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Constrained polarization evolution simplifies
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Abstract: We observed that the polarization state of light after round-trip propagation through
a birefringent medium frequently aligns with the employed input polarization state ‘mirrored’ by
the horizontal plane of the Poincaré sphere. We explored the predisposition for this mirror state
and evidence that it constrains the evolution of polarization states as a function of the round-trip
depth into weakly scattering birefringent samples, as measured with polarization-sensitive optical
coherence tomography (PS-OCT). Combined with spectral variations in the polarization state
transmitted through system components, we demonstrate how this constraint enables measurement
of depth-resolved birefringence using only a single input polarization state, which offers a critical
simplification compared to conventional PS-OCT employing two input states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Polarization offers access to unique, distinguishing signatures of samples for diverse applications
from remote sensing [1,2] to biomedical optics [3–5]. Polarization sensitive optical coherence
tomography (PS-OCT) performs polarimetric measurements in combination with coherence
gating and effectively measures the polarization state of light as a function of its round-trip
path length into the sample [6–8]. Many fibrous tissues with important physiologic function,
such as collagen, muscle, or nerve fibers, exhibit birefringence and cause a differential delay, or
retardation, between light polarized parallel and orthogonal to the fibrillar tissue components.
Observing the depth-dependence of the polarization state backscattered from a sample illuminated
with a single input state provides the cumulative round-trip retardation from the tissue surface to a
given depth in the tissue [9,10]. Because the rate of polarization change depends on the alignment
of the polarization state with the local optic axis in the sample, it is in general very difficult to
interpret cumulative retardation. Furthermore, whenever the polarization state aligns with the
optic axis in the sample, it ceases to evolve andmaymask birefringent tissue areas. Conventionally,
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multiple input polarization states are employed [11] in addition to polarization-diverse detection
to fully characterize the polarization properties of a sample and compute local retardation, i.e.
depth-resolved tissue birefringence [12–16]. Alleviating the demanding hardware requirements
for local retardation imaging would enable more widespread exploration of this compelling
contrast mechanism.

In previous experiments, we observed that the polarization state of backscattered or reflected
light, when measured through identical illumination and detection paths, frequently evolved
through the employed input polarization state but with reversed handedness, corresponding to the
input state mirrored by the horizontal plane of the Poincaré sphere [17]. Earlier investigations of
the polarization properties of single mode fibers reported on aspects of the polarization mirror
state [18–20], yet without elucidating its manifestation. Here, we experimentally and theoretically
evidence the propensity for this mirror state and show how it constrains the evolution of the
depth-dependent polarization state. We then employ this constraint to perform local retardation
imaging of optical phantoms and ex vivo tissue using a single input polarization state, both with
free-space and catheter-based PS-OCT implementations. Taking into account minor spectral
variations in the polarization state transmitted through system components we obtain local
retardation maps that avoid the accidental masking of tissue birefringence.

2. Experimental methods

2.1. Polarization sensitive optical coherence tomography

A single input state polarization-sensitive spectral domain optical coherence tomography (PS-SD-
OCT) system was configured as shown in Fig. 1. The unpolarized light from a super-continuum
source (DK-3460, NKT Photonics Inc.) was polarized by cascading a horizontal linear polarizer
(P1, LPNIRE100-B, Thorlabs Inc.) with an achromatic quarter-wave plate oriented at 45° (Q1,
AQWP10M-980, Thorlabs Inc.) to obtain circular polarization, unless otherwise noted, and
then split by a free-space beamsplitter (50:50, BS014, Thorlabs Inc.) into the reference and
sample arms. A linear polarizer (P2, LPNIRE100-B, Thorlabs Inc.) oriented at 45° in the
reference arm ensured identical reference spectra for both channels of the polarization-diverse
detection. In each of the interferometer arms, by means of a flip-mirror, the light was directed
either in free space to the sample and the reference mirror, respectively, or first coupled through
1.5m of single mode fiber. A three-paddle polarization controller was applied in each fiber for
polarization management. For sample imaging, the light in the sample arm was focused with
a 30mm focal length lens, achieving a full width at half maximum (FWHM) spot diameter of
8 µm, and scanned with galvanometric mirrors in both lateral directions. At the exit port of the
beamsplitter, a half-wave plate (H1, AHWP10M-980, Thorlabs Inc.) allowed precise alignment
of the polarization axes of the sample and reference light with the slow and fast axis of a piece of
polarization-maintaining (PM) fiber (P3-780PM-FC-2, Thorlabs Inc.). The polarization states
of the PM fiber were subsequently split with a polarizing beamsplitter towards two identical,
custom-built spectrometers, described in detail previously [21], to record the interference pattern
of the horizontal (X) and vertical (Y) polarization components, respectively. The detected source
bandwidth was about 160 nm centered at 840 nm, providing a measured axial resolution of 2.5 µm
in air. Recorded spectra were pre-processed by background-subtraction, alignment between the
two spectrometers [22], interpolation to linear wavenumber k, and compensation for dispersion
imbalance between the sample and reference arms [21].

Catheter-based imaging of birefringent phantoms was performed with a polarization-sensitive
optical frequency domain imaging (PS-OFDI) system, as described previously [23]. In short,
the system operated at a center wavelength of 1300 nm, scanning a range of 110 nm. The
system employed polarization-diverse detection and an illumination modulation scheme, whereby
the source polarization state was alternated for subsequent A-lines between two states located
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Fig. 1. A detailed schematic of the imaging system. SCL: super-continuum laser, L1-15:
achromatic lenses (Thorlabs Inc.), P1-2: polarizers, Q1: quarter-wave plate, H1: half-
wave plate, BS: non-polarizing beamsplitter, PBS: polarizing beamsplitter, DC: dispersion
compensator (BK7 glass plate), M1-5: mirrors, FM1-2: flip mirrors. SP: spectrometer. TG:
transmission grating, SMF: single-mode fiber, PMF: polarization-maintaining fiber, PC1-2:
polarization controllers, both with 1, 2 and 1 fiber coils in the three paddles, respectively.

orthogonal to each other on the Poincaré sphere. The imaging console interfaced with commercial
intravascular catheters (FastView, Terumo).

2.2. Sample preparation

To fabricate birefringence phantoms, we cut bands from scattering films of acrylonitrile butadiene
styrene (ABS) and stretched them after heating them above their glass-transition temperature,
similar to our previous work [23]. The first phantom assembled a stack of three birefringent bands
oriented at around 30° and 60° with respect to the first layer. The second phantom comprised
one long band above four parallel shorter segments with distinct birefringence, oriented at 45°.
The bands of both phantoms were embedded in ultrasound gel mixed with polystyrene beads
(Polysciences Inc., 300 nm in diameter) with a concentration of ∼ 5 × 1010/mL to provide a
non-birefringent scattering matrix.
Retinal imaging was performed on swine eyes, collected from a local slaughterhouse. The

imaging was carried out within two hours after the eyeball was harvested. We cut the eyeball
along the equator, removed the lens, emptied the vitreous chamber, and instilled just enough
saline to prevent specular reflection while scanning the retina.

3. Polarization constraint in reciprocal unitary backscattering

3.1. Experimental manifestation

3.1.1. Round-trip transmission through fiber

To examine the polarization mirror state, we first measured the round-trip signal through a 1.5m
long single-mode optical fiber, reflected off an attenuated mirror. Employing a polarization
controller to dynamically alter the birefringence of the fiber, we measured the time-varying
polarization state at the central wavenumber resulting from randomly moving the paddle positions
of the controller. Visualized as a normalized Stokes vector in the Q, U, and V-coordinates of
the Poincaré sphere in Fig. 2, the polarization state distinctly evolves multiple times through a
specific state m. Repeated with different launching polarization states s, which were measured
by reflecting the light to the detector before entering the fiber, we identified the state m = D · s,
where D = diag(1, 1,−1), as the input state mirrored by the horizontal QU-plane, and designated
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it as the polarization mirror state. The sequence of the three paddles in the polarization controller
is designed to be able to reach any possible output state after forward transmission, and the
measured polarization states indeed cover the majority of the Poincaré sphere, yet there is an
obvious predisposition for the polarization states to evolve through the mirror state. Of note, all
measurements were performed in the fixed coordinates of the receiver and are independent of the
orientation of the coordinates in the illumination path [24,25].

Fig. 2. Demonstration of the polarization mirror state. (a)–(c) Polarization state evolution
on the Poincaré sphere as a result of moving the three paddles of the PC when using circularly,
elliptically and linearly polarized input states, respectively, indicated by the blue arrows,
resulting in the repeated crossing of the mirror state, indicated by the red arrows.

3.1.2. Depth-resolved polarization states

Next, we investigated the depth-resolved polarization states in a birefringence phantom consisting
of three linearly birefringent layers with distinct optic axis orientations. Without the fiber segment
in the interferometer arms, the phantom was imaged with the free space configuration of the
system. At each scanning location, using PS-OCT, we constructed the Stokes vector as a function
of depth in the sample. To remove speckle and improve the signal, we spatially filtered the original
Stokes vectors with a two-dimensional Gaussian kernel of 20 µm 1/e2 width in the axial direction
and 80 µm in the lateral direction. Finally, we computed the normalized three-component Stokes
vector t(z) as a function of depth, shown in Fig. 3(b-d) for three distinct input polarization states
(indicated by blue arrows) at one lateral location. Inspection of the traces reveals that within each
of the linearly birefringent layers the polarization state evolves on a circle which passes through
the mirror state m (indicated by red arrows). Fitting circles that approximate the data and pass
through m (in purple color) indeed demonstrate a close match with the measured polarization
states. Each layer defines a distinct circle intersecting with the circle of the next layer at the
polarization state reflected from the interface between the layers. The realization of the mirror
state and the polarization traces is entirely dependent on the specific input state.

3.2. Theoretical derivation

To appreciate the mirror state phenomenon, we express the depth-dependent polarization state
t(z) as a function of the input state s, transformed under the effect of the round trip through the
sample T(z):

t(z) = T(z) · s. (1)

Considering the single-pass forward transmission N(z), we can express the round trip as:

T(z) = D · N>(z) · D · N(z). (2)
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Fig. 3. Evolution of coherence-gated polarization states in a three-layer birefringence
phantom. (a) Schematic sketch of the phantom consisting of three layers with distinct optic
axis orientations. (b)–(d) Polarization state evolution (color-coded corresponding to the
layers in (a)) for a circularly polarized (b), elliptically polarized (c), and linearly polarized
input state (d). Input polarization states are indicated by the blue arrows. Red arrows point
to the mirror states.

In reciprocal media, the reverse transmission through element N is described by D · N> · D
[26–28] (Appendix 7.1). We assume the sample transmission to be purely retarding and ignore
the effects of depolarization and diattenuation, which allows expressing the polarization states as
normalized three-component vectors. The retardation matrices belong to the special orthogonal
group SO(3) and define a rotation of the polarization states in the Poincaré sphere around a
rotation axis, or optic axis. The round trip matrix T = D · T> · D is by construction D-transpose
symmetric, which cancels any circular retardation of N (V-component of the rotation axis) and
confines the rotation axis of T to the QU-plane, enforcing it to be a linear retarder.

For the input state s to be mapped to its mirror state m = T · s = D · s, it has to be invariant under
transformation byD ·T, i.e. it has to be an eigenvector ofD ·T associated with a unitary eigenvalue
(T can never be D because det (T) = 1 and det (D) = −1). As we show in the Appendix by
geometric construction (Appendix 7.2), for each possible orientation of the optic axis of T within
the QU-plane, there exists a defined amount of retardance to fulfill this condition. Each time the
polarization state evolves through the mirror state in Fig. 2, the round-trip retardation matrix
through the polarization controller generated a suitable combination of optic axis orientation and
retardation to map the input state onto the mirror state. To map the input state onto any other
state, there exists only a unique optic axis orientation and retardation, which offers an intuitive
explanation for the propensity of the mirror state.
To further investigate the depth-resolved polarization state t(z) and its evolution through the

mirror state, we take its derivative with respect to depth:

∂t(z)
∂z
=
∂T(z)
∂z
· s = ∂T(z)

∂z
· T>(z) · t = β × (z) · t. (3)

In analogy with the differential Mueller matrix formalism β× is the differential retardation
operator. Because T · T> is the identity matrix enforcing (∂T/∂z) · T> = −T ·

(
∂T>/∂z

)
, β× is

skew-symmetric and corresponds to taking the cross-product with vector β =
[
βQ, βU, βV

]
:

β × =


0 −βV βU

βV 0 −βQ

−βU βQ 0


= γ · β̂ × . (4)

β̂ is the normalized optic axis and γ, the norm of vector β, is the local retardation, i.e. the rate at
which the retardation increases with depth. Specifically, γ = 2k∆n, with k the wavenumber and
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∆n the birefringence. Using Eq. (2) to express β× provides

β × =D · N> · D ·
(
D · N · ∂N>

∂z
· D + ∂N

∂z
· N>

)
︸                                 ︷︷                                 ︸

τ×

·D · N · D = D · N> · D · τ × ·D · N · D. (5)

τ× is not only skew-symmetric, but also D-transpose symmetric, confining τ̂ to the QU-plane.
However, the similarity transformation of τ× by D · N> · D rotates the apparent optic axis β̂
out of the QU-plane, in general. Re-integrating ∂t/∂z at a given depth we obtain the first-order
approximation to the evolution of t:

t′(z + ∆z) = exp (∆z · β×) · t(z) = D · N> · D · exp (∆z · τ×) · N · s. (6)

where we used t = D ·N> ·D ·N · s and the property of the matrix exponential exp
(
A · B · A−1

)
=

A ·exp(B) ·A−1. Here, ∆z determines the amount of retardance of the linear retarder exp (∆z · τ×),
and as previously observed, it is always possible to find the suitable ∆z, modulo 2π/γ, for the
given orientation of τ̂ within the QU-plane to make N · s invariant to the transformation by
D · exp (∆z · τ×) leading to t′ = D · N> · N · s = m. Hence, the first order approximation of the
polarization state evolution at a given depth lies on a circle evolving (periodically) through the
mirror state. Because τ× is constant within a homogeneously birefringent sample layer the first
order evolution is independent of depth within this layer, and the polarization state follows closely
the approximated circle. For the experiment of dynamically changing the fiber transmission, the
derivative with respect to time instead of depth leads to the same conclusion that the first order
approximation of the polarization state evolution at a given point of time lies on a circle evolving
through the mirror state.
The mirror state constraint still manifests even when the overall system is not D-transpose

symmetric. In a general case, static single-pass components P and Q alter the polarization states
before and after the D-transpose symmetric transmission T(z) to yield to observed polarization
state t(z) = Q · T(z) · P · s. While T(z) is intrinsically D-transpose symmetric and hence a linear
retarder, the presence of Q and P modifies the overall transmission to become a general retarder
[28]. However, P · s merely defines a modified input state s′ = P · s, which upon transmission
through T(z) repeatedly evolves through the mirror state D · s′. The unitary matrix Q simply
rotates this polarization state evolution and maps the apparent mirror state to the observed
mirror state m = Q · D · P · s. In other words, with the presence of static, and possibly distinct,
system components, the ‘input’ polarization state observed at the receiver in the absence of any
sample transmission is Q · P · s. The mirror state phenomenon ensures that the evolution of the
polarization state including propagation through the sample T(z) evolves through the mirror state
Q · D · P · s = Q · D ·Q> · (Q · P · s). Here Q · D ·Q> defines a new symmetry plane, which is
moved from the QU-plane defined by D under the similarity transformation by Q.

4. Local retardation imaging

4.1. Reconstruction of local retardation with single input state PS-OCT

Using a single circular input polarization state for PS-OCT, it is straightforward to compute the
cumulative retardation that propagation through the sample to a given depth and back imparts
on the input polarization state [6,10]. Yet, cumulative retardation can be difficult to interpret in
samples with a layered architecture, and it is more insightful to compute the local retardation γ
which is proportional to the sample birefringence at that depth location [12–16]. Following Eq.
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(3) we have ���� ∂t
∂z

���� = |β × t| = |β| sin θ = γ sin θ, (7)

where we used |t| = 1. θ is the angle between the rotation vector β and the polarization state t
and is needed to deduce local retardation. With only a single input state this angle is generally
unknown. Conventionally, at least two input polarization states are employed to solve Eq. (3)
vectorially and recover the orientation of the apparent optic axis and the amount of scalar
local retardation. Owing to the discovered properties of the mirror state, the evolution of t is
constrained to go through m, and it becomes possible to recover both the orientation and the
norm of β from measurements with only a single input polarization state. Both ∂t/∂z and (m − t)
lie within the same plane orthogonal to β. Hence, the direction of β can be obtained by the
cross-product β0 = (∂t/∂z) × (m − t), and sin θ =

��β0 × t
��/��β0��, allowing to calculate, after some

algebraic manipulations:

β =

∂t
∂z
× (m − t)

t> · (t −m) . (8)

The norm of β, scaled to degrees of retardation per depth (°/µm), reveals the sample’s local
retardation γ. A remaining challenge manifests whenever t aligns with β. This corresponds to a
vanishing angle θ. In this case the polarization state at a given depth aligns with the fast or slow
optic axis of the medium and it ceases to evolve. Using circularly polarized input light requires
a half wave of retardation to realize this alignment, which is uncommon in many biological
samples. Yet, some tissues feature substantial birefringence and controlling the input state is not
necessarily possible. Furthermore, alignment of t with m introduces numerical instability, as
both the nominator and the denominator in Eq. (8) vanish, making the result more susceptible to
noise.
To mitigate the reconstruction artifacts resulting from alignment between t and β or m, we

capitalize on the presence of polarization mode dispersion (PMD) in the imaging system and
use spectral binning for reconstruction by dividing the spectrum into several overlapping bins
[29]. While fiber-based systems may feature strong PMD (artifacts), residual amounts of PMD
are present even in free-space PS-OCT systems. Because PMD disperses the input polarization
state across the spectral bins, simultaneous alignment of t with β or m in all bins is very unlikely.
We can thus obtain an estimation of the apparent rotation vector β individually for each spectral
bin. After compensating for PMD by aligning the rotation vectors between the bins we can then
compute a weighted mean across the bins, taking into account the reliability of each estimation
according to the angle between the apparent rotation vector and the polarization state.

For spectral binning, we multiplied the background-subtracted spectral fringe data interpolated
to linear-in-wavenumber k with Hanning windows h(k, n) of width ∆k/N centered on n∆k/(2N)
within the available k-support ∆k, n ∈ [1, 2N − 1], N = 5, resulting in 9 spectral bins. For each
bin n, we computed the four-component Stokes vectors [I,Q,U,V]>, averaged in the lateral
direction with a Gaussian window of full width at half maximum fw before computing the degree
of polarization DOP =

〈(
Q2 + U2 + V2)1/2/I〉, where 〈〉 indicates averaging over the spectral

bins. Finally, the normalized three-components Stokes vector r(p, l, n) is recovered for each
bin n at each axial position p and lateral location l. To reconstruct β(p, l, n) according to Eq.
(8), we approximated t ≈ (r (p + 1) + r (p)) /2 and ∂t/∂z ≈ (r (p + 1) − r (p))/∆z, where ∆z is
the axial sampling distance. To express the reliability w of each estimated rotation vector, we
use sin(θ) by computing w(p, l, n) = |∂t/∂z| /|β|. The rotation vectors β(p, l, n) of the various
spectral bins all describe the same sample birefringence but are offset in their relative orientation
due to system PMD. The required rotation R(n) to align the rotation vectors of each bin to the
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central bin N in the least-square sense is given by:

max
R(n)

Tr ©«R(n) ·
∑
p, l
β(p, l, N) · β>(p, l, N)w(p, l, n)w(p, l, N)ª®¬ . (9)

R(n) is assumed constant within an entire B-scan, and the sum is taken over all points with
sufficient DOP > 0.8 and signal to noise ratio SNR > 8 dB. From the singular value decomposition
of the 3 × 3 matrix defined by the summation

∑
β · β>ww = U ·W ·V†, the solution to Eq. (9) is

obtained by R = V ·U†. Lastly, the aligned rotation vectors R(n) · β(p, l, n) are averaged among
the spectral bins considering their weights w(p, l, n). Before taking the vector norm to obtain
the final local retardation image, an additional axial averaging over a range hz is performed. The
effect of this last averaging is similar to directly computing the finite difference ∂t/∂z over an
axial range of hz pixels.

4.2. Sample imaging

To validate the ability of the polarization mirror state to enable reconstruction of local retardation
with a single input polarization state we imaged a tissue-like phantom consisting of a first
layer with a long birefringent band and a second layer with four parallel segments with distinct
birefringence levels, oriented at an angle to the band in the first layer. The phantom was imaged
twice and flipped around in between measurements to have either of the two layers facing up
(Fig. 4(a) and Fig. 4(b)).

For comparison, we first evaluated the cumulative retardation by measuring the angle between
the Stokes vector r at each depth and the Stokes vector at the sample surface rsurf. As shown
in Figs. 4(c) and 4(d), the cumulative retardation gradually increases within the birefringent
areas present in the top layer. The variation in the second layer, however, is less pronounced and
depends on the birefringence present in the top layer, which complicates the interpretation of the
retardation signal.

To compute local retardation, we calibrated the mirror state m for each spectral bin by placing
an attenuated mirror at the sample location, measuring the returning input polarization state, and
mirroring it by the QU-plane, and then reconstructed the local retardation from the phantom data
as described above, using fw = 13 A-lines (80 µm) and hz = 64 depth pixels (20 µm). Figures 4(e)
and 4(f) present the resulting birefringence maps, which clearly reveal the individual sample
segments with their distinct levels of birefringence. The cumulative retardation fundamentally
changes when flipping the sample, which precludes a straightforward interpretation of the sample
structure. In comparison, the local retardation maps are only minimally impacted by the sample
orientation. Moreover, Fig. 4(e, f) compares the processing with and without spectral binning
in the rightmost area of the phantom. To ensure fair comparison, the Stokes vectors for both
reconstructions are filtered with the same kernel size. Alignment of the backscattered polarization
state t with the mirror state m in the second layer of the sample leads to an artificial overestimation
of the sample birefringence, which is largely suppressed when using spectral binning.

Next, to demonstrate local retardation imaging in biological tissue, we imaged swine retina ex
vivo. The scanning area centered on the optical nerve head, spanning an area of 6mm by 6mm,
recording 1024 A-scans along each lateral dimension. Figures 4(g-j) show cross-sectional and en
face views of local retardation in the excised retina, processed with a three-dimensional Gaussian
kernel that spans hz = 20µm in the axial direction and fw = 60µm in both lateral directions. The
cross-sectional intensity image displayed in Fig. 4(g) visualizes the layered structure of the retina.
The local retardation reveals the distinct microstructure of the axons in the retinal nerve fiber layer
(RNFL), clearly differentiating it from the less birefringent subsequent layers Fig. 4(h). After
manually segmenting the upper and lower boundary of the RNFL in each frame, we averaged the
intensity and retardation values within the RNFL along depth to generate the en face projections
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Fig. 4. Local retardation imaging of birefringence phantom and swine retina ex vivo using
the polarization mirror state constraint. (a, b) Schematic sketch of the two-layer phantom
sample in either orientation. (c, d) Corresponding cumulative retardation and (e, f) local
retardation images, respectively. The blue box displays the local retardation image of the
sample area within the red dashed box reconstructed without spectral binning. The alignment
of the polarization state with the mirror state caused by the first birefringent element leads to
an overestimation of the birefringence in the second layer (white arrows). Scale bars in (c)
measure 100 µm (vertical) and 400 µm (horizontal). (g) Cross-sectional intensity image of
swine retina. (h) Cross-sectional local retardation image. Scale bars in (h) measure 100 µm
(vertical) and 400 µm (horizontal) and apply to (g, h). (i) Intensity and (j) local retardation
en face projections of the RNFL layer of the swine retina. The dashed line in (i) indicates
the location of the cross-section in (g, h). Both scale bars in (j) measure 400 µm and apply
to (i, j). Sample areas in (h) and (j) with a DOP<0.8 are masked.

presented in Figs. 4(i) and 4(j). The en face local retardation map exhibits a specific hourglass
pattern, featuring higher birefringence in the vertical than along the horizontal direction. This is
quite different from the C-shaped RNFL birefringence maps reported in humans [30] but requires
further investigation before drawing any conclusions. RNFL birefringence is being investigated
for its potential in diagnosing early degeneration of the RNFL associated with glaucoma [31,32].
The phantom and retinal imaging presented in Fig. 4 has been performed with a free-space

PS-OCT system and carefully adjusted input polarization states. Yet, the mirror state continues
to manifest in fiber and catheter-based imaging systems, where additional optical components
break the apparent D-transpose symmetry, and the light propagates through a spinning optical
fiber which dynamically alters the polarization state incident on the sample. To evidence the
ability to reconstruct local retardation with a single input state in a catheter-based system, we
processed data from a cylindrical birefringence phantom (Fig. 5(a)) acquired previously with an
intravascular PS-OFDI system [23]. The system modulated the input polarization state between
even and odd A-lines, and conventional reconstruction of local retardation with spectral binning
[29] as shown in Fig. 5(b) was used for comparison. fw = 12 A-lines was used for lateral filtering
of the Stokes vectors across the rotational scans consisting of 2048 A-lines, with hz = 5 depth
pixels (30 µm). We then reconstructed local retardation using only the 1024 even A-lines of the
data, reducing the filter to fw = 6 to maintain identical angular averaging. Collecting the A-line
centered in the middle of the birefringent band out of each frame we created the cross-sectional
image along the longitudinal direction. Because calibration of the mirror state was not possible
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in this case, to identify the mirror state we generated 2D histograms of the polarization states as a
function of their azimuth and elevation angle on the Poincaré sphere, evaluated only in areas
with DOP > 0.8 and SNR > 10 dB for each spectral bin in an entire B-scan. Akin to the fiber
twisting experiment, the round-trip retardation through the spinning catheter and the birefringent
sample ensured repeated evolution through the mirror state. The computed histograms indeed
featured a well-defined mode that we selected as the mirror state for each bin, and enabled
reconstruction of local retardation as displayed in Fig. 5(c). The mirror states were stable across
entire pullbacks. The longitudinal cross-sections of both the two input states and the single input
state reconstruction present very comparable birefringence maps.

Fig. 5. Birefringence phantom imaging using a catheter-based PS-OFDI. (a) Schematic
sketch of the cylindrical birefringence phantom. (b, c) Cross-sectional birefringence images
along the pullback direction, reconstructed using conventional two input polarization states
processing (b) and from only a single input state, using the mirror state constraint for
reconstruction (c). Scale bars in (b) measure 250 µm (vertical) and 1mm (horizontal) and
apply to (b, c).

5. Discussion

This study reports how the evolution of the polarization state after round-trip propagation through
a medium with changing retardation is constrained to pass through the polarization mirror state.
In addition to experimental demonstration and theoretical derivation of this constraint, we show
how it enables the reconstruction of local retardation, both in free-space and fiber-based PS-OCT
systems, from measurements with a single, unknown input polarization state. Leveraging from
modest spectral variations in the polarization state transmitted through static system components,
we further prevent obscuration of sample birefringence because alignment of the polarization
state with the sample optic axis across the entire spectrum is improbable.

Single input state PS-OCT has traditionally been limited to measuring cumulative retardation.
In samples composed of several retarding layers with distinct optic axis orientations, the
cumulative retardation produces a very convolved picture of the sample birefringence that is
difficult to interpret. While the benefit of local retardation imaging has been well established
[33,34], integrating hardware for modulating or multiplexing two input states in addition to the
required polarization diverse detection further increases system complexity. Any simplification of
the system architecture may enable a more widespread adoption of local retardation imaging with
PS-OCT. Fan and Yao previously introduced a reconstruction strategy to recover local retardation
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from measurements with only a single input polarization state [35,36]. Their approach relies
on the round-trip symmetry of the imaging system and the circularity of the input polarization
state and is incompatible with fiber and catheter-based systems. The mirror state and the
resulting constraint on the evolution of the depth-dependent polarization state described in this
manuscript extends the ability to reconstruct local retardation from measurements with a single
input polarization state to these important practical settings.

The mirror state corresponds to the polarization state of light reflected at the sample location
and mirrored by a symmetry plane in the Poincaré sphere. The rotation of the QU-plane by
the single-pass transmission from the reflector’s location to the detector defines the plane of
symmetry. Directly calibrating the mirror state is thus challenging, as it requires detailed
characterization of the system transmission, achieved in our initial experiments by using a
free-space system with known identity transmissions. Conveniently, in fiber-based systems,
the mirror state can be obtained by estimating the most frequently realized polarization state
returned from a sample with diverse birefringence. Twisting the fiber to dynamically modulate
the transmission through the fiber can be used to enrich the birefringence realizations. In case of
a catheter-based system, this is intrinsically achieved by rotating the catheter. Interestingly, this
calibration strategy directly provides the mirror state, without knowledge of the symmetry plane
or the ‘input’ polarization state. Our experimental results with catheter-based measurements
clearly demonstrate the robustness and effectiveness of our approach in this practical setting and
offer a pathway to simplified system architectures for catheter-based PS imaging.
Combination of the mirror state constraint with spectral binning proved crucial to obtain

robust and reliable local retardation measurements. Without binning, alignment of polarization
state with the optic axis of the sample can occasionally happen, as captured by the reliability
metric. Strikingly, even the residual amounts of spectral variation in the input polarization
state prepared with achromatic wave plates in case of our free space experiments markedly
improved the recovered birefringence maps. In case of fiber-based systems, the circulators are
likely the dominant source of more substantial PMD. Of note, we align the rotation vectors
between the spectral bins with a rotation that is constant across the entire B-scan, which
assumes that the PMD is induced in the static part of the system and that wavelength-dependent
birefringence in the sample or PMD in the rotating catheter can be neglected. Also, the presence
of diattenuation that induces polarization-dependent loss cannot be captured with the presented
SO(3) formalism. Diattenuation, or dichroism, is considered to be small compared to retardation
in typical samples and tissues [37–39], but would skew the measured polarization states and
frustrate the manifestation of the mirror state.

6. Conclusion

In conclusion, we demonstrated the peculiar properties of the mirror polarization state that
manifest when measuring backscattered light along identical illumination and detection paths
free of polarization-dependent loss. In PS-OCT the mirror state constrains the evolution of the
depth-dependent polarization state and enables local retardation imaging using only a single
input polarization state. Combined with spectral binning, which mitigates the detrimental impact
of the polarization state aligning with the sample’s optic axis, we obtained convincing local
retardation images both in free-space and through a fiber-based spinning catheter. The redundancy
of a second input polarization state offers a critical simplification of the hardware required for
performing local retardation imaging and may facilitate clinical and commercial adoption of
PS-OCT imaging.
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A. Appendix

A.1. Mueller matrix of reverse transmission through a reciprocal medium

In this section, we derive the deterministic (i.e. non-depolarizing) Mueller matrix of the reverse
transmission through a reciprocal element from its corresponding Jones expression. If A and B
denote the front and rear interface of this element, the Jones matrix JAB describes the forward
propagation through this element (as shown in Fig. 6). The reverse transmission is given by the
transpose of this matrix JBA = J>AB, when maintaining the orientation of the spatial xy-coordinates
irrespective of the propagation direction [24].

Fig. 6. Schematic diagram of the transmission through an element from A to B and in the
reverse direction, described by the Jones and Mueller matrices, respectively.

A matrix J in the Jones formalism can be converted into its corresponding Mueller matrix M
using [40].

M = U · (J ⊗ J∗) · U†

U = 1
√
2



1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0


,

(10)

where ⊗ is the Kronecker tensor product, J∗ is the complex conjugate of J, and U† represents the
conjugate transpose of U, corresponding also to its inverse. Using the fact that the transpose is
distributive for the Kronecker product ((A ⊗ B)> = A> ⊗ B>), we find

MBA = U ·
(
JBA ⊗ J∗BA

)
· U†

= U ·
(
J>AB ⊗ J†AB

)
· U†

= U ·
(
JAB ⊗ J∗AB

)>
· U†

= U · I ·
(
JAB ⊗ J∗AB

)>
· I · U†

= U ·
(
U> · U∗

)
·
(
JAB ⊗ J∗AB

)>
·
(
U> · U∗

)
· U†

=
(
U · U>

)
· U∗ ·

(
JAB ⊗ J∗AB

)>
· U> ·

(
U∗ · U†

)
=

(
U · U>

)
·M>AB ·

(
U∗ · U†

)
.

(11)

Evaluating the outermost expressions, we find U ·U> = U∗ ·U† = diag(1, 1, 1,−1). The transpose
of a Jones matrix corresponds to the transpose of its corresponding Mueller matrix, with the
sign of the last row and column, excluding the on-diagonal element, inverted. It represents the
reverse transmission through a reciprocal element. For a pure retardation matrix R in the SO(3)
formalism, this results in RBA = D · R>AB · D, where D = diag(1, 1,−1).
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A.2. Determination of rotation vector

The effect of a linear retarder can be expressed as a rotation vector τ = ϕ ·τ0 = ϕ ·[cosα, sinα, 0]>,
where τ0 has unitary length, α is the azimuth angle with respect to the Q-axis and ϕ is the rotation
angle, i.e. the amount of retardation. Assuming the linear retarder describes a homogeneous
layer of thickness ∆z, its rotation axis τ is identical to that of the differential matrix, and its
retardation is ϕ = γ∆z. The corresponding SO(3) rotation matrix T is [41]:

T = I + sin ϕ ·K + (1 − cos ϕ)K2 = exp (ϕK)

K =


0 τ3 −τ2

−τ3 0 τ1

τ2 −τ1 0


=


0 0 − sinα

0 0 cosα

sinα − cosα 0


.

(12)

Here, we are looking for the linear retarder T (ϕ,α) that maps an input state s = [s1, s2, s3]> to
some state t = [t1, t2, t3]>. Its rotation axis is given by the intersection of the QU-plane and the
plane bisecting s and t:

(t − s) ×


0

0

1


=


t2 − s2

s1 − t1

0


, (13)

from where
α = tan−1

(
s1 − t1
t2 − s2

)
. (14)

In general, s and t clearly define a single rotation axis. Only for the mirror polarization state, in
which case both the nominator and denominator vanish, α is undefined and can take any value.
To find the amount of rotation around this axis required to map s onto t, we project both vectors
onto the plane orthogonal to the rotation axis and evaluate their relative angle:

ϕ = cos−1
©«
(
s −

(
τ>0 · s

)
· τ0

)>
·
(
t −

(
τ>0 · t

)
· τ0

)√
1 −

(
τ>0 · s

)2√
1 −

(
τ>0 · t

)2
ª®®®®¬

= cos−1
©«

s> · t −
(
τ>0 · s

)2
1 −

(
τ>0 · s

)2 ª®®¬ ,
(15)

where τ0 = [cosα, sinα, 0]>, and τ>0 · s = τ
>
0 · t by construction. A defined rotation vector τ

within the QU-plane maps s onto a general t. Only for the mirror state t = m, there exists a
rotation for any azimuth direction within the QU-plane, tracing out a continuous curve in the
QU-plane when wrapped to ϕ ∈ (−π, π) (the red curve in Fig. 7(b)).

The shape and orientation of this trace is determined by s. Assuming the azimuth and elevation
angles of s are αs and εs, respectively (αs ∈ [0, 2π), εs ∈ [−π/2, π/2]), then the largest rotation
angle ϕA = π appears when the rotation vector aligns with the projection of s onto the QU-plane,
indicated by τA0 in Fig. 7(a). The smallest rotation angle appears when the rotation axis τB0 is
perpendicular to τA0. In this case the rotation trajectory coincides with a longitude of the sphere
and corresponds to a rotation angle of ϕB = 2 |εs |. As visualized in Fig. 7(b), the long axis of the
trace aligns with the azimuth angle of input state s, and the curvature of the trace is determined
by the elevation angle of s.
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Fig. 7. The trace of the possible rotation vectors that map the input state s to its mirror
state m is defined by the input state. (a) The maximum and minimum rotation angle ϕA,
ϕB and the corresponding rotation axes τA0, τB0 shown on the Poincare sphere. (b) The
corresponding rotation vectors τA and τB define the orientation and curvature of the trace of
the possible rotation vectors (red line).

In conclusion, there is always a suitable rotation angle for any orientation of the rotation axis
of T to achieve T · s = m. Left-multiplying this with D provides D · T · s = s which indicates
that s is invariant to transformation by D · T and that s is an eigenvector of D · T with a unitary
eigenvalue.
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