
Protein Design by Provable Algorithms

MARK A. HALLEN1, BRUCE R. DONALD2

MARK A. HALLEN: mhallen@ttic.edu; BRUCE R. DONALD: cacm19@cs.duke.edu
1Research assistant professor at the Toyota Technological Institute at Chicago, IL, USA.

2James B. Duke Professor of Computer Science at Duke University, as well as a professor of 
chemistry and biochemistry in the Duke University Medical Center, Durham, NC, USA.

Graphical Abstract

PROTEINS ARE A class of large molecules that are involved in the vast majority of biological 

functions, from cell replication to photosynthesis to cognition. The chemical structure of 

proteins is very systematic5— they consist of a chain of atoms known as the backbone, 

which consists of three-atom (nitrogen-carbon-carbon) repeats known as residues, each of 

which features a sidechain of atoms emanating from the first carbon. In general, there are 20 

different options for sidechains, and a residue with a particular type of sidechain is known as 

an amino acid (so there are also 20 different amino acid types). For billions of years, the 

process of evolution has optimized the sequence of amino acids that make up naturally 

occurring proteins to suit the needs of the organisms that make them. So we ask: Can we use 

The authors are founders of Gavilán Biodesign, Inc.

HHS Public Access
Author manuscript
Commun ACM. Author manuscript; available in PMC 2019 October 11.

Published in final edited form as:
Commun ACM. 2019 October ; 62(10): 76–84. doi:10.1145/3338124.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computation to design non-naturally occurring proteins that suit our biomedical and 

industrial needs?

This question is a combinatorial optimization problem, because the output of a protein 

design computation is a sequence of amino acids. Due to the vast diversity of naturally 

occurring proteins, it is possible— and very useful—to begin a protein design computation 

with a naturally occurring protein and then to modify it to achieve the desired function. In 

this article, we focus on protein design algorithms that perform this optimization using 

detailed modeling of the 3D structure of the protein.5,8 Thus, they will begin with a starting 
structure, a 3D structure of a (typically naturally occurring) protein we wish to modify.

To illustrate this concept, imagine we wish to perform a simple example modification to a 

protein to make it more stable, so it can still function at higher temperatures. In this case, we 

must minimize the protein’s energy with respect to its sequence of amino acids. In structure-

based design, energy is typically estimated using energy functions, which map the 3D 

geometry of a molecule to its energy, so the optimization becomes slightly more complex: 

we minimize the energy with respect to both the sequence (of amino acids) and the 

conformation (the 3D geometry of the protein, that is, the locations of all its atoms in space). 

While the sequence is a discrete variable, the conformation is a continuous one because 

coordinates in ℝ3 are continuous variables. There are some physical (for example, 

holonomic) constraints on how atoms can move relative to each other, and thus the 

conformational space can be represented most effectively using internal coordinates, 

resulting in the joint angle configuration space familiar in robotics and motion planning in 

computer science. Nevertheless, the full conformational space of a protein is too vast to 

search exhaustively, especially with a simultaneous search over sequence space.

Computational structure-based protein design arose as a response to this difficulty. Its initial 

goal was to overcome certain combinatorial obstructions to designing with a discretized 

version of the conformational space. Hence, in order to study protein design, it is first 

necessary to understand the structure of this simpler (but still non-trivial) discrete 

optimization problem. To this end, we first give a flavor for the issues that arise in discrete 

optimization. We examine a very special case—the case of discrete rotamers and a simple 

Markov random field (MRF)-like energy function. Next, we carefully define a mixed 

discrete-continuous optimization problem that gives sidechains and then backbones 

continuous flexibility within a conformational voxel. Then, we present algorithms that 

provably approximate partition functions over many states, analogously to well-known 

statistical inference and machine learning computations, and that exploit improved, more 

realistic energy functions.

It is also often useful in protein design to optimize objectives other than simply the energy of 

a protein. However, many useful design objectives can still often be posed in terms of the 

energies of multiple biophysical states of a protein—for example, states where it is bound to 

particular other molecules. Thus, the problem of multistate design, which we will formalize, 

is appropriate for tasks like optimizing the binding of one protein to another molecule, or 

even specific binding to a second molecule while excluding binding to a third molecule. 

HALLEN and DONALD Page 2

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Together with some novel types of objective functions, multistate design is a more general 

tool to optimize the desired function of a protein with respect to sequence.

We will highlight provable computational techniques employed for each of these problems. 

These include techniques from combinatorial optimization, constraint satisfaction, machine 

learning, and other areas. For the relatively simple protein design problems addressed in this 

article, we find that algorithms with a beautiful mathematical structure suffice. This permits 

us to illustrate by specific examples the situation confronting practical protein designers in 

academic or biopharmaceutical laboratories. Throughout the article, we review algorithms of 

intrinsic mathematical interest and with the potential for high impact on the engineering of 

new molecular therapies for human disease.

In addition to this review of core algorithmic work, we will briefly discuss methods to 

accelerate protein design computations using GPU hardware, as well as some cases in which 

proteins designed using provable algorithms have performed well in experimental tests. 

Protein design with provable algorithms has already had success in the design of novel 

enzymes and proteins with therapeutic applications. As the field matures and significant 

errors are eliminated from more steps of the protein design process, we expect to see even 

more successes from this promising technique.

The Pairwise Discrete Model

Problem definition.

We will now formalize this problem of stabilizing a protein using some simplifying 

assumptions, which will yield the most commonly used mathematical formulation of the 

protein design problem. We will present several algorithms to attack this problem as well as 

enhancements to the formulation with more sophisticated objectives and/or modeling 

assumptions.

Changing the sequence of a protein—that is, mutating it—does not alter the chemical 

structure of its backbone,a and the largest conformational changes are typically found in 

sidechains near the site of the mutations (we will designate these residues as flexible, that is, 

we will consider it necessary to search their conformational space). Thus, we will assume 

the backbone conformation (and possibly some of the sidechain conformations for residues 

farther from the site of mutations) is the same as in the starting structure. Moreover, analyses 

of sidechain conformational space have found sidechain conformations for each amino-acid 

type to occur in clusters known as rotamers. We will refer to the modal sidechain 

conformation in each cluster as an ideal rotamer. Then, for the sidechains with respect to 

whose amino-acid type and conformation we wish to optimize, we will assume the sidechain 

conformations will be ideal rotamers, meaning we need only optimize over a discrete set of 

(sequence, conformation) pairs in which each residue must be assigned an amino-acid type 

and one of the ideal rotamers for that amino-acid type.

aActually, there is one amino acid—proline—whose sidechain bonds to the backbone in two places, but it does not alter the repeating 
nitrogen-carbon-carbon pattern of backbone atoms.

HALLEN and DONALD Page 3

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Let r be a list of rotamers (which may be of any amino-acid type) for the residues that we 

are treating as flexible and/or mutable. If we use only ideal rotamers, r fully defines a 

sequence and conformation for the protein, so our energy function gives us a well-defined 

energy E(r), and our optimization problem becomes simply finding arg min E(r). However, 

one more simplifying assumption is often applied: that we are using a pairwise energy 
function, which is a sum of terms that each depend on the amino-acid types and 

conformations of at most two residues. In this case, we can expand

E(r) = ∑
i

E(ir) + ∑
j < i

E(ir, jr) (1)

where i and j are residues, and ir is the rotamer that r assigns to residue i (we place the 

residue position in the subscript, following the convention of the field). The pairwise energy 

function gives us a well-defined 1-body energy E(ir) and 2-body energy E(ir, js) for any 

rotamers ir and js, and indeed these energies can be precomputed (generating an energy 
matrix) before the process of optimization begins, allowing the optimization to simply 

operate on the energy matrix rather than calling the energy function directly. Thus, we can 

formalize the protein design problem in this simple pairwise discrete model as

arg min
r

∑
i

E(ir) + ∑
j < i

E(ir, jr) . (2)

We will refer to the solution of Eq. (2) as the global minimum-energy conformation, or 

GMEC. This problem is equivalent to finding the maximum-likelihood solution for a 

Markov random field with only pairwise couplings.5,7

Finding the GMEC is unfortunately NP-hard,27 even to approximate.1 But much algorithmic 

and development work has attacked it, and most biophysically relevant cases of the problem 

can be solved efficiently in practice with provable guarantees of accuracy. We now review 

some of this work.

Work on this problem using heuristic protocols such as simulated annealing, Monte Carlo 

simulation, and genetic algorithms is surveyed comprehensively in Donald5 and Gainza et 

al.8 Moreover, Monte Carlo simulation in this context is often not ergodic, rendering it less 

reliable than mathematical methods like Monte Carlo integration that can obtain accurate 

error bars based on the variance of an ergodic simulation. As a result, estimates of the 

GMEC even from a highly optimized Monte Carlo/simulated annealing protocol exhibit 

empirically significant deviations from the true optimum.31 Similar empirical deviations 

have been found in several other areas of structural biology requiring global minimizers, as 

reviewed in Gainza et al.8 For these reasons, in this article we concentrate on provable 

algorithms that may be of greater interest to computer scientists.

HALLEN and DONALD Page 4

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Approaches to the problem:

The classic DEE/A* framework. The first breakthrough toward solving Eq. (2) was the DEE 

algorithm4 (with refinements due to Goldstein), which eliminates rotamers that cannot be 

part of the GMEC. It works by comparing two rotamers ir and it for the same residue. ir can 

be pruned if every conformation r containing ir is higher in energy than the corresponding 

conformation in which ir has been replaced by it, that is, if

min
r

E(ir) − E(it) + ∑
j ≠ i

E(ir, jr) − E(it, jr) > 0 . (3)

Evaluating Eq. (3) is as difficult as finding the GMEC directly. But the sum of minima is 

always a lower bound for the minimum of a sum, so we obtain the following sufficient 

condition for Eq. (3), which can be evaluated in time linear in the number of residues:

E(ir) − E(it) + ∑
j ≠ i

min
s

E(ir, js) − E(it, js) > 0 . (4)

We call Eq. (4) the DEE criterion. By evaluating it for each residue i and each pair of 

rotamers ir and ir that are available at i, we can greatly prune the space of rotamers that may 

be part of the GMEC. This pruning step is polynomial-time.5 Thus, the combinatorial 

bottleneck must occur later, in the enumeration step.

DEE is an efficient algorithm, but it still may leave multiple possible rotamers for some or 

all of the residues. This problem has been solved by deploying the A* algorithm from 

artificial intelligence to find the GMEC using only the rotamers remaining, that is, using 

DEE/A*.22 Briefly, the A* algorithm in this context builds a priority queue of nodes that 

represent a partially defined conformation q, which consists of rotamer assignments for only 

a subset S(q) of the residues. The score of a node is a lower bound on the energy of any 

conformation containing all the rotamers in q (that is, min
ir = iq∀ i ∈ S(q)

E(r)). We repeatedly 

extract the lowest-scoring node from the queue and expand it by creating nodes for which 

one more residue has a defined rotamer. Eventually the lowest-scoring node will be a fully 

defined conformation. Since all conformations in other nodes must have higher energies 

(based on the nodes’ lower bounds), this fully defined conformation must be the GMEC.

This shows that it is possible to find the GMEC with guaranteed accuracy, and indeed to do 

so significantly faster (in practice) than exhaustive enumeration of conformations. We will 

now discuss even more sophisticated and efficient algorithms for this problem.

Algorithms from weighted constraint-satisfaction problems.

One source of such improved algorithms is from the field of weighted constraint-satisfaction 

problems (WCSPs), of which the pairwise discrete protein design problem (Eq. 2) can be 

seen as a special case. To use these techniques, the energy matrix is encoded as a cost 

function network (CFN), which includes the same type of 1- and 2-body terms as an energy 

HALLEN and DONALD Page 5

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matrix from protein design.33 The most efficient provably accurate algorithms for WCSPs 

perform a tree search like A*, but with much more refined heuristics to guide the search 

(including both upper and lower bounds). They also usually employ a depth-first branch-

and-bound approach rather than a best-first search like A*. As a result, far less memory is 

required in practice. A large set of empirical benchmarks in Traoré et al.32 showed the 

Toulbar package for WCSPs significantly improved the state-of-the-art efficiency for protein 

design in the discrete pairwise model. Moreover, this increase in efficiency allowed direct 

comparison of the true GMEC (computed by WCSP algorithms) to estimated GMECs from 

the popular but non-provable simulated annealing algorithm, as implemented in the Rosetta 

software, for very large protein design problems. Significant discrepancies were found,31 

and indeed the error in simulated annealing’s estimates increased with protein size. This 

highlights the need for algorithms with provable guarantees for protein design.

A related and also provable approach is to reduce Eq. (2) to an integer linear programming 

problem.21

Algorithms making sparsity assumptions.

Although protein design as expressed in 2Eq. (2) is NP-hard even to approximate,1 it is 

possible to add additional assumptions that make it solvable in polynomial time. Suppose we 

assume that some pairs of residues have uniformly zero interaction energies, such that the 

graph whose nodes are residues and whose edges denote residue pairs with nonzero 2-body 

energies is sparse, making it a sparse residue interaction graph (SPRIG, see Figure 1). The 

TreePack algorithm36 can find the GMEC in polynomial time when the SPRIG has constant 

tree width. Moreover, the BWM* algorithm can find the GMEC in polynomial time and also 

efficiently enumerate the k best conformations in gap-free order when the SPRIG has 

constant branch width (where k is requested by the user).

Improved Models

The pairwise discrete model (Eq. 2) captures the most essential aspects of computational 

protein design, but it falls short for many practical applications. Despite the prevalence of 

rotameric conformations of protein sidechains, real proteins do have significant continuous 

flexibility in the neighborhood of each ideal rotamer. Backbone motions due to mutations 

are often non-negligible as well. Moreover, the energy model in Eq. (2) falls short in two 

ways: the most accurate energy functions are not explicitly pairwise, and the behavior of a 

protein is actually determined by its free energy—a quantity based on the distribution of its 

conformations’ energies—rather than on the single minimum-energy conformation. Finally, 

as mentioned earlier, it is often useful to have a more sophisticated objective function than 

simply minimizing the energy of a single biophysical state of a protein. Here, we review 

algorithms to address these five shortcomings (vide supra) of the discrete pairwise model of 

protein design.

Continuous flexibility:

Defining the problem.—The problem of continuously flexible protein design differs from 

Eq. (2) in that each rotamer is no longer a single conformation of its residue. Rather, each 

HALLEN and DONALD Page 6

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rotamer is a set of conformations, which we can model as a voxel in the form of bounds on 

each of several continuous internal coordinates. Sidechain flexibility in proteins occurs 

mainly in the form of changes in dihedral angles, and thus the conformation space of a 

protein can be modeled accurately as a union of voxels in dihedral angle space. For example, 

in Georgiev et al.,12 each voxel is centered at an ideal rotamer, and allows up to ±9° of 

flexibility in each dihedral angle in either direction from the ideal rotamer’s dihedral angle. 

The problem is then to find the list of rotamer assignments r whose voxel contains the 

lowest-energy conformation—the minGMEC.

This problem has both discrete and continuous components, much like AI planning, where 

there are discrete steps like STRIPS or TWEAK and continuous steps like motion planning. 

Like robust optimization, its aim is to prevent error due to insufficiently fine sampling of 

conformational space—we wish to avoid eliminating a rotamer merely because its ideal 

rotameric conformation appears unfavorable, since a small continuous adjustment may turn 

out to make it optimal. Indeed, it is relatively common for ideal rotamers to be physically 

infeasible due to a clash (a pair of atoms too close to each other), but for a small continuous 

adjustment to suffice to find a favorable conformation9,10,12 (as illustrated in Figure 2). 

Moreover, the optimal sequence is often significantly different, and more biophysically 

realistic, when continuous flexibility is taken into account than when it is neglected.9,10

Notably, no benefit in design is obtained by simply performing a discrete optimization and 

then continuously minimizing the energy of the discrete GMEC post hoc: such minimization 

does not change the optimal sequence that is selected. Rather, to obtain the full benefits of 

continuous flexibility, one must perform minimization-aware design that finds the 

minGMEC with guarantees of accuracy by taking continuous flexibility into account from 

the beginning. There are two general approaches to minimization awareness.

Adapting discrete algorithms to bound the continuous problem.—Algorithms 

for discrete protein design can be adapted to be minimization-aware by having them prune 

using bounds on conformational energies rather than using conformational energies directly. 

If a list of voxels r represents a region in conformational space rather than a single 

conformation, then its energy (Eq. 1) may not be well defined per se, but a lower bound on 

its energy can be expressed in the form of Eq. (1)), simply by minimizing each of the 1- and 

2-body energy terms over the voxel. Discrete protein design algorithms can then be used to 

enumerate conformations in order of lower bound. Once these conformations have been 

continuously minimized, additional conformations can be pruned based on their lower 

bounds as well, allowing provable computation of the minGMEC. This approach has been 

developed effectively by Gainza et al.9 and Georgiev,12 who adapt the entire DEE/A* 

framework to be minimization-aware.

Other discrete algorithms also fit well into the framework of minimization-awareness based 

on bounds. For example, both belief propagation (BP) and the self-consistent mean field 

method (SCMF) are usually employed to estimate a GMEC, with no proofs of closeness to 

the optimal solution. However, SCMF can generate a provably correct lower bound on the 

GMEC energy, while tree-weighted belief propagation can generate a provably correct upper 

bound. Thus, by operating on bounds, both algorithms become provable. This contrasts with 

HALLEN and DONALD Page 7

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the exact rigid energies used with methods from weighted constraint satisfaction and integer 

linear programming.

Reducing the continuous problem to a discrete one.—A more recent approach to 

minimization-aware protein design is based on machine learning and reducing the 

continuous protein design problem to a discrete one, without significantly compromising 

accuracy. Although the energy of a voxel r is not explicitly in the form required for discrete 

protein design algorithms (Eq. 1), there is a well-defined energy E(r) (generally the 

continuously minimized energy) that we want to optimize, and we can fit it to the form of 

Eq. (1) using machine learning. This approach is very efficient as implemented in the LUTE 

algorithm,17 and also accommodates other improvements in biophysical modelingb because 

the user can choose the function E(r) that is taken as input. The implementation of LUTE 

described in Hallen et al.17 also incorporates some elements of the bound-based approach to 

continuous flexibility, because it uses iMinDEE,9 a minimization-aware version of DEE, as a 

preprocessing step, resulting in a critical improvement in its training and test error.

Backbone flexibility.—Continuous sidechain flexibility handles discrepancies between 

ideal rotamers and the actual sidechain conformation. But an additional type of continuous 

flexibility—backbone flexibility—is necessary to handle discrepancies between the starting 

structure’s backbone conformation (experimentally observed for the original sequence) and 

the backbone conformation that is optimal for each mutant sequence. Like continuous 

sidechain flexibility, backbone flexibility can be handled using voxels, which can bound the 

backbone’s continuous internal coordinates in a neighborhood around the starting structure’s 
backbone. The main difference is that the choice of internal coordinates is less 

straightforward—one must find coordinates that adequately represent the biophysically 

important backbone flexibility in the vicinity of the mutations without obtaining an 

intractably large conformational space to search. These are properties that are satisfied by 

sidechain dihedrals, whose locality makes them the obvious choice of internal coordinates 

for sidechains. But they are not satisfied by the standard backbone dihedrals ϕ and ψ, 

because local changes in the backbone dihedrals will propagate throughout the protein, 

disrupting its large-scale structure unless the changes are very small.

The DEEPer algorithm18 addresses this problem by using only backbone motions based on 

experimental observations, such as the backrub motion observed in crystallographic 

alternates. The CATS algorithm16 allows a larger degree of continuous motion by 

constructing a new type of backbone internal coordinates that can model the local motion of 

a contiguous segment of the protein backbone in all biophysically feasible directions (Figure 

3). Both algorithms can be used in conjunction with continuous side-chain flexibility 

modeling and design.

Multistate design.

Defining the multistate problem.—Protein design software is already quite effective at 

stabilizing proteins, but we must pursue other objectives if it is truly to meet the full range of 

bSuch as non-pairwise energy functions, including those modeling solvation effects, quantum chemistry, and continuous entropy.

HALLEN and DONALD Page 8

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biomedical and bioengineering needs for modified proteins. Most of the important objectives 

involve binding—for example, binding to a protein in the human body that is involved with 

disease, and also not binding to other, possibly similar, proteins that are essential to normal 

functioning of the body. These objectives can be modeled in terms of multiple biophysical 
states—states in which the protein being designed is unbound, bound to a particular desired 

target, or bound to a particular undesired target, and so on. Each state a has an energy Ea(s), 

which we can approximate as the energy of the lowest energy conformation for the state (as 

a function of sequence s). We want favored states to be low in energy and unfavored states to 

be high in energy, since this will cause the protein to adopt the favored states in preference to 

the unfavored ones.

Thus, following Hallen and Donald,15 we can pose the problem of multistate design as a 

kind of linear programming on protein state energies. We will define linear multistate 

energies (LMEs), which are functions of sequence s, in the form

c0 + ∑
a

caEa(s), (5)

where the coefficients c are chosen by the user. For example, to make an LME representing 

the binding energy between the protein we are designing and another molecule, we would 

set cb = 1 and cu = −1 where b is the bound state and u is the unbound state. We then wish to 

minimize not a single state’s energy, but an LME, with respect to sequence. We may also 

wish to constrain other LMEs to have values above or below a user-specified threshold— for 

example, we may wish to keep the binding energy to an undesired target higher than the 

observed binding energy of the unmutated protein to that undesired target.

Algorithms for multistate design.—The formulation in the previous section comes 

from Hallen and Donald,15 who also present the first provable algorithm to solve this 

problem without exhaustive enumeration of sequences. This algorithm, COMETS, builds an 

A* tree with nodes representing partial sequences. Conformational search is handled with a 

combination of bounding techniques and construction of a “tree within a tree” for each 

promising sequence. The main tree is thus responsible for sequence search, while the inner 

trees each correspond to a single node of the main tree and perform conformational search 

for the sequence corresponding to that node.

DEE itself has also been adapted for multistate design. Specifically, within each sequence 

and biophysical state, multistate design (as defined previously) is simply computing a 

GMEC, and as a result it is provably accurate to perform DEE pruning within each 

biophysical state as long as only competitor and candidate rotamers of the same amino-acid 

type are considered.37 This technique is known as type-dependent DEE. The multistate 

design problem has also been addressed using belief propagation.7

As in the case of continuous flexibility, machine learning has yielded a novel and very 

promising technique for multistate design. The cluster expansion technique14 calculates 

energies for a training set of sequences (for each state) and then learns an energy function 

HALLEN and DONALD Page 9

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that is a sum of terms dependent only on 1 or a few residues’ amino acid types. In this 

formulation, multistate design becomes mathematically equivalent to discrete single-state 

design, although combinatorially easier because there are fewer amino acid types than 

possible rotamers. This technique has yielded designer peptides with high selectivity for 

their desired target in experimental tests.13

Finally, other formulations of multistate design besides that discussed earlier have been used 

quite fruitfully. The paradigm of meta-multistate design,3 which accounts for protein 

dynamics, has yielded designed proteins known as DANCERS (Dynamic And Native 

Conformational ExchangeRs), which not only exchange between specified conformational 

states, but do so on the timescale of milliseconds.

Improved energy modeling.

We have so far taken the energy function as an input to the algorithm, and assumed that 

given a sequence and a biophysical state, a protein will necessarily be found in the lowest-

energy conformation. However, to correctly model reality, we must dig deeper.

Free energy.—Physically, we must define the energy of a conformation c as a quantity 

proportional to −T ln P (c), where P (c) is the probability of finding the molecule in 

conformation c and T is the temperature. Without loss of generality, we will choose a 

proportionality constant R (this defines units for the energy); R is the universal gas constant. 

Since different biophysical states are ultimately just different regions of conformational 

space, this notion of energy suffices to perform any single- or multistate design: we simply 

wish to maximize the probability of the molecule being in the state we desire. The 

probability of a biophysical state s is the sum (or integral) of the probabilities of each of its 

conformations c ∈ C (s), and is thus proportional to the partition function qs, where

qs = ∑
c ∈ C(s)

exp − E(c)
RT . (6)

It is often useful to work not with the partition function directly, but with the free energy Gs 

= −RT ln qs of the state. Then, we simply design to reduce the free energy of desired states 

and increase the free energy of undesired states. Importantly, as the temperature goes to 0, 

Gs becomes simply the energy of the state’s lowest-energy conformation, and thus we arrive 

at the more approximate formulation of multistate design presented previously. But this 

approximation introduces error at nonzero temperature, and algorithms have been developed 

to actually use Gs at physiological temperatures and thus account for the distribution of 

energies across conformational space.

Computing the partition function is unfortunately #P-hard, analogously to similar 

calculations in statistics. However, the partition function can be efficiently approximated in 

practice for a particular sequence and biophysical state, while modeling continuous 

flexibility, using the K* algorithm.5,23,29 The K* algorithm builds on DEE/A* to model a 

thermodynamic ensemble of low-energy conformations for the bound and unbound 

biophysical states of a protein the user wishes to design for binding. Moreover, design based 

HALLEN and DONALD Page 10

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



only on GMECs has been shown not to recapitulate sequences designed with K* that 

performed well empirically.29

More efficient provable algorithms have also been developed for this problem. A partition 

function approximator similar to K* but accelerated by WCSP techniques has achieved high 

efficiency,34 albeit neglecting continuous flexibility, which has been shown to compromise 

accuracy in the K* context.10 The BBK* algorithm25 uses an A* tree with nodes from many 

sequences to compute the same top sequences as K*, and thus provide the same guarantees 

of accuracy as K*, in time sublinear in the number of sequences. Thus BBK* achieves high 

efficiency while approximating free energy with continuous flexibility.

Improved energy functions.—We have not yet addressed one very important question: 

How do we accurately estimate E(c) for a conformation c? The most commonly used energy 

functions in protein design,5 like AMBER, EEF1, and the Rosetta energy function, make 

many approximations due to their prioritization of speed over accuracy. More accurate 

energy functions based on induced electric multipoles, quantum chemistry, and Poisson-

Boltzmann solvation theory are available, but they are expensive, and they violate a key 

assumption of the discrete pairwise model of protein design: they are not explicitly a sum of 

terms depending on at most 2, or indeed on any small number of residues’ conformations.

One approach to these problems is to use discrete rotamers and precompute pairwise 

energies by choosing a “reference” conformation, perturbing it by 1 or a few rotamers at 

each position, and using the differences in energy between the perturbed and reference 

conformations as 1−, 2−, and sometimes 3-body energies. This approach yields relatively 

accurate energies for many systems, using either the Poisson-Boltzmann solvation model35 

or the AMOEBA forcefield (featuring induced multipoles)24 as the energy function.

A second approach is to learn a representation of the energy suitable for protein design, from 

a training set that can be generated with any energy function. This approach has the 

advantages of accommodating continuous flexibility and not requiring all the 1- through 2- 

or 3-body perturbed conformations from the reference conformation to be physically 

realizable (this can be an issue in the case of backbone flexibility). Two algorithms in the 

OSPREY19 protein design software exploit this approach: the EPIC algorithm learns a 

polynomial approximation of the continuous energy surface within a voxel, and the LUTE 

algorithm17 directly learns a pairwise energy matrix (possibly augmented by triples) from 

sampled single-voxel minimized energies. Both EPIC and LUTE have been shown to 

achieve small residuals, while calling the energy function just enough to obtain an accurate 

characterization of the energy costs of design decisions. Thus, they greatly accelerate design 

using quantum chemistry- and Poisson-Boltzmann-derived energies.17

“Exotic” Objective Functions

Not all protein design algorithms optimize energy with respect to sequence; we now review 

two other approaches.

No matter how tightly a designed protein therapeutic binds its desired target, a strong 

reaction by the human immune system against this new protein may prevent it from 

HALLEN and DONALD Page 11

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



remaining in the body for long, rendering it ineffective in the clinic. The EpiSweep 

algorithm26 addresses this problem by finding sequences on the Pareto frontier between an 

OSPREY-based2,10,19 stability design, and an objective function based on avoiding an 

immune reaction.

It is also sometimes useful, even when optimizing binding, to search the space of known 

protein backbone conformations to find one that will place sidechains in a desired pose, as in 

the Rosetta-Match,38 SEEDER,11 and MASTER39 algorithms.

Protein Design on Graphics Processing Units

In the past decade, graphics processing unit (GPU) computation has transformed nearly 

every area of computational science, from molecular dynamics to computer vision to 

quantum chemistry. For suitably structured computations, GPUs can perform approximately 

1,000 times more FLOPS per dollar spent on hardware.

In the past few years, the computational tasks that are bottlenecks in protein design 

computation have been implemented for GPUs. For the pairwise discrete model, the 

bottleneck is combinatorial optimization, which the gOSPREY software40 accelerates on 

GPUs. For continuously flexible protein design, continuous energy minimization within a 

voxel is the bottleneck. Thus, the OSPREY software, which pioneered minimization-aware 

protein design, allows continuous energy minimization on GPUs as of its version 3.0, 

achieving >10x speedups.19 This compares favorably with the previous flagship application 

of GPUs in computational structural biology, which is molecular dynamics (MD) 

simulations of proteins (temporal simulation of proteins using the classical mechanical 

potential defined by an energy function).

GPUs can exploit two types of parallelism in order to accelerate the biomolecular energy 

computations central to MD and protein design: (a) processing different conformations of a 

protein in parallel, and (b) processing different parts of the molecule in parallel. MD is better 

positioned to exploit (b) than protein design is, because MD evaluates energies for the entire 

molecule rather than merely the region around the mutations. On the other hand, 

continuously flexible protein design can minimize energies for a huge number of 

conformations in parallel, while MD must proceed through different conformations (such as, 

timesteps) in sequence. This type (a) parallelism in protein design applies both to 

conformations enumerated in order of lower bound, as in iMinDEE,9 and to conformations 

sampled for the purpose of learning a discrete model of the continuously minimized energy, 

as in LUTE.17

Thus, the success of GPUs in accelerating MD computations and the favorable 

parallelizability of protein design compared to MD bode well for the prospect of very 

efficient continuously flexible protein design on GPUs, which is already quite impressive in 

OSPREY 3.0.19

HALLEN and DONALD Page 12

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Successful Applications of Computational Protein Design with Provable 

Algorithms

Provable computational protein design algorithms have already produced many designs that 

perform well in experimental tests.5,8,10 They have engineered a shift in substrate specificity 

from one “molecular operand” (input molecule) to another,2 and they can predict bacterial 

mutations in enzyme-coding genes that make the bacterial enzymes resistant to particular 

antibiotics (Figure 4)— predictions that have been confirmed both in vitro6 and in vivo.28

Finally, and perhaps most importantly, proteins designed using provable algorithms have 

shown promise in the design of therapeutics. Using the techniques reviewed in this paper (in 

particular, the K* algorithm30 in OSPREY19), we collaborated with the NIH Vaccine 

Research Center to design a broadly neutralizing antibody against HIV with unprecedented 

breadth and potency (that is, stronger activity against a broader range of HIV strains) that is 

now in clinical trials (Clinical Trial Identifier: and six others). The OSPREY/K* algorithm 

has also produced peptides that inhibit a protein involved in cystic fibrosis.29 In addition to 

such direct design of therapeutics, computational prediction of resistance mutations to drug 

candidates6,28 will help combat resistance against new drugs (especially antibiotics) entering 

the clinic.

Conclusion

Provable computational protein design algorithms have advanced significantly in the last 

decade. Algorithms for the pairwise discrete approximations have matured, and significant 

progress is being made with improved biophysical models and for the design of clinically 

relevant proteins and peptides. Proteins, especially antibodies, are attracting increasing 

attention from the pharmaceutical industry as drug candidates. These algorithms also have 

the potential to be transformative in the design of non-protein drugs, because unlike most 

drug design algorithms, they can search a large space of drug candidates in time sublinear in 

the size of the space and still guarantee to find the best candidates as if searching one by 

one.

To achieve the full potential of protein design, it is necessary to further improve the accuracy 

of the biophysical model. More accurate energy functions, improved modeling of protein-

water interactions, and modeling of broader conformational spaces (both for search and for 

entropy computations) are likely to be important here. Provable guarantees are essential in 

this endeavor, as they ensure modeling error is the only error in protein design calculations, 

both allowing new models to be evaluated accurately and preventing design calculations 

based on accurate models from nonetheless failing due to algorithmic error. As work 

continues on these important problems, the future of computational protein design with 

provable algorithms looks bright.

Acknowledgments

Thanks to Lydia Kavraki, Tomás Lozano-Pérez, Nate Guerin, Jeff Martin, Pablo Gainza, Cynthia Rudin, and 
members of the Donald Lab. We also thank Toyota Technological Institute of Chicago (M.A.H) and the NIH (grants 
RO1 GM-78031 and RO1 GM-118543 to B.R.D) for funding.

HALLEN and DONALD Page 13

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Chazelle B, Kingsford C and Singh M A semidefinite programming approach to side chain 
positioning with new rounding strategies. INFORMS J. Computing, Computational Biology Special 
Issue 16, 4 (2004), 380–392.

2. Chen C, Georgiev I, Anderson A and Donald B Computational structure-based redesign of enzyme 
activity. Proc. Nat. Acad. Sci. U. S. A 106, 10 (2009), 3764–3769.

3. Davey J, Damry A, Goto N and Chica R Rational design of proteins that exchange on functional 
timescales. Nature Chemical Biology 13, 12 (2017), 1280. [PubMed: 29058725] 

4. Desmet J, Maeyer M, Hazes B and Lasters I The dead-end elimination theorem and its use in protein 
sidechain positioning. Nature 356 (1992), 539–542. [PubMed: 21488406] 

5. Donald B Algorithms in Structural Molecular Biology. MIT Press, Cambridge, MA, 2011.

6. Frey K, Georgiev I, Donald B and Anderson A Predicting resistance mutations using protein design 
algorithms. Proc. Nat. Acad. Sci. U. S. A 107, 31 (2010), 13707–13712.

7. Fromer M, Yanover C, and Linial M Design of multispecific protein sequences using probabilistic 
graphical modeling. Proteins: Structure, Function, and Bioinformatics 78, 3 (2010), 530–547.

8. Gainza P, Nisonoff H and Donald B Algorithms for protein design. Current Opinion in Structural 
Biology 39 (2016), 16–26. [PubMed: 27086078] 

9. Gainza P, Roberts K and Donald B Protein design using continuous rotamers. PLoS Computational 
Biology 8, 1 (2012), e1002335. [PubMed: 22279426] 

10. Gainza P et al. OSPREY: Protein design with ensembles, flexibility, and provable algorithms. 
Methods in Enzymology 523 (2013), 87–107. [PubMed: 23422427] 

11. Gainza P, Vollers S and Correia B Mining protein surfaces for binding seeds. (8 2017). RosettaCon.

12. Georgiev I, Lilien R and Donald B The minimized dead-end elimination criterion and its 
application to protein redesign in a hybrid scoring and search algorithm for computing partition 
functions over molecular ensembles. J. Computational Chemistry 29, 10 (2008), 1527–1542.

13. Grigoryan G, Reinke A and Keating A Design of protein-interaction specificity affords selective 
bZIP-binding peptides. Nature 458, 7240 (2009), 859–864. [PubMed: 19370028] 

14. Grigoryan G, Zhou F, Lustig S, Ceder G, Morgan D, and Keating A Ultra-fast evaluation of protein 
energies directly from sequence. PLoS Computational Biology 2, 6 (2006), e63. [PubMed: 
16789811] 

15. Hallen M and Donald B COMETS (Constrained Optimization of Multistate Energies by Tree 
Search): A provable and efficient protein design algorithm to optimize binding affinity and 
specificity with respect to sequence. J. Computational Biology 23, 5 (2016), 311–321.

16. Hallen M and Donald B CATS (Coordinates of Atoms by Taylor Series): Protein design with 
backbone flexibility in all locally feasible directions. Bioinformatics 33, 14 (2017), i5–i12. 
[PubMed: 28882005] 

17. Hallen M, Jou J and Donald B LUTE (Local Unpruned Tuple Expansion): Accurate continuously 
flexible protein design with general energy functions and rigid-rotamer-like efficiency In 
Proceedings of the Intern. Conf. on Research in Computational Molecular Biology. Springer, 2016, 
122–136.

18. Hallen M, Keedy D and Donald B Dead-end elimination with perturbations (DEEPer): A provable 
protein design algorithm with continuous sidechain and backbone flexibility. Proteins: Structure, 
Function and Bioinformatics 81, 1 (2013), 18–39.

19. Hallen M et al. OSPREY 3.0: Open-source protein redesign for you, with powerful new features. J. 
Computational Chemistry 39, 30 (2018), 2494–2507.

20. Jou J, Jain S, Georgiev I, and Donald B BWM*: A Novel, Provable, Ensemble-Based Dynamic 
Programming Algorithm for Sparse Approximations of Computational Protein Design. Journal of 
Computational Biology 23, 6 (2016), 413–424. [PubMed: 26744898] 

21. Kingsford C, Chazelle B, and Singh M Solving and analyzing sidechain positioning problems 
using linear and integer programming. Bioinformatics 21, 7 (2005), 1028–1039. [PubMed: 
15546935] 

HALLEN and DONALD Page 14

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Leach A and Lemon A Exploring the conformational space of protein side chains using dead-end 
elimination and the A* algorithm. Proteins: Structure, Function, and Bioinformatics 33, 2 (1998), 
227–239.

23. Lilien R, Stevens B, Anderson A and Donald B A novel ensemble-based scoring and search 
algorithm for protein redesign and its application to modify the substrate specificity of the 
gramicidin synthetase A phenylalanine adenylation enzyme. J. Computational Biology 12, 6 
(2005), 740–761.

24. LuCore S, Litman J, Powers K, Gao S, Lynn A, Tollefson W, Fenn T, Washington T and 
Schnieders M Dead-end elimination with a polarizable force field repacks PCNA structures. 
Biophysical J. 109, 4 (2015), 816–826.

25. Ojewole A, Jou J, Fowler V and Donald B BBK*(Branch and Bound Over K*): A provable and 
efficient ensemble-based protein design algorithm to optimize stability and binding affinity over 
large sequence spaces. J. Computational Biology (2018). Epub ahead of print.

26. Parker A, Choi Y, Griswold K and Bailey-Kellogg C Structure-guided deimmunization of 
therapeutic proteins. J. Computational Biology 20, 2 (2013), 152–165.

27. Pierce N and Winfree E Protein design is NP-hard. Protein Engineering 15, 10 (2002), 779–782. 
[PubMed: 12468711] 

28. Reeve S, Gainza P, Frey K, Georgiev I, Donald B and Anderson A Protein design algorithms 
predict viable resistance to an experimental antifolate. In Proceedings of the Nat. Acad. Sci. U. S. 
A 112, 3 (2015), 749–754.

29. Roberts K, Cushing P, Boisguerin P, Madden D and Donald B Computational design of a PDZ 
domain peptide inhibitor that rescues CFTR activity. PLoS Computational Biology 8, 4 (2012), 
e1002477. [PubMed: 22532795] 

30. Rudicell R et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves 
protection against lentiviral infection in vivo. J. Virology 88, 21 (2014), 12669–12682. [PubMed: 
25142607] 

31. Simoncini D, Allouche D, Givry S, Delmas C, Barbe S and Schiex T Guaranteed discrete energy 
optimization on large protein design problems. J. Chemical Theory and Computation 11, 12 
(2015), 5980–5989.

32. Traoré S, Allouche D, André I, Givry S, Katsirelos G, Schiex T and Barbe S A new framework for 
computational protein design through cost function network optimization. Bioinformatics 29, 17 
(2013), 2129–2136. [PubMed: 23842814] 

33. Traoré S, Roberts K, Allouche D, Donald B, André I, Schiex T, and Barbe S Fast search algorithms 
for computational protein design. J. Computational Chemistry 37, 12 (2016), 1048–1058.

34. Viricel C, Simoncini D, Allouche D, Givry S, Barbe S and Schiex T Approximate counting with 
deterministic guarantees for affinity computation Modelling, Computation and Optimization in 
Information Systems and Management Sciences. Springer, 2015, 165–176.

35. Vizcarra C, Zhang N, Marshall S, Wingreen N, Zeng C, and Mayo S. An improved pairwise 
decomposable finite-difference Poisson-Boltzmann method for computational protein design. J. 
Computational Chemistry 29, 7 (2008), 1153–1162.

36. Xu J and Berger B Fast and accurate algorithms for protein side-chain packing. J. ACM 53, 4 
(2006), 533–557.

37. Yanover C, Fromer M and Shifman J Deadend elimination for multistate protein design. J. 
Computational Chemistry 28, 13 (2007), 2122–2129.

38. Zanghellini A, Jiang L, Wollacott A, Cheng G, Meiler J, Althoff E, Röthlisberger D and Baker, D. 
New algorithms and an in silico benchmark for computational enzyme design. Protein Science 15, 
12 (2006), 2785–2794. [PubMed: 17132862] 

39. Zhou J and Grigoryan G Rapid search for tertiary fragments reveals protein sequence-structure 
relationships. Protein Science 24, 4 (2015),508–524. [PubMed: 25420575] 

40. Zhou Y, Xu W, Donald B and Zeng J An efficient parallel algorithm for accelerating computational 
protein design. Bioinformatics 30, 12 (2014), i255–i263. [PubMed: 24931991] 

HALLEN and DONALD Page 15

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



key insights

• Protein design algorithms optimize proteins for desired properties, such as 

improved stability and stronger and more specific binding to their ligands. 

These algorithms have many applications in the design of new therapeutics.

• Highly efficient, provably accurate algorithms are available for protein design 

using a simplified “pairwise discrete” model of protein chemistry.

• Recent algorithms have maintained these provable guarantees and 

computational tractability while introducing more physically realistic models 

of protein chemistry. These models account for proteins’ and ligands’ 

continuous flexibility, model multiple binding or structural states of proteins, 

and blend more complicated energetic effects.

HALLEN and DONALD Page 16

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Pairwise energy functions.
(a) Pairwise energy functions compute energies between pairs of mutable residues (colored) 

in a protein design problem, but in practice many pairs have very small interaction energies 

(marked with Xs).

(b) A sparse residue interaction graph (SPRIG) has mutable residues as nodes; edges with 

small interaction energies can be deleted, enabling highly efficient protein design 

computations. Figure adapted with permission from Jou et al.20

HALLEN and DONALD Page 17

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Favorable conformation.
(a) A conformation modeled using ideal rotamers may have steric clashes—atom pairs that 

are unphysically close together—even when (b) continuous minimization of the 

conformation’s energy, without changing the rotamers of any residues, results in a very 

favorable energy. This underscores the need to account for continuous flexibility throughout 

sequence and conformational search for protein design.

Figure adapted with permission from Gainza et al.9

HALLEN and DONALD Page 18

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Backbone flexibility.
(left) Mutating residue 54 of the anti-HIV antibody VRC07 to the amino-acid tryptophan 

(W) improves its function in experimental tests,30 but rigid-backbone modeling of this 

mutation shows unavoidable steric clashes (purple conformation).

(right) CATS finds a non-clashing conformation (green), resolving this conundrum, while 

DEEPer (blue) alleviates the clashes partially. Figure adapted with permission from Hallen 

and Donald.16

HALLEN and DONALD Page 19

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Computational prediction of antibiotic resistance.
(a) the bacterial (Staphyoloccus aureus) enzyme dihydrofolate reductase binds a drug 

candidate (“Cpd 1”) tightly, inhibiting the enzyme’s function, but (b) mutating position 31 of 

the enzyme from amino-acid type valine to leucine causes steric clashes that impeded 

binding, allowing the bacteria to resist the antibiotic. This predicted resistance mutation was 

observed experimentally after being predicted by the K* algorithm as implemented in the 

OSPREY software.19 Figure adapted with permission from Reeve et al.28

HALLEN and DONALD Page 20

Commun ACM. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Graphical Abstract
	The Pairwise Discrete Model
	Problem definition.
	Approaches to the problem:
	Algorithms from weighted constraint-satisfaction problems.
	Algorithms making sparsity assumptions.

	Improved Models
	Continuous flexibility:
	Defining the problem.
	Adapting discrete algorithms to bound the continuous problem.
	Reducing the continuous problem to a discrete one.
	Backbone flexibility.

	Multistate design.
	Defining the multistate problem.
	Algorithms for multistate design.

	Improved energy modeling.
	Free energy.
	Improved energy functions.


	“Exotic” Objective Functions
	Protein Design on Graphics Processing Units
	Successful Applications of Computational Protein Design with Provable
Algorithms
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

