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Abstract: We longitudinally imaged both the superficial and deep cortical microvascular
networks in brains of healthy mice and in a mouse model of stroke in vivo using visible-light
optical coherence tomography (vis-OCT). We surgically implanted a microprism in mouse brains
sealed by a chronic cranial window. The microprism enabled vis-OCT to image the entire depth
of the mouse cortex. Following microprism implantation, we imaged the mice for 28 days and
found that that it took around 15 days for both the superficial and deep cortical microvessels
to recover from the implantation surgery. After the brains recovered, we introduced ischemic
strokes by transient middle cerebral artery occlusion (tMCAO). We monitored the strokes for
up to 60 days and observed different microvascular responses to tMCAO at different cortical
depths in both the acute and chronic phases of the stroke. This work demonstrates that the
combined microprism and cranial window is well-suited for longitudinal investigation of cortical
microvascular disorders using vis-OCT.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Stroke is the second leading cause of death globally and the third leading cause of premature death
and disability [1]. Given that a significant proportion of patients who suffer from stroke survive,
research efforts have been prioritized towards either expedient treatment or neurorehabilitation.
Neovascularization, the formation of new capillaries from blood vessels, has been considered a
target of interest for neurorehabilitation [2]. The neurovascular unit (NVU) is the basic building
block, from which angiogenesis can proceed. In contrast to commonly used post-mortem studies,
in vivo longitudinal imaging of the vasculature in preclinical models provides a unique opportunity
to study the physiologic progression of neovascularization. However, in vivo investigations have
heavily relied on multi-photon microscopy, which requires repeated use of extrinsic fluorescent
labels [3,4].

Visible-light optical coherence tomography (vis-OCT) is a three dimensional (3D), anatomical
and functional imaging modality with microscopic resolution. Using visible light illumination,
vis-OCT offers higher axial resolution and is more sensitive to differences in oxygenated
and deoxygenated hemoglobin absorptions compared to traditional near-infrared OCTs [5].
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These characteristics of vis-OCT have been applied extensively to investigate retinal anatomy,
vasculature, and metabolic rate of oxygen in both rodents and humans [6–14]. Vis-OCT has also
been applied to brain imaging for functional and structural evaluations [15–20]. For example,
Liu et al. [20] and Chen et al. [15] quantified acute changes in oxygen saturation in superficial
vessels in the mouse cortex following ischemic stroke. Srinivasan et al. [19] imaged mice for
one week following ischemic stroke, measuring various parameters including blood flow, vessel
diameter, and capillary density. In all these studies, vis-OCT enabled measurements of in vivo
cerebrovascular dynamics with label-free visualization of blood flow, eliminating the need for
extrinsic fluorescent labels.
Despite the above-mentioned unique advantages, all reported vis-OCT in vivo brain studies

had two major limitations. First, the imaging depth was limited to ∼200–400 µm due to the
relatively high attenuation of visible light in the brain, making it difficult to image the deep cortex
[21]. Second, the duration of the reported studies is limited to one week following induction of
strokes, although vessel remodeling continues for 60 days post-stroke [22–24].
Microprism implantation with a chronic cranial window into the brain has previously been

used in other optical microscopy modalities (e.g., two-photon microscopy, confocal microscopy,
and epi-fluorescence microscopy) for deep brain imaging. These studies demonstrated that
the addition of microprism caused manageable neural damages while dramatically expanding
the capability to investigate deep brain and still allowing longitudinal observation of the brain
[25–28]. Therefore, microprism implantation can potentially benefit vis-OCT for deep-brain
imaging to circumvent the strong visible light attenuation in the brain.
In this study, we integrated the microprism with vis-OCT in the brain to facilitate high-

resolution imaging of the deeply penetrating vascular network in the cortex. We also tracked the
structural and functional vascular responses to the microprism implantation, which informed us
of the brain recovery time from implantation surgery. In addition, we longitudinally monitored
mice after transient middle cerebral artery occlusion (tMCAO), a widely used model for ischemic
stroke, for up to two months after the day of stroke. These studies will pave the way for future
investigations of the vascular mechanisms of ischemic stroke recovery.

2. Methods

2.1. Experimental setup

We developed a vis-OCT microscope system for brain imaging (Fig. 1). The schematic of this
system is shown in Fig. 1(a). We used light from a supercontinuum laser (SuperK EXTREME
EXW-6, NKT Photonics) after passing through a short pass filter (Semrock FF02-694) as the
light source. We used a 30:70 fiber coupler (Gould Fiber Optics). In the sample arm, a pair of
galvanometer scan mirrors (QS-7, Nutfield Technology) routed the beam through a scan lens
(LSM03-VIS, Thorlabs) with an effective focal length of 39mm. The illumination beam diameter
was 4mm before being focused onto the sample. The incident light power was 1.4mW. We
estimated the numerical aperture to be about 0.05, resulting in a theoretical lateral resolution
of 6.8 µm in air. We used a commercial spectrometer (Blizzard SR, Opticent Health), which
covers the spectral range from 510 nm to 614 nm. Typical spectra from the reference are and the
sample arm spectra are shown in Fig. 1(b). These spectra fall between Gaussian and rectangular
profiles. The weighted center wavelength λc is 564 nm. For a Gaussian spectral profile, the
theoretical axial resolution δz in air is 1.4 µm as given by δzGauss =

0.44λ2c
∆λ [29]. For a rectangular

spectral profile, the theoretical axial resolution in air is 1.9 µm as given by δzRect =
0.60λ2c
∆λ . Our

experimentally measured axial resolution in air was 1.8 µm (Fig. 1(c)), which is between the
theoretical axial resolutions for Gaussian and rectangular spectral profiles. Assuming a tissue
refractive index n= 1.37 [30], our axial resolution in brain tissue is 1.3 µm. We used a silver
mirror as a sample for both axial resolution and sensitivity roll-off measurements. Figure 1(d)
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shows the measured sensitivity as a function of scanning depth at a step size of ∼75 µm. The
maximum SNR of 95 dB was measured at 75 µm from the zero-delay line. The system sensitivity
roll-off was measured to be 4.5 dB/mm in air.

 

retinal anatom
Vis-OCT has 
20]. For exam
saturation in s
al. [19] image
including blo
enabled meas
blood flow, el

Despite t
studies had tw
the relatively 
deep cortex [2
induction of s

Micropris
been used in 
microscopy, 
demonstrated 
dramatically e
observation o
vis-OCT for d

In this stu
resolution ima
the structural
informed us 
longitudinally
widely used m
studies will p
stroke recover

2. Methods

2.1 Experime

Fig. 1
disper
camer
and sa

my, vasculature
also been appl

mple, Liu et a
superficial ves
ed mice for on
od flow, vesse

surements of in
liminating the n
the above-men

wo major limita
high attenuati

21]. Second, th
strokes, althoug
sm implantatio

other optical 
and epi-fluor
that the addi

expanding the 
of the brain [25
deep-brain ima
udy, we integr
aging of the de
l and function

of the brain
y monitored m
model for isch
pave the way f
ry.  

s 

ental setup 

. (a) Schematic of 
rsion compensatio
ra; M: mirror; SC:
ample arm spectra.

e, and metaboli
lied to brain im
l. [20] and Ch

ssels in the mo
ne week follow
el diameter, an
n vivo cerebro
need for extrin
ntioned unique
ations. First, th
ion of visible 

he duration of t
gh vessel remo
on with a chro

microscopy m
rescence micro
ition of micro
capability to in
5-28]. Therefo
ging to circum
rated the micro
eeply penetrati
nal vascular r
n recovery tim

mice after trans
hemic stroke, f
for future inve

f the experimental 
n; FC: fiber coup
: supercontinuum;
. (c) Fourier transf

ic rate of oxyge
maging for func
hen et al. [15]
ouse cortex foll
wing ischemic 
nd capillary d

ovascular dyna
nsic fluorescent
e advantages, 

he imaging dep
light in the br

the reported stu
deling continu
onic cranial w
modalities (e.g
oscopy) for d
oprism caused
nvestigate deep
re, microprism

mvent the strong
oprism with vi
ing vascular ne
responses to t
me from imp
sient middle c
for up to two m
estigations of t

vis-OCT system. C
ler; G: grating; G
 SL: scan lens; SM
form of the spectru

en in both rode
ctional and stru
] quantified ac
lowing ischem
stroke, measur

density. In all 
amics with lab
t labels. 
all reported v

pth was limited 
rain, making i
udies is limited
ues for 60 days 
window into th
g., two-photon
deep brain im

d manageable 
p brain and sti

m implantation 
g visible light a
is-OCT in the 
etwork in the c
the microprism
plantation surg
erebral artery 
months after th
the vascular m

C: collimator; CL:
GS: galvanometer s
M: spectrometer. (
um. (d) Sensitivity

ents and human
uctural evaluat
cute changes in

mic stroke. Srin
ring various pa
these studies, 

bel-free visuali

vis-OCT in v
d to ~200-400 µ
it difficult to i
d to one week f
post-stroke [2

he brain has p
n microscopy, 
maging. These
neural damag

ill allowing lon
n can potentiall
attenuation in t
brain to facilit
cortex. We als
m implantatio
gery. In addi
occlusion (tM

he day of strok
mechanisms of 

: camera lens; DC
scanners; LC: line
(b) Reference arm

y roll-off. 

ns [6-14]. 
tions [15-
n oxygen 

nivasan et 
arameters 
vis-OCT 

ization of 

vivo brain 
µm due to 
image the 
following 

22-24]. 
previously 

confocal 
e studies 
ges while 
ngitudinal 
ly benefit 
the brain. 
tate high-
so tracked 
n, which 
ition, we 

MCAO), a 
ke. These 
ischemic 

 
: 
e 

m 

Fig. 1. (a) Schematic of the experimental vis-OCT system. C: collimator; CL: camera lens;
DC: dispersion compensation; FC: fiber coupler; G: grating; GS: galvanometer scanners;
LC: line camera; M: mirror; SC: supercontinuum; SL: scan lens; SM: spectrometer. (b)
Reference arm and sample arm spectra. (c) Fourier transform of the spectrum. (d) Sensitivity
roll-off.

2.2. Microprism assembly and implantation

Figure 2(a) illustrates the microprism cranial window assembly. We glued two circular coverslips
(5-mm-diameter and 8-mm-diameter) concentrically and glued a 1-mm right angle aluminum
coated microprism (86–621, Edmund Optics) to the 5-mm-diameter coverslip. We used ultraviolet
curing optical adhesive (Norland Optical Adhesive 81) to glue all the parts. The prism is 1-mm
deep and penetrates the entire cortex and part of the white matter. Figure 2(b) shows the
relationship between the top-view and side-view images with respect to the entire cranial window.
We acquired the top-view image via raster-scanning the optical focal spot through the cranial
window along the x–y plane (Fig. 2(c)). To acquire the side-view image, the vis-OCT illumination
beam was reflected by the hypotenuse and imaged through the vertical leg of the prism, where
the raster-scanning was translated to the y-z plane (Fig. 2(d)). In contrast to previously reported
cortical imaging, which only focused on the superficial area of the brain (top-view image), using
the prism provides an additional 1000 µm ×750 µm ×250 µm deep cortical volume (Fig. 2(e)).

2.3. Animal preparation

We used four adult wild-type C57BL/6 mice around three months old and 28-35 g for all
the experiments. We kept the mice in the Center for Comparative Medicine at Northwestern
University under normal lighting conditions with 12-h on and 12-h off cycles. We anesthetized
the mice via intraperitoneal injection (10 ml/kg body weight) of a ketamine/xylazine cocktail
(ketamine: 11.45 mg/ml; xylazine: 1.7 mg/ml, in saline). Anesthesia depth was monitored via
toe pinch test every 15 minutes. Half doses of the ketamine/xylazine cocktail were delivered as
needed. During imaging, we maintained their body temperatures by a heating lamp. We used a



Research Article Vol. 10, No. 10 / 1 October 2019 / Biomedical Optics Express 5238

 

We developed
system is sho
EXW-6, NKT
light source. W
galvanometer 
(LSM03-VIS,
diameter was 
mW. We estim
resolution of 
Health), whic
reference are 
Gaussian and
Gaussian speீݖߜ௔௨௦௦ ൌ ଴.ସସ୼
is 1.9 µm as 

was 1.8 μm (
rectangular sp
resolution in 
resolution and
function of s
measured at 7
be 4.5 dB/mm

2.2 Micropris

Fig. 2
cortex
Yellow
Imagi
side-v
and B

Fig. 2(a) illu
coverslips (5-
aluminum coa
used ultraviol
The prism is 
2(b) shows th
entire cranial 
spot through 

d a vis-OCT m
wn in Fig. 1a. 

T Photonics) af
We used a 30:7

scan mirrors (
, Thorlabs) wi
4 mm before 

mated the num
6.8 μm in ai

ch covers the s
and the samp

d rectangular p
ctral profile, tସఒ೎మఒ  [29]. For a 

given by ݖߜோ௘
(Fig. 1c), whic
pectral profile
brain tissue i

d sensitivity ro
canning depth

75 µm from th
m in air. 

sm assembly 

2. (a) Schematic 
x; WM: white ma
w dashed square:
ng volume acquir

view (yellow cuboi
-scan image with r

ustrates the m
-mm-diameter 
ated microprism
let curing optic
1-mm deep an

he relationship
window. We 
the cranial wi

microscope syst
We used light

fter passing thr
70 fiber couple
(QS-7, Nutfiel
ith an effectiv
being focused

merical apertur
ir. We used a
spectral range 
le arm spectra
profiles. The 
the theoretical 

rectangular sp

௘௖௧ ൌ ଴.଺଴ఒ೎మ୼ఒ . O

ch is between 
s. Assuming a

is 1.3 µm. We
oll-off measure
h at a step siz
e zero-delay li

and implanta

of the cranial w
atter; (b) Relation
: side-view from 
red from top-view
id); (e) Illustration
respect to their geo

microprism cra
and 8-mm-diam
m (86-621, Ed
cal adhesive (N
nd penetrates t
 between the t
acquired the to
indow along t

tem for brain im
t from a super
rough a short p
er (Gould Fiber
d Technology)

ve focal length
d onto the samp
re to be about 
a commercial s

from 510 nm 
a are shown in
weighted cent
axial resoluti

pectral profile,

Our experiment

the theoretica
a tissue refrac
e used a silve
ements. Fig. 1d
e of ~75 µm. 
ine. The system

ation 

indow-microprism
nship between th
the microprism; 

w (blue cuboid); (
n of top-view and s
ometries. 

anial window 
meter) concen

dmund Optics)
Norland Optic
the entire cort
top-view and 
op-view image
the x-y plane (

maging (Fig. 1
rcontinuum las
pass filter (Sem
r Optics). In th
) routed the be
h of 39 mm. 
ple. The incide
0.05, resulting
spectrometer (
to 614 nm. Ty

n Fig. 1b. The
ter wavelength
ion δz in air i

, the theoretica

tally measured

al axial resolu
ctive index n 
er mirror as a 
d shows the m
 The maximu

m sensitivity ro

m assembly and i
he top-view and s

blue dashed squa
(d) Imaging volum
side-view en face

assembly. W
ntrically and glu
) to the 5-mm-
cal Adhesive 8
tex and part of
side-view ima
e via raster-sca
(Fig. 2(c)). To

). The schemat
er (SuperK EX

mrock FF02-69
he sample arm,
eam through a 
The illuminati
ent light powe
g in a theoretic
(Blizzard SR, 
ypical spectra 

ese spectra fall
h λc is 564 nm
is 1.4 µm as 

al axial resolut

d axial resoluti

utions for Gaus
= 1.37 [30], 
sample for b

measured sensit
um SNR of 95
oll-off was me

implantation. CX
side-view images
are: top-view; (c)
me acquired from
vis-OCTA images

We glued two
ued a 1-mm ri

-diameter cove
1) to glue all 
f the white ma
ages with respe
anning the opt
o acquire the s

tic of this 
XTREME 
94) as the 
, a pair of 
scan lens 
ion beam 
r was 1.4 
cal lateral 

Opticent 
from the 

l between 
m. For a 
given by 

tion in air 

ion in air 

ssian and 
our axial 

both axial 
tivity as a 
5 dB was 
easured to 

 
: 
. 
) 

m 
s 

o circular 
ight angle 
erslip. We 
the parts. 
atter. Fig. 
ect to the 
tical focal 
side-view 

Fig. 2. (a) Schematic of the cranial window-microprism assembly and implantation. CX:
cortex; WM: white matter; (b) Relationship between the top-view and side-view images.
Yellow dashed square: side-view from the microprism; blue dashed square: top-view; (c)
Imaging volume acquired from top-view (blue cuboid); (d) Imaging volume acquired from
side-view (yellow cuboid); (e) Illustration of top-view and side-view en face vis-OCTA
images and B-scan image with respect to their geometries.

pulse oximeter attached to the left rear paw to monitor the peripheral arterial oxygenations and
the heart rate.
Our surgical procedures included two steps. First, we created a chronic cranial window with

microprism implantation. Second, following a recovery period of at least 15 days, animals
underwent tMCAO stroke to investigate microvascular changes within the ipsilateral ischemic
hemisphere. After each procedure, we placed the animals in a warm cage for recovery and
monitored toe/tail pinch withdrawal, heart rate, respiratory rate, and systemic oxygenation every
20 min until the mice fully recovered. Following stroke, we monitored the health of the mice
daily in the first three days following stroke, every 3 days in the following week, and once a
week thereafter. Sacrifice criteria were determined by IMPROVE guidelines, which set specific
expected symptoms for tMCAO at various time points post-stroke [31]. The stroke was not
successful in one mouse, who was immediately sacrificed. Two mice experienced progressive
weight loss of more than 20% at over 48 hours post-stroke and did not recovery by 7 days
post-stroke; we sacrificed them on the 7th day. One mouse experienced weight loss of 15% but
recovered within 7 days post-stroke and remained active and well-groomed throughout the course
of follow-up monitoring. This mouse was sacrificed at 60 days post-stroke, in accordance with
the end point set in our IACUC protocol. All experimental procedures were approved by the
Northwestern University IACUC.

2.4. Protocol for chronic microprism cranial window implantation

Once completely anesthetized, we placed the mice on a custom-built mouse holder. We removed
the hair and swabbed the scalp with 70% alcohol 3-5 times to prepare the area. Then we removed
the skin to expose the skull. The tissue adhesive (Vetbond, 3M) was pre-smeared on the top of
skull and muscle to create a durable flat surface. We performed a 5.5-mm diameter craniotomy
on top of the left side of parietal–temporal cortex using a dental drill. We centered the cranial
window at 2.5-mm left lateral of midline and 2.0-mm caudal to the bregma. We then carefully
removed the dura using a small forcep. Corresponding to the prism location and size, we made
a 1 mm × 1 mm incision at the dorsal side using a 27-gauge sharp syringe needle. We then
removed brain tissue at the incision site with an approximate volume of the prism to allow for
placement and prevent high intracranial pressure post-implantation. The incision was gently
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rinsed with sterile artificial cerebrospinal fluid until bleeding ceased. The caudal medial edge
of the microprism was aligned adjacent to the centering point of the cranial window. The
microprism assembly was then attached under the cranial window with the prism’s vertical plane
firmly attached to the temporal edge of incision. The outer part of the 8-mm diameter coverglass
was glued to the skull using tissue adhesive (Vetbond, 3M), followed by ultraviolet curing optical
adhesive to fill any gap between the skin and tissue adhesive. No gross behavioral deficits were
noticed in the mice afterwards.

2.5. tMCAO model

Surgically induced stroke using the Koizumi method [32] was performed after the mice fully
recovered from the microprism and chronic window implantation. Following the same anesthesia
and disinfection protocol mentioned above, the mice were immobilized in the dorsal position
on the surgical plane. Briefly, through a 2-cm midline neck incision, the left common carotid
artery (CCA) and external carotid artery (ECA) were sequentially permanently ligated (2-3 mm
distal to bifurcation) with 6-0 silk sutures. Permanent ligation was given to the proximal part
of the CCA and a vessel clip was placed just after the CCA bifurcation on the internal carotid
artery (ICA). An arteriotomy was performed between the permanent CCA suture and the CCA
bifurcation and a silicone-coated filament (Doccol 602123) was introduced via the arteriotomy
until it reached the vessel clip. The loose collar suture on the internal carotid artery (ICA) was
gently tightened around the CCA and the vessel clip was withdrawn. The filament was slowly
advanced through the ICA toward the cranial base until it was 9 mm from the bifurcation. The
inserted filament remained in place for 60 mins and was gently pulled out to induce transient
stroke model with reperfusion achieved by collateral circulation from the Circle of Willis. The
wound was closed with interrupted 5-0 silk sutures.

2.6. Imaging protocols for brain vis-OCT and vis-OCT angiography (vis-OCTA)

Prior to initiation of the stroke model, we monitored the cranial window to assess its quality and
stability at days 2, 3, 7, 15, 21, and 28. After the stroke, we imaged the mice continuously for
three days, which represented the acute period, at day 7 after stroke, and then imaged the mice on
day 30 and day 60 post-stroke, which represented the chronic period.
For monitoring, we consistently acquired images 20-30 minutes after anesthesia induction.

During each imaging session, we acquired both top- and side-view images. To acquire vis-OCT
images, we scanned 512 B-scans with 512 A-lines per B-scan. The integration time for each
A-line was 20 µs. The top-view image covers a 1.8 mm × 1.8 mm area and the side-view image
covers a 1.05 mm × 1.05 mm area (limited by the size of the microprism). To acquire vis-OCTA
images, we repeated each B-scan 5 times with 512 A-lines per B-scan, which took 26 seconds.
To visualize each vis-OCT and vis-OCTA volume as a 2D image, we took a maximum intensity
projection of brain tissue. Because of potential edema and liquid above the brain surface, this
slab thickness was optimized for each volume to ensure that all vessels in the volume were visible
in the en face images.

2.7. Data processing and statistical analysis

We followed the method described by Chen et al [15] to process vis-OCTA images and extract
hemoglobin oxygen saturation (sO2). We used ImageJ [33] to overlap two images from the same
region of interest (ROI) at different time points, allowing us to qualitatively analyze morphological
changes in the imaged vasculature. The degree to which the images overlap can reflect the
morphological stability between two different time points. We calculated blood vessel diameter
by manually measuring the diameter of the largest blood vessel within the ROI using ImageJ. We
repeated this measurement for the same section of the same vessel 5 times at each time point.
These results were then averaged to obtain the mean value and standard deviation. We performed
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blood vessel density calculations using the AngioTool, which automatically detects the vessels
and calculates the vessel area density in the whole tissue [34]. We used the same parameters in
AngioTool to measure both top- and side-view images at different time points. We used data
from three mice for further statistical analysis. One-way ANOVA analysis and two-tail t-test were
used for comparing the vessel density and diameter among the data of different days. For all
data, errors are reported as standard error of the mean and P< 0.05 was considered statistically
significant.

2.8. Cortical layers separation

For cortical layer separation, we considered that the side-view en face image covered the entire
cortex. We used the technique outlined in Merkle et al [35] to identify cortical layers. Briefly,
we determined the average cortical layer thickness as a percentage of the total cortex thickness in
the approximate location of imaging using the Allen mouse brain atlas [36]. We then combined
layers 1-3 and layer 5-6, giving a thickness percentage distribution of 37%:10%:53% for layers
1-3:4:5-6.

3. Results

3.1. Comparison of resolution with / without microprism

We imaged a 1951 Air Force target to quantify the resolution of vis-OCT with and without
using the microprism. We glued the target card to the prism using optical glue (Norland Optical
Adhesive 81). Under both conditions, the lines in group 6 subsection 3, corresponding to a
resolution of 6.2 µm, were clearly distinguished (data not shown).

3.2. Characteristics of vis-OCT and vis-OCTA images

Figure 3 shows both the vis-OCT and vis-OCTA top-view and side-view en face images as well
as B-scan images. Figure 3(a) is the optical microscopy image of the entire cranial window.
Figure 3(b) and Fig. 3(c) are the top-view and side-view optical images as highlighted in Fig. 3(a).
The side-view image acquired through the microprism shows comparable image quality with the
top-view image, both of which reveal delicate micro-structures of the vascular network. From
the side-view image, we can clearly see the white matter (as highlighted in Fig. 3(c)), which
suggests that the depth of the entire cortex is fully covered in the side-view image. Figure 3(d)
and Fig. 3(e) are top-view and side-view vis-OCT en face images, respectively. Figure 3(f) and
Fig. 3(g) are top-view and side-view vis-OCTA en face images, respectively, where much richer
microvascular networks are revealed as compared with the optical microscopy images. The
pseudo-color in Fig. 3(f) encodes vessels depth with respect to the brain-glass interface, where
few vessels deeper than 167 µm are visible. As a comparison, the side-view image reveals the
vascular network structure from the superficial cortex to the deep white matter area (Fig. 3(g)).
Figure 3(h) and Fig. 3(I) are the top-view vis-OCT and vis-OCTA B-scan images. The missing
information from the top-view images due to the shadow casted by the vessels from the superficial
layer can be recovered from the side-view B-scan images (Fig. 3(j) and Fig. 3(k)), which is
more suitable for deep brain investigation. By quantitatively analyzing the vessel morphologies
from the recorded vis-OCTA image (Fig. 3(I), red arrow), we confirmed that the image depth
was extended from ∼250 µm to 1000 µm. In vis-OCT B-scan images from both the top-view
(Fig. 3(h)) and side-view (Fig. 3(j)), the cortex demonstrates uniform signal intensities while the
white matter showed higher backscattering intensity.

3.3. Brain adaptation after microprism implantation

Wemonitored the brain for 28 days (Fig. 4) after implantation surgery to track the brain’s response
to the chronic cranial window and microprism. As shown in the optical microscopic images,
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Fig. 3. (a) Optical microscopic image of the entire cranial window with both top-view
(blue dash square) and side-view (yellow dash square) from the prism; (b) Magnified optical
microscopic image of the area corresponding to the blue dashed area in panel a; (c) Magnified
optical microscopic image of the area corresponding to the yellow dashed area in panel a.
Yellow arrows: vessels in the deep cortex area; blue dash area: white matter. (d) Top-view en
face vis-OCT image; (e) Side-view en face vis-OCT image; (f) Top-view vis-OCTA image
with color-coded vessel depths; (g) Side-view en face vis-OCTA image with color-coded
vessel depth. Purple area: deep cortex imaged through the prism. Blue dashed area: white
matter; (h, i) vis-OCT& vis-OCTAB-scan images acquired from the top-view. White arrows:
vessel shadows from top block signal beneath them; Red arrow: effective image depth around
250 µm calculated from the vis-OCTA vessel signal; (j, k) Vis-OCT & Vis-OCTA B-scan
images acquired from the side view. green arrow: 1 mm image depth through the prism;
blue arrow and dash area: higher backscattering intensity from white matter. (White scale
bar: 200 µm).

bleeding was observed on day 2 (Fig. 4(a1)) and day 3 (Fig. 4(a2)), and almost completely
absorbed by day 7 (Fig. 4(a3)). The brain cortex remained bleeding free as observed on day
15 (Fig. 4(a4)) and day 28 (Fig. 4(a5)). Vis-OCTA en face and Vis-OCT B-scan images reveal
greater details than optical microscopy images. The top-view vis-OCTA images on day 2
(Fig. 4(b1)), day 3 (Fig. 4(b2)), and day 7 (Fig. 4(b3)) show dilated vessels (highlighted by the
yellow arrows). These vessels recovered by day 15 (Fig. 4(b4)). Vis-OCT B-scan images are from
the positions highlighted by the yellow lines in each top-view vis-OCTA en face images. The
B-scans revealed fluid accumulation between the coverslip and brain both on day 3 (Fig. 4(c2))
and day 7 (Fig. 4(c3)) as highlighted by the blue stars. The fluid was fully resorbed by day 15
(Fig. 4(c4)) and did not recur on day 28 (Fig. 4(c5)).

From the side-view vis-OCTA images, the deep brain showed a lack of flow signal in the first 3
days due to cutting through the cortex (Fig. 4(d1) and Fig. 4(d2), highlighted by the yellow stars).
Microvessels started to regenerate as observed on day 7 (Fig. 4(d3)) and stabilized after day 15
(Fig. 4(d4) and Fig. 4(d5), highlighted by the red stars). Like those observed in the top-view
vis-OCTA images, vessels in the side-view images showed dilation in the first 7 days and began
to shrink thereafter. From the vis-OCT B-scan images, we observed stronger tissue attenuation
within certain areas on day 2 (Fig. 4(e1)) and day 3 (Fig. 4(e2)), and mild liquid accumulation on
day 7 (Fig. 4(e3)), both of which recovered by day 15 (Fig. 4(e4)). In addition, starting from day
15, we can clearly distinguish the cortex from the white matter based on elevated backscattering
as shown in Fig. 4e4 and Fig. 4(e5).

We analyzed vessel stabilization over 28 days after microprism implantation (Fig. 5). For both
the top-view and side-view vis-OCTA, we overlaid the images from day 15 and day 28 such that
the parts in common between the two images appear yellow. The high degree of overlapping in
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Fig. 4. Longitudinal monitoring of the structure and circulatory change after surgical
implantation of the microprism and cranial window from day 2 to day 28. (a1-a5) Optical
microscopic images from top-view after implantation. Blue arrows: bleeding; (b1-b5)
Top-view vis-OCTA en face images acquired from. Blue arrows: bleeding. Yellow arrow
heads: vessel diameter variation; Yellow-line: B-scan image positions; (c1-c5) Vis-OCT
B-scan images of superficial cortex. Blue stars: liquid accumulation between the brain
tissue and cranial window; (d1-d5) Side-view vis-OCTA en face images. Yellow stars:
non-vascular area; Red stars: vessel reappearance; Red arrows: diameter variation of the
same vessel; Blue lines: B-scan positions; (e1-e5) Vis-OCT B-scan images of deep cortex;
Blue stars: liquid accumulation between the brain tissue and prism; Blue arrows: full depth
of cortex; Orange arrows: white matter. Yellow scale bar: 200 µm.
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Fig. 5(a) and Fig. 5(b) shows qualitatively that minimal changes in vessel morphology occurred
after day 15 when the brain became stable and adapted to the microprism.
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Fig. 5. Determining blood vessel stability using vessel morphology, diameter, and density.
(a) Overlaid top-view vis-OCTA en face images from day 15 and day 28; (b) Overlaid
side-view vis-OCT en face images from day 15 and day 28. Yellow color: overlapped
regions. (c) Top-view vis-OCT image from day 3; (d) Top-view vis-OCT image from day 15.
The yellow dashed lines highlight the main vessel within the field of view. The red lines
highlight where vessel diameters were measured; (e) Side-view vis-OCTA image on day 11;
(f) Vessel segmentation using AngioTool. Yellow: boundaries of automatically detected
vessels. Red: centerlines of vessels; (g) Changes in vessel diameters from day 3 to day 28
from both top-view and side-view vis-OCTA images. Mean and standard deviations are
plotted. (h) Changes in vessel area density from day 3 to day 28 from both top-view and
side-view vis-OCTA images. Mean and standard deviations are plotted. Statistical analysis
is compared with Day 28. ns: no significant difference. *: P< 0.05, **: P< 0.01, ***:
P< 0.001, ****: P< 0.0001.

We further measured the diameter variation of the largest vessel segment in both the top-view
and side-view vis-OCTA image over 28 days. Figure 5(c) and Fig. 5(d) show how we measured
the vessel diameter between two time points. We measured a single identified vessel segment in
each field of view manually five times from positions highlighted by the red lines and repeated
this process at each time point. Figure 5(e) shows the vis-OCTA side-view image on day 11 and
Fig. 5(f) shows the corresponding segmented vessels (vessel skeleton in red and vessel boundary
in yellow). Figure 5(g) shows the variations in vessel diameters measured from identified vessel
segments from both top-view and side-view images over 28 days in one mouse, where identified
vessels remained significantly dilated until day 11 and stabilized by day 15. In addition, we
calculated vessel area density, defined as the ratio between the total segmented vessel area (in
pixels) and the total image area (in pixels). Figure 5(h) shows the variation in vessel area densities
averaged for three mice over 28 days. Overall, the area density of deep cortical vessels imaged by
the side-view vis-OCTA appeared to be affected more than the superficial vessels imaged by the
top-view vis-OCTA. This decrease in vessel area densities immediately followed the microprism
implantation and recovered over the following days. The superficial vessels became relatively
stable on day 11 while the deep vessels became stable on day 15.
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After confirming that the brain adapted after 15 days, we monitored the mice for up to day
60 after stroke to validate that the cranial window and microprism are suitable for long-term
investigation. With the complete optical assembly mounted on the head, the mice showed normal
behavior. The brain did not exhibit signs of infection and had only minor inflammation and
bleeding during the first few days as mentioned above. By day 60, the window and glue remained
stably fixed on the head, and the image qualities from both the top and side view exhibited good
consistency in optical microscopy, vis-OCT, and vis-OCTA.

3.4. Monitoring tMCAO in mouse

We monitored both acute and chronic changes after tMCAO using vis-OCTA and observed the
ischemic and vascular behavior of both the superficial and deep vascular beds (Fig. 6). During
the acute period, the vis-OCTA images from the top and side views showed different vascular
involvement. Figure 6(a1)–6(a6) are optical microscopic images through the cranial window,
Fig. 6(b1)–6(b6) are top-view vis-OCTA images, and Fig. 6(c1)–6(c6) are side-view vis-OCTA
images. Compared to vis-OCTA images before stroke (Fig. 6(b1) and Fig. 6(c1)), severe reduction
of capillary density was observed in the side-view image (Fig. 6(c2)) on day 1 while the capillary
density in the top-view image (Fig. 6(b2)) was only slightly affected. However, on day 2, the
vessel density from the side-view image (Fig. 6(c3)) increased, demonstrating reperfusion in the
deep cortex. Meanwhile, a decrease in vessel density appeared in the top-view image on day 2
(Fig. 6(b3)). On day 3, reperfusion can be seen from both top-view (Fig. 6(b4)) and side-view
images (Fig. 6(c4)). In addition, we observed vessel dilation in both the top-view (highlighted by
the blue arrows) and side-view images (highlighted by the green arrows) in the first 3 days.
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Fig. 6. Longitudinal monitoring of acute (day 1 to day 3) and chronic (day 30 and day
60) changes after tMCAO. (a1-a6) Optical microscopic images from top-view before and
after tMCAO. Yellow dashed square: side view from the microprism; blue dashed square:
top-view; (b1-b6) Top-view vis-OCTA en face images before and after tMCAO. Blue arrow
heads: vessel dilation (b2-b4); vessel constriction (b5-b6). Blue stars: reduced flow signal.
Red arrows: bounded neovascularization. (c1-c6) Side-view vis-OCTA en face images
before and after tMCAO. Green arrows: vessel dilation (c3-c4); vessel narrowing (c5-c6).
Yellow stars: reduced flow signal. Red stars: overgrown neovascularization. (Black scale
bar: 1mm; Red scale bar: 400 µm, Yellow scale bar: 200 µm)
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On day 30 and day 60, which represented the chronic stage after stroke, no non-perfused
regions were observed from both the superficial and deep cortex. In both the top-view and
side-view images, major vessel diameters (highlighted by the blue green arrows) shrunk in the
chronic stage as compared to baseline prior to and acutely after stroke. We observed vessel
deformation in the top-view image (Fig. 6(b5) and Fig. 6(b6), highlighted by the red arrows).
Side-view vis-OCTA images revealed the disappearance of a large vessel in the deeper cortex,
which was replaced by a robust increase in vessel density (Fig. 6(c5) and Fig. 6(c6), highlighted
by the red stars). Additionally, we note that the field of view through the side view shifted from
day to day, most notably between day 3 and day 30. This shift corresponds to a roughly 200 µm
lateral shift. We speculate that this change can be caused by anatomcial alterations following
stroke outside the field of view. Increased cavity size or change in ventricle size could cause
distortion of the brain, accounting for this difference in field of view [37,38].

Using the side-view vis-OCTA en face images, we analyzed vascular changes during the first
week following stroke (Fig. 7). Figure 7(a) shows an example of a side-view vis-OCTA en face
image divided into three cortical layer groups covering layers 1-3, 4, and 5-6 [39]. The blood
vessel area density over the first week following stroke is plotted for each cortical layer group in
Fig. 7(b). Before stroke, vessel density is highest in layer 4. For both the most superficial group
(layers 1-3) and layer 4, a clear decrease in vessel density from the baseline to day 3 post stroke
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Fig. 7. Vascular changes during the first week after stroke. (a) Side-view vis-OCTA en face
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5 and 6 of the cortex. (b) Changes in vessel density from day 0 (acquired immediately before
performing the stroke) to day 7 after the stroke, separated by cortical layer groups. Mean
and standard deviation across three mice are plotted. (c1-c5) Top-view vis-OCTA en face
images pseudo-colored according to measured sO2, from immediately before stroke to 7
days after stroke. (d1-d5) Side-view vis-OCTA en face images pseudo-colored according to
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can be observed. Such a decrease in vessel density is remedied by day 7 after stroke. The most
significant decrease in vessel density occurs on day 2 after stroke in layers 5-6; the change in
vessel density is again remedied by day 7 after stroke. Figures 7(c1)–7(c5) and 7d1–7(d5) show
vis-OCTA en face images pseudo-colored according to sO2 values for the top-view and side-view,
respectively. In day 2 after stroke, the large superficial vessel of the top-view image shows
an increase in sO2 (Fig. 7(c3)). However, this increase appears limited to only that particular
vessel within the field of view, with the smaller and deeper vessel appearing less oxygenated
than in the baseline and day 1 post stroke (Fig. 7(c3) compared to Figs. 7(c1)–7(c2)). The vessel
density in the side-view image on day 2 post-stroke is reduced, but the sO2 does not appear
to be significantly changed (Fig. 7(d3) compared to Figs. 7(d1)–(d2)). In the top-view image,
day 3 post-stroke sO2 appears much more similar to baseline than day 2 post-stroke (Fig. 7(c4)
compared to Fig. 7(c1)). However, by day 7, the main vessel in the top-view image appears
less oxygenated when compared with all the prior time points (Fig. 7c5). Additionally, at day 7,
the entire pseudo-colored image appears muted, with little oxygen saturation contrast between
different vessels, possibly implying that less oxygen is being extracted (Fig. 7(c5)). Starting on
day 3 post-stroke and in day 7 post-stroke on the side-view images, a greater number of vessels
with intermediate sO2 levels than in the baseline image (Figs. 7(d4)–7(d5)) can be observed.

4. Discussion

Despite the great potential in cortical imaging using vis-OCT, reported results are confined to
limited imaging depth caused by stronger visible light attenuation in the brain [40]. Although
superficial and deep cortical blood vessels can be identified from the depth map in the top-
view vis-OCTA images (Fig. 3f), the image quality of those deep cortical vessels decreased
tremendously. By integrating the cranial window with a microprism in this study, we extended
vis-OCTA to an additional 1000 µm × 750 µm × 250 µm imaging volume (Fig. 2d), which
covers the entire cortex and part of the white matter. The side-view images acquired through the
microprism clearly visualize the vertical vascular network from the superficial to deep cortex and
reveal different patterns compared to the superficial vessels. Therefore, microprism implantation
circumvents tissue scattering and attenuation challenges, thereby allowing higher-resolution
imaging deep into the cortex.
Previous studies have shown that minimal neural damage was induced by the microprism

implantation [25–28]. However, the microcirculatory changes post prism implantation have not
been investigated. According to our model, the circulation of the superficial layer was slightly
affected during the first several days with cortical bleeding and inflammation being the main issue.
It is reasonable to expect that the deep cortical vessels suffer more severe damage due to direct
cutting, involving tissue damage, edema, and bleeding. However, the vessel morphology, vessel
density and vessel diameter measurements obtained from the side-view vis-OCTA demonstrate
recovery after 15 days following prism implantation. This observation suggests that waiting for
at least two weeks following microprism implantation surgery is necessary for the brain to fully
stabilize.
We also compared the long-term optical qualities through the combined prism and cranial

window and through the cranial window only. The microscopic image quality through the prism
is comparable to the adjacent area without prism, and the vis-OCT en face image also shows
similar resolution both through and without the microprism. In addition, our results demonstrate
that the microprism and cranial window remained completely transparent through the entire 60
days after implantation, which is especially important for longitudinal investigation. To achieve
such long-term stable optical quality, several techniques were used in our animal preparation.
First, we removed the dura to prevent fibrosis on the brain surface and subsequent blurring of
the chronic cranial window. Second, by adding a small drop of removable optical glue on the
coverslip to prevent dust and scratches, the image window surface remained clean throughout the
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duration of the longitudinal monitoring. Third, the cover glass was firmly attached to the brain
surface, which can both reduce post-surgical bleeding for better imaging quality and prevent fluid
accumulation between the brain and the window.
Using the tMCAO model, we successfully investigated the acute and chronic dynamic

circulatory changes of both the deep cortex from the side view and superficial cortex from the
top-view. During the first three days of the acute stage, vis-OCTA reveals that the deep cortex is
more severely ischemic than the superficial cortex. Longitudinal monitoring through both the
side-view and top-view vis-OCTA further demonstrated the different patterns of vessel density
changes in deep and superficial cortex. This result is concordant with the phenomenon that
degree of increased vessel density is related to the severity of ischemic area [41]. From the side
view, it also appears that the degree of increased vessel density is lower in the deep cortical
region adjacent to the white matter, which coincides with the fact that the cortex has much higher
vessel density and oxygen requirement than the white matter, resulting in different responses to
ischemic stress [42–44].
There are a few limitations in our experiment. First, although the brain damage by prism

implantation is considered acceptable, there are still potential permanent influences to the brain
structure and functions that need to be further investigated. Second, the microprism enlarged the
imaging depth by imaging though the side, but the thickness of the side-view volume (Fig. 2e) is
still limited by optical scattering in the brain. Third, the bleeding on the surface of the brain
that was present the first few days after implantation may have affected measurements of vessel
density and dilation. The high absorption of blood may block signal from vessels beneath the
pooling blood, artificially decreasing vessel density measurements in those first 7 days following
implantation. However, OCTA signal from blood vessels can still be clearly observed even under
liquid accumulation in angiographic B-scans. Additionally, the vessel dilation occurs in the
side view on days 2 and 3 after implantation, even when there is no fluid visible in the B-scans
(Figs. 4e1 and 4e2). Similarly, in the top view, the vessel dilation was more significant on day 3
than day 7, while there is greater fluid accumulation on day 7. The presence and amount of fluid
does not appear to be correlated to vessel dilation after implantation. The identity of the pooled
fluid in Fig. 4 needs further investigation, but its optical properties are consistent with that of
cerebrospinal fluid.

Additionally, we acknowledge that our quantitative vessel dilation measurements need a better
baseline comparison. This is because implanting a cranial window has been shown to causes acute
vasodilation [45]. However, our findings of approximately 2 weeks to recovery are consistent
with previously published findings of implanted cranial window without prism, where large and
medium vessels require approximately 3–4 weeks to recover [45]. We also acknowledge that
without histological evidence or other whole brain imaging such as MRI, we can only speculate
as to why the field of view shifted significantly between days 3 and 30 post stroke (Fig. 6).
The timeline of this change is consistent with both the replacement of the necrotic core of the
infarction with a growing fluid filled cavity at day 21 post stroke [38] and also with increased
ventricle size at day 30 post stroke [37]. Both of those changes could be responsible for distorting
the brain tissue at the location we imaged through the prism.
Finally, our current experiment focuses on the structural and circulatory changes only. Many

other areas of functional information are yet to be explored. One future step is to combine this
microprism implantation with vis-OCT oxygen saturation measurements to explore ischemic
stroke in both superficial and deep cortex. Another future goal is to integrate vis-OCT, fluorescence
microscopy, and microprism to collectively investigate structural and functional changes such as
neural morphology, oxygen tension, and blood flow [46].
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5. Conclusion

In conclusion, we present a vis-OCT imaging system that imaged the entire brain cortex through
a cranial window integrated with a microprism. This method allows for in vivo, high-quality
vis-OCT imaging of murine cortex for 60 days. It provides a new modality to simultaneously
investigate both superficial and deep cortex. Using vis-OCT, we wish to better understand the
structural and functional changes of cerebrovascular disease and eventually develop a translatable
outcome measure for therapeutic interventions.
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