwind of 
the fires and other emission sources and on days with 
steady winds (Supplementary Fig. S5, available at Annals 
of Occupational Hygiene online, provides images 
depicting upwind and downwind exposure scenarios).

Personal inhalation exposure during non-work activ-
ities is comparable to those during non-burning e-waste 
recovery tasks. In 43% of the images (n = 15) from sit-
ting and eating activities with PM2.5 exposures exceeding 
448 µg m−3, flames and smoke were identified objects. The 
location of activities in relation to the source of emissions 
from burning activities appears to greatly contribute to 
a worker’s PM2.5 exposures. The ranking of median ex-
posures by activity further suggests that on days with low 
variability in wind direction, burners may actually be able 
to control their exposure in contrast to people doing most 
or all of the other work that are downwind of burning 
activities. For sites with a prevailing wind direction, 
such as Agbogbloshie, relocating work activities to areas 
typically upwind of burning activities, may markedly 

decrease personal inhalation exposures for those workers. 
However, this type of site reorganization may increase ex-
posure among residents living in the densely populated 
communities located on all sides of the site.

Limitations
The use of wearable cameras in research can come 
with ethical (Kelly et al., 2013) and analytic limita-
tions (Doherty et al., 2013; Salmon et al., 2018). In 
occupational settings, camera use is less invasive to 
an individual’s privacy than in home settings. Non-
compliance among participants resulted in the ex-
clusion of 9% of the data. The coding process and 
reviewer training were significant time commitments. 
Advancements in the use of artificial intelligence and 
machine learning for image-processing may overcome 
this burden and introduce new opportunities for ex-
posure science in a world of big data (Weichenthal et al., 
2019). The test of agreement between self-reported and 
image-based activities was limited by differences in how 
a worker and image-reviewer report activities with mul-
tiple sub-tasks (e.g. collecting). However, an individual’s 
natural reporting tendencies may actually ‘interfere’ with 
achieving exposure and health-related objectives. Tasks 
that are verbal in nature (e.g. buying or selling) may 
have been misclassified as non-work activities (e.g. sit-
ting), however, may also be associated with fewer occu-
pational hazards. Including exemplar images of sitting 
activities in the worker interviews may have improved 
classification of these verbal activities. Double-data 
entry or having a reviewer familiar with the site could 
reduce activity misclassification. With limited resources 
for double-data entry, we minimized event misclassifica-
tion with recurrent trainings and worker interviews.

Activity-specific PM2.5 estimates are descriptive only 
and have not been adjusted for ambient PM2.5, location, 
wind, other meteorological factors, or the repeated na-
ture of the study design. We did not exclude 0.2% of 
the data in which PM2.5 estimates exceeded the particle 
counter’s upper concentration range (1000 µg m−3). The 
true concentration was likely higher than the reported 
measurement, particularly for fine fraction PM (e.g. 
PM2.5). We compared the PM2.5 after removing the values 
>1000 µg m−3 with the full data set and found no stat-
istically significant difference (Mann–Whitney P-value: 
0.7921). ‘Unusable’ images, which were associated with 
lower PM2.5 estimates than in the rest of the data, had 
to be excluded to avoid misclassification bias. Removed 
bags were placed by the workers into ‘safe’ or iso-
lated locations, which may be responsible for lowering 
their associated PM2.5 concentrations. Findings from 
the partial-shift samples are representative of all three 
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seasons in Accra (dry, wet, and windy), but only during 
the morning and afternoon hours during which partici-
pants wore the backpacks. Last, a possible ‘drift’ in syn-
chronized device clocks could cause measurement error 
when examining the association between instantaneous 
measures (Doherty et al., 2013).

Planned future work
Planned future work will use PM2.5 concentrations and 
paired activities to establish epidemiologic evidence 
with regard to potentially associated health outcomes, 
particularly acute responses such as cross-shift changes 
in pulmonary function. The images highlighted an area 
of future research, specifically the health effects among 
women on-site working near burning activities—we 
observed women selling water to e-waste workers for 
the purpose of cooling recovered metal after it is re-
moved from the fire. Additionally, studies are needed 
to address the observed under-employment among 
other psycho-social job characteristics, such as job 
stress, limited upward mobility, and effort-reward im-
balances experienced by this population (Burns et al., 
2019). Psycho-social factors are predictive of mental 
and social functioning disorders, cardiovascular disease 
risk factors, coronary heart disease, and musculoskel-
etal disorders (Cohen et al., 1983; Karasek et al., 1998; 
Siegrist, 1996) and may independently affect or mod-
erate the health effects caused by the physical exposures. 
Future proposals to reorganize the worksite and work-
site methods should involve an iterative process between 
workers, local leaders, and multidisciplinary teams, 
including engineers, exposure experts, epidemiologists, 
and social scientists, and improve conditions for both 
workers and surrounding communities. The images can 
subsequently be used in training materials.

Conclusions
The International Labour Office (2018) estimates that 
informal employment accounts for 86% of all em-
ployment in sub-Saharan Africa and 62% globally 
(International Labour Office, 2018). The undocu-
mented nature of this informal sector, in which men 
and women face substantial occupational health and 
safety hazards without physical, social, or economic 
protections, requires innovative and adapted methods 
for understanding workers’ needs and sources of haz-
ards. Wearable cameras provide a strong alternative 
to standard recall- and observational-based methods 
of recording time-activity and reduce participant 
burden. The use of wearable cameras to improve oc-
cupational exposure assessments and provide strong 

evidence of the risks informal workers experience has 
broad implications for the improvement of the health 
and well-being among too many unprotected workers 
around the globe.
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