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Analysis linking directly genomics, neuroimaging phenotypes and clinical measurements is crucial for understanding psychiatric disor-

ders, but remains rare. Here, we describe a multi-scale analysis using genome-wide SNPs, gene expression, grey matter volume

(GMV), and the positive and negative syndrome scale scores (PANSS) to explore the etiology of schizophrenia. With 72 drug-naive

schizophrenic first episode patients (FEPs) and 73 matched heathy controls, we identified 108 genes, from schizophrenia risk genes,

that correlated significantly with GMV, which are highly co-expressed in the brain during development. Among these 108 candidates,

19 distinct genes were found associated with 16 brain regions referred to as hot clusters (HCs), primarily in the frontal cortex,

sensory-motor regions and temporal and parietal regions. The patients were subtyped into three groups with distinguishable PANSS

scores by the GMV of the identified HCs. Furthermore, we found that HCs with common GMV among patient groups are related to

genes that mostly mapped to pathways relevant to neural signaling, which are associated with the risk for schizophrenia. Our results

provide an integrated view of how genetic variants may affect brain structures that lead to distinct disease phenotypes. The method of

multi-scale analysis that was described in this research, may help to advance the understanding of the etiology of schizophrenia.
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Introduction

Schizophrenia is one of the most common psychotic disorders

worldwide, with a lifetime prevalence of 0.3%–0.7% (van Os

and Kapur, 2009). The age of onset of schizophrenia is typically

in late adolescence or early adulthood, with males more often

affected than females (Gejman et al., 2010). The heritability of

schizophrenia has been reported to range from 44% to 87%

with a mean of 81% (Sullivan et al., 2003). Schizophrenia is

increasingly recognized as a collection of syndromes as opposed

to a single disease entity, and involves a number of cognitive

and emotional impairments (Jablensky, 2006, 2010).

The advances in new generation sequencing approaches, neu-

roimaging technologies and a variety of clinical questionnaires
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have provided an unprecedented opportunity to understand

psychiatric disorders like schizophrenia. For example, genome-

wide association studies (GWAS) provided unique ways to

explore the potential genetic causes of schizophrenia.

Thousands of loci on the genome have been identified to be

associated with schizophrenia (Allen et al., 2008), e.g. ANK3,

ZNF804A, CACNA1C, NRG1, TCF4, and MHC region, etc

(O’Donovan et al., 2008; Ripke et al., 2013; Schwab and

Wildenauer, 2013). Schizophrenia is believed to be a polygen-

etic disease, and Gilman et al. identified gene networks from dif-

ferent types of schizophrenia-associated genetic variations

(Gilman et al., 2012). Schizophrenia-associated genes harboring

de novo mutations showed significant spatio-temporal co-

expression patterns when mapped onto transcriptome profiles

of normal human brain tissues (Gulsuner et al., 2013).

Neuroimaging studies based on magnetic resonance imaging

(MRI) methodology have led to a better understanding of the

neuroanatomical basis of schizophrenia. Structural brain altera-

tions, in particular grey matter density or grey matter volume

(GMV) in the whole brain or regions such as the hippocampus,

parahippocampal gyrus, amygdala, thalamus, insular cortex,

anterior cingulate, left middle frontal gyrus, and postcentral gyrus

have been reported to be reduced in schizophrenic patients rela-

tive to healthy controls (Honea et al., 2005; Steen et al., 2006;

Glahn et al., 2008; Gupta et al., 2015; van Erp et al., 2015). Twin,

family or sibling-based studies have suggested that brain morph-

ology characterized by neuroimaging quantitative measures is

highly heritable (Sullivan et al., 2003; Thompson et al., 2010;

Turner et al., 2012). The development of imaging genetics meth-

ods has leveraged the understanding of the possible genetic

bases of brain structural differences and made it possible to map

the genetic effects onto brain regions (Ge et al., 2013).

The symptoms of schizophrenia are heterogeneous and are

mainly categorized into two major types, the positive symptoms

and the negative symptoms. The positive symptoms, which

represented as an excess or distortion of normal functions such

as hallucinations and delusions. The negative symptoms which

refer to the loss or diminution of normal functions, for example,

absence in grooming, language or communication. The psych-

otic severity is often assessed by different rating scales, such as

the positive and negative syndrome scale (PANSS), brief psychi-

atric rating scale (BPRS), scale for the assessment of positive

symptoms (SAPS), or scale for the assessment of negative

symptoms (SANS) (Overall and Gorham, 1962; Kay et al., 1987).

Whitford et al. (2005) suggested that the symptom severity is

associated with brain structural abnormality in schizophrenia.

Nesvåg et al. (2009) reported that the positive and negative

symptoms in patients with schizophrenia can be related to varia-

tions in cortical and grey matter volumes.

Despite the large number of investigations in genetics, struc-

tural and functional brain changes, and behavioral abnormalities

of schizophrenia, there are currently few studies that identify

simultaneously links through genetics, neuroimaging and

behavior, where much correlations exhibit among these aspects.

Existing approaches usually focus on one scale or across two

scales, which lead to incomplete understanding of disease eti-

ology. Therefore, a framework that harnesses multi-scale data,

from genetics through endophenotypes, e.g. brain structure, to

phenotypes such as symptom severity is crucial for understand-

ing schizophrenia.

In this study, we describe a multi-scale analysis that utilizing

data from genomics, transcriptomics, neuroimaging, and clinical

measurements to explore the etiology of schizophrenia. We first

established a link between genes and brain structural (grey mat-

ter) changes by association study using schizophrenia risk

genes reported in the SZGene database (Allen et al., 2008) and

structural MRI imaging of the brain. Genes that showed signifi-

cant association with GMV were selected as candidates and fur-

ther validated by analyzing their spatio-temporal co-expression

patterns in normal human brain during development. The col-

lective brain regions which associated with candidate genes

were referred to as hot clusters (HCs). The mean GMV of the

identified HCs was used to subtype patients, and the patients of

different subtypes were found to have distinguishable PANSS

scores. By this multi-scale analysis, we linked genetically asso-

ciated brain structural alterations to the symptoms of schizo-

phrenic patients. We hypothesize that the identified genes

cause structural brain changes, which further lead to distinct

behavioral expressions of schizophrenic patients. The integrated

results across multi-scale data (i.e. genetic, neuroimaging,

behavioral) are expected to provide a more complete under-

standing of the genetic and biological mechanisms underlying

schizophrenia, and to shed light into how genetic variation and

brain structural alterations are related to different symptom

scores in patients with schizophrenia.

Results

Pre-processing of brain MRI data and selection of schizophrenia

risk genes

A total of 145 Han Chinese subjects took part in this study,

which were recruited from the Mental Health Center of West

China Hospital, Sichuan University in China. These subjects

including 72 drug-naive schizophrenic first episode patients

(FEPs) and 73 heathy controls who were all matched with age,

gender, and years of education (see Supplementary Table S1).

The diagnosis of schizophrenia and duration of illness were

determined by the consensus of the attending psychiatrist and a

trained interviewer using the Structured Clinical Interview for

DSM-IV (SCID-P), and the diagnoses of all patients were con-

firmed after at least one year of follow-up. Healthy controls

were recruited from the local area through poster advertisement

and screened using SCID-NP to confirm the lifetime absence of

psychiatric and neurological illness. In addition, the control sub-

jects were interviewed to ensure that there was no history of

psychiatric illness in first-degree relatives. Brain structural MRI

was obtained from each subject through identical scanner and

imaging protocols. Genetic data for every participant were also

collected. The study protocol was approved by the ethical com-

mittee of the West China Hospital of Sichuan University.
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High-resolution T1-weighted images were acquired from sam-

ples on admission using a 3-Tesla MRI system (EXCITE, General

Electric) and an eight-channel phase array head coil with a volu-

metric 3D Spoiled Gradient Recall (SPGR) sequence. The voxel-

based morphometry (VBM) preprocessing of T1-weighted struc-

tural data was carried out using DARTEL Tools from the

Statistical Parametric Mapping package (SPM8, http://www.fil.

ion.ucl.ac.uk/spm) under MATLAB Release 2014a (The

MathWorks, Natick, 2014). Each retained image had a total of

433584 voxels (with size: 1.5 mm3) for further statistical ana-

lysis. The automated anatomical labeling (AAL) (Tzourio-

Mazoyer et al., 2002) atlas, which partitioned the brain into 90

regions of interest (ROIs; 45 in each hemisphere), was used to

identify the brain regions (see Supplementary Text S1 for more

details).

The Genetic data were extracted by performing the HumanOmni

ZhongHua-8 Bead Chip (Illumina). Participants with a low genotyp-

ing rate (<97%), markers with >5% missing data and markers with

minor allele frequency (MAF) ≤0.05 (calculated based on both case

and control samples) or markers that failed to pass the Hardy–
Weinberg equilibrium tests (P ≤ 10−6) were excluded from further

analysis.

The SZGene database identified 994 schizophrenia risk genes

reported from various genome-wide association studies, including

both protein-coding and non-coding genes. Only protein-coding

genes reported by the SZGene database (http://www.szgene.org/)

which also appeared in the expression data list of BrainSpan data-

base (http://www.brainspan.org/) were considered in this study.

After mapping all SZGene genes to the selected genes from the

BrainSpan dataset (see below), and after quality control, 718

schizophrenia risk genes with 20982 SNPs were retained for further

analysis. Note that the SNPs are mapped to the genes according to

the annotation on Ensembl database. The SNPs within the range of

a gene are annotated by the gene symbol. We did not distinguish

between the exon or intron types of the SNPs in this study.

Association between risk genes and grey matter variation

We assessed the associations of the 718 protein-coding

genes that convey risk for schizophrenia with voxel-wise brain

structural variation (e.g. GMV). Of all 718 genes, 108 genes

remained significant and were selected as candidates, including

246 SNPs in association with 6103 voxels. The top 20 significant

SNPs ranked by minimum P-values are given in Supplementary

Table S3 and the mapped locations within the brain regions

according to the top four significant SNPs are displayed in

Supplementary Figure S1.

The 108 candidate genes are highly co-expressed in a spatio-

and temporal-specific manner

We constructed 12 spatio-temporal gene co-expression net-

works from 718 risk genes accounting for four anatomic brain

regions across three developmental stages (Supplementary

Table S2). The empirical distributions of interconnectedness of

108 randomly sampled genes (out of the risk genes) in these 12

networks are shown in Figure 1. We found that the distribution

of interconnectedness of the candidate genes changes with dif-

ferent developmental stages. During the early infancy to late

childhood stage and the adolescence to adulthood stage, the can-

didate genes showed significantly stronger interconnectedness in

networks corresponding to the frontal cortex (FC) region, the

sensory-motor regions (SM), and the temporal and parietal regions

(TP) of brain (P-value < 0.01). The interconnectedness of candidate

genes was also stronger in the FC region during the fetal period

and in the subcortical regions (SC) during the adolescence to

adulthood stage (P-value < 0.1) (Figure 1 and Supplementary

Table S4).

Stability tests showed that the significances of interconnect-

edness under different thresholds and weighting strategies

were robust (Supplementary Table S4). The interconnectedness

of candidate genes also showed no significant result in net-

works constructed from 718 genes by merging all spatial and

temporal samples from BrainSpan (the last row of

Supplementary Table S4 shows the results of merged BrainSpan

samples). No significant results were obtained when candidate

genes were tested using protein–protein interaction from

GeneMANIA (Mostafavi et al., 2008) (P-value=0.318).

Nineteen candidate genes are associated with 16 grey matter

HCs in the brain

Connected brain regions that were collectively associated

with candidate genes were identified as HCs (for details of these

genes and HCs, see Table 1 and Supplementary Table S5). We

observed that among the 108 candidate genes there are 19 dif-

ferent genes, which we refer as to HC genes, associated with 16

HCs, where the HC1–HC16 were named according to the

decreased rank of the maximum voxel weight of each HC.

Figure 2 shows the locations of the HCs in 3D view and the cor-

onal view of each HC is shown in Supplementary Figure S2 with

intensity representing the corrected weight of each voxel. The

cluster with the maximum single voxel weight is HC1, which

also formed the largest cluster with a total of 945 voxels. It is

associated with genes CACNA1A or ERBB4 and located in the

right insula (INS.R) region. HC2 is in association with PPP1R1B. It

incorporates 438 voxels that lie in the left precuneus (PCUN.L).

HC3 lies in the left middle temporal pole (TPOmid.L) with 118 vox-

els and is related to ATP2B2. HC4 is in association with genes

NRG3 and PPP3C. It located in the right middle temporal pole

region (TPOmid.R). HC5, which is associated with PPP3CA and

RELN, locates across the right precentral region (PreCG.R). Table 1

and Supplementary Table S5 show more information on the identi-

fied HCs.

The HC genes are found to be mapped to neuro signaling and

related pathways (Supplementary Figure S3). Genes CACNA1A,

ERBB4, ATP2B2, PPP3CA, and PRKCA that affect HC1, HC3, H4,

and H13 can be related to the calcium signaling pathway

(Supplementary Figure S3A). CACNA1A encodes P/Q-type cal-

cium channels, which are the targets of Dopamine D2 receptors

for antipsychotic drugs (Galizzi et al., 1986; Nimmrich and

Gross, 2012). The cAMP pathway, where the PPP1R1B gene of

HC2 is located, is the interconnecting node for the Dopamine D2
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receptor cascade of the P/Q-type calcium channels (Greengard

et al., 1999). Gene INPP4B (HC7) was found mapped to the

phosphatidylinositol signaling pathway, which locates down-

stream to the calcium signaling pathway (Supplementary Figure

S3A). Genes ERBB4, NRG3, and PRKCA are mapped to the ERBB

signaling pathway which is located upstream of the calcium sig-

naling pathway (Supplementary Figure S3B). Recent studies pro-

vided strong evidence that the calcium and ERBB signaling

pathways are associated with schizophrenia (Cross-Disorder

Group of the Psychiatric Genomics, 2013; Harrison, 2015).

Mutations of the ERBB4 gene differentially affected the treat-

ment response to paliperidone in individuals with schizophrenia,

implicating the neuregulin 1 (NRG1)–ErbB4 pathway for modu-

lating the antipsychotic response (Wang et al., 2015). ERBB4 is

activated directly by gene NRG3 (related to HC4 and HC13). The

ERBB4 gene activates the downstream PI3K–Akt signaling

pathway which gene RELN (HC5) and FGF1 (HC14) mapped to

(Supplementary Figure S3B) (Law et al., 2012). RELN is a key

gene for neuronal migration during brain development. Mutation

of the RELN gene in the mouse results in motor problems (Sanes

et al., 2012). A lack of RELN causes a form of lissencephaly

(Hong et al., 2000). Further, the Neuregulin1–ErbB4–PI3K signal-

ing has been shown to be a schizophrenia risk pathway, with

potential therapeutic relevance (Law et al., 2012). Genes

CACNA1A, PPP1R1B, PPP3CA, and PRKCA are related to the

Dopaminergic Synapse pathway (Supplementary Figure S3C).

Genes CACNA1A, PPP3CA, and PRKCA also function in the

Glutamatergic Synapse pathway (Supplementary Figure S3D).

Dopaminergic and glutamatergic systems are closely related in

the brain: dopaminergic activity can inhibit glutamatergic function

and can result in a hypoglutamatergic state in schizophrenia

(Kötter, 1994; Bradford, 2009).

Figure 1 The P-values of the interconnectedness of the 108 candidate genes in the 12 spatial-temporal brain developmental gene networks.

The subplots of each row correspond to four anatomical regions—frontal cortex (FC; first row), subcortical regions (SC; second row),

sensory-motor regions (SM; third row); and temporal and parietal regions (TP; fourth rows). The subplots of each column showed the three

brain developmental stages— fetal (period 1: 8–37 post-conception weeks; front column), early infancy to late childhood (period 2: 4

months to 8 years; middle column); and adolescence to adulthood (period 3: 13–40 years; last column). Each subplot presents the empirical

distribution of interconnectedness of 108 genes which drawn randomly from 718 schizophrenia risk genes. The empirical distributions were

generated by resampling 10000 times at each spatial and temporal period. The red vertical dashed line in each subplot shows the intercon-

nectedness of the 108 candidate genes. The P-values of the interconnectedness of the candidate genes were calculated as the fraction of

the interconnectedness of 10000 sets larger than the observed interconnectedness (corresponding to column “p-0.8w” of Supplementary

Table S4). The spatio-temproal networks with 108 candidate genes presented significant at P-value < 0.01 were annotated with *** and at

P-value < 0.1 were annotated with *.
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Patients subtyped according to GMV of HCs show differences in

positive/negative symptom scale

The symptoms of schizophrenia patients can be heterogeneous

with two main types, namely, the positive symptoms and the

negative symptoms. These symptoms are related to the variation

in cortical and grey matter volumes of schizophrenia patients

(Nesvåg et al., 2009). We have 67 schizophrenia patients with

PANSS scores. We thus hope to subtype the patients according

to their grey matter variations of HCs and further characterize

their symptoms.

We have 67 schizophrenia patients with PANSS scores and

they were subtyped by K-means method according to the GMV

of HCs. The optimum number of groups was set to 3 according

to the index of in-groups proportion (Kapp and Tibshirani, 2007)

(IGP) (Figure 3A). Figure 3B shows the GMV correlation map of

the three groups of clustered patients. The sizes of the groups

are 17, 28, and 22, respectively, with no significant difference in

gender and age composition (data not show). As shown in

Supplementary Figure S4A, patients in Group 1 have higher

mean scores on 5 of 7 items in the positive PANSS symptoms,

while Group 2 patients showed more items with higher mean

negative PANSS symptom scores (5/7). All three group patients

had their mean scores intermixed with each other on items in

the general PANSS psychopathology scale (Supplementary

Figure S4A).

We tested the differences in the subscales of PANSS between

groups by random permutation of patients’ group labels. The three

groups showed similar means in the total score (TT) and general

psychopathology score (G) (Supplementary Figure S4B and C).

Group 1 had a relatively higher positive score (P) and lower nega-

tive score (N), and thus, a significantly larger composite score,

which defined by subtracting the negative from the positive score

and we designated as PN for short (mean PN = 10.3, P < 0.05; PN

are 3.9 and 6.3 in Groups 2 and 3, Figure 4A). In contrast, an

opposite trend was observed for Group 2 (Figure 4A). When com-

pared pairwisely, the PN differences between Groups 1 and 2 and

between Groups 1 and 3 were also significant (P-values < 0.05

and < 0.1, respectively, Figure 4B).

Figure 4C shows the mean GMVs for each HC within patient

groups. We conducted Wilcoxon rank sum tests to evaluate the

mean GMV difference of HC between patients in one group ver-

sus the remaining. For each group, the P-values were corrected

by Bonferroni method over the 16 HCs (P-values < 0.05/16).

The results show that on HC6, HC9, and HC15, patients of

Group 1 had significantly different GMVs compared to those of

the remaining patients (Supplementary Table S6). Group 2

patients had mean GMV varied from the others on HC14, and

Group 3 patients had significantly different GMVs on HC9 and

HC14.

Discussion

In this investigation, we describe a multi-scale analysis across

data of multiple scales to identify clusters of attributes related

to schizophrenia. We identified 108 candidate genes from 718

schizophrenia risk genes that exhibit association with GMV of

the brain. These candidate genes are highly co-expressed in FC

and TP during the early infancy to childhood period, and in SM

through the early infancy to adulthood period. Among these 108

candidate genes, 19 distinct genes were further identified to be

associated with the GMV of 16 HCs in the brain which were also

mainly located in FC, TP, and SM regions. Recent studies have

suggested that subtypes of schizophrenic symptoms may be

Table 1 HCs and associated genes.

Associated genes AAL region Brain region* Cluster size

HC1 CACNA1A Insula_R SM 945

ERBB4

HC2 PPP1R1B Precuneus_L TP 438

HC3 ATP2B2 Temporal_Pole_Sup_L TP 118

HC4 PPP3CA Temporal_Pole_Mid_R TP 134

NRG3

HC5 ZBTB20 Precentral_R SM 157

RELN

HC6 OPCML SupraMarginal_R TP 74

HC7 INPP4B Frontal_Mid_L FC 63

HC8 ZNF365 Temporal_Mid_R TP 44

HC9 ANK3 Precuneus_L TP 47

HC10 ZBTB20 Parietal_Inf_L TP 31

HC11 PSAP Lingual_L OC 33

HC12 BMP6 Supp_Motor_Area_R SM 20

EIF2B5

HC13 NRG3 Precuneus_R TP 16

PRKCA

HC14 FGF1 Angular_L TP 11

HC15 SLIT3 Cingulate_Mid_R FC 8

HC16 GFRA2 Hippocampus_R SC 11

The HCs and HC genes. The number of voxels contained in the HCs is listed in the

last column. More details can be found in Supplementary Table S5.

*FC, frontal cortex; TP, temporal and parietal regions; SM, sensory-motor regions;

SC, subcortical regions; OC, occipital regions.

Figure 2 3D image of the 16 HCs identified. The HCs were denoted

as “HC1”, “HC2”,…, “HC16” according to Table 1. Each HC is repre-

sented with a unique color. The coronal views of each cluster are

shown in Supplementary Figure S2, with intensity representing the

corrected weight of each voxel. The exact location and the related

genes of each HC are provided in Table 1 and Supplementary

Table S5.
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linked to specific patterns of structural brain alterations

(Koutsouleris et al., 2008; Nenadic et al., 2010; Zhang et al.,

2015). Our results show that the identified HCs may serve as

multidimensional traits which are able to characterize important

features of the structural variations of schizophrenia patients

that manifest in distinguishable symptoms. The patients are

subtyped into three groups by using GMV of 16 HCs, with

patients in Group 1 showing more severe positive symptoms

and patients of Group 2 showing higher negative symptoms

scores.

In this study, the HCs were identified by genes with variations

highly associated to the grey matter variation of these regions.

It does not mean that these genes are restricted to function in

the HCs. Since schizophrenia is a developmental disorder, the

HCs can be regarded as the initial points of schizophrenia that

have grey matter abnormality. With the development of schizo-

phrenia, these initial points will spread out (like a diffusion pro-

cesses). All of these do not conflict with the view that gene

expression in the brain is widespread. In fact, as the results in

our spatio-temporal expression analysis, the candidate genes

are highly co-expressed in a core region of human (FC) at first,

and spread to co-express in most brain regions as developmen-

tal progresses. Here we found that schizophrenia has multiple

initial points (HCs), and different HCs are shown to be asso-

ciated with different subtypes of schizophrenia.

More interestingly, the genes related to HCs that show little

mean GMV difference between the three patient groups, such as

HC1, HC5, HC7, HC10, HC12, HC13, and HC16, are mainly

mapped to KEGG pathways relevant to neural signaling

(Supplementary Figure S3). These pathways are known to be

most basic in neurodevelopment (Karam et al., 2010; Berwick

and Harvey, 2014; Wu, 2017). We hypothesize that these HCs

carry common GMV variations that contribute to all schizo-

phrenic patients.

The differed symptoms, on the other hand, might be contributed

by HC6, HC9, HC14, and HC15, which show much variance among

patient groups. In detail, Group 1 patients had significantly reduced

mean GMV as compared to patients of other groups in HC6. The

HC6 located in the left supramarginal region, which is related to lan-

guage perception and processing. In HC15, which located in the

right median cingulate and paracingulate gyri, patients of Group 1

had a larger mean GMV. This region is implicated in error detection,

attention or motivation-related functions and is reported to be asso-

ciated with schizophrenia (Posner and DiGirolamo, 1998). Group 2

patients had a greater mean GMV on HC14, which located in the

left angular gyrus and associated with language. The three groups

have quite distinct mean GMVs on HC9, where Group 1 patients

have the lowest mean GMV, and Group 3 patients have a signifi-

cantly larger mean, with the mean GMV of patients of Group 2 in

between. HC9 located across the left cuneus, superior occipital

gyrus, superior parietal gyrus, and precuneus regions. These

regions are involved in visual processing, spatial orientation, epi-

sodic memory, visuospatial processing, reflections upon the self,

and aspects of consciousness. In particular, the precuneus, where

HC2 and HC13 were also located, along with adjacent areas

within the posteromedial parietal cortex, has attracted

increasing attention, as it is among the most active cortical

regions according to the ‘default mode’ of brain function dur-

ing the conscious resting state, whereas it selectively deacti-

vates in a number of pathophysiological conditions and

neuropsychiatric disorders, including schizophrenia, charac-

terized by impaired information processing (Cavanna, 2007).

Figure 3 Identification of subtype patients by GMV of HCs. (A) The number of classes against mean in-group proportion (IGP). The optimum

number of classes (groups) is identified by maximizing IGP. (B) Heat map of the three groups identified according to grey matter densities

(GMVs) of the 16 HCs. The patients were sorted by groups. The colors represent the correlation coefficient (as displayed in the color bar) of

GMVs over 16 HCs of two corresponding patients.

Integrative clues for subtyping schizophrenia patients | 683



Finally, there are several remarks we would like to address.

First, our goal was to search for potential collective effects of

multiple genes rather than looking for new genetic locations

correlated with brain structural variation. The SZGene database

which we used to extract schizophrenia risk genes, although

stopped updating, includes the largest collection of

schizophrenia-related genes to our knowledge. However, our

method can be easily applied to an extended list of genes.

Second, the transcriptional profiles obtained from BrainSpan

are non-psychiatric postmortem donors. This study is therefore

limited to examining the co-expression pattern of candidate

genes within the group of putatively normal persons. We believe

that, with the accumulation of transcriptome samples on psychi-

atric patients in the future, examining the possible cis- and

trans- effects on variants, and in turn the gene expression char-

acteristics in specific HCs will strengthen the understanding of

Figure 4 Positive and negative scores in different subtyped patients. (A) Boxplots of mean positive (P), negative (N), and composite (PN)

scale scores over 10000 permutations. The red ‘*’ represents the mean score of the original un-permuted groups. (B) The empirical distribu-

tion of the Group-wise difference over 10000 permutations. The mean difference of the composite scale (PN) scores between Groups 1 and

2 (MeanPN12), Groups 1 and 3 (MeanPN13), and Groups 2 and 3 (MeanPN23) over 10000 permutations are shown in histograms. The x-axis

represents the difference of group mean scores of the pair of permutated groups. The quantile of the P-value is represented by red lines.

The x-axis represents the difference of the mean composite scale scores of a pair of permuted groups. The quantile of P-value is represented

by red lines. (C) The mean group GMV of each HCs, with Group 1 shown in red, Group 2 in green and Group 3 in blue. The red ‘*’ indicate

significant differences in GMV of the corresponding HC among groups (Supplementary Table S6).
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links between the genetics and the symptoms of schizophrenia

(Bray et al., 2008; Jiang, 2015; Wu et al., 2017). Third, studies

of schizophrenia are more increasingly interested in using func-

tional MRI data (Gong and Lin, 2018). Our findings revealed that

the collective effects of candidate genes on HCs of SCZ patients

may result in different symptoms as characterized by the PANSS

score. However, how these HCs are functionally connected or

how they are related to other regions calls for further investiga-

tion. Last, the symptoms of patients, which subtyped into three

groups according to the HCs, are distinguishable by the scores

on the positive and negative items of PANSS in this study. It is

expected that with a larger size of samples together with multi-

scale data, a more refined classification of patients may be

possible.

Materials and methods

Brain developmental gene expression data

The BrainSpan database contains the largest transcriptome

profiles of human brain development with up to 16 cortical and

subcortical structures across the full course from post-

conception weeks (PCWs) to adulthood. We used this data to

evaluate the spatial-temporal co-expression of selected candi-

date genes. The gene expression data of normal human brain

tissues were from BrainSpan database. After filtering out non-

coding genes, and genes with low expression level, a total of

15272 genes were retained as background for further co-

expression analysis (see Supplementary Text S2).

Identification of candidate genes using the linear

regression model

A linear regression model (Gong et al., 2014) was used to

detect the association between single gene/SNP and the GMV

of voxels in the brain, with age, gender and education as covari-

ates (Supplementary Text S3). A risk gene was selected as a

candidate if at least one SNP of the gene had a minimum P-value

< 1 × 10−6 (see Supplementary Text S4 on the discussion of false

discovery rate controls). The analysis was performed using

MATLAB Release 2014a (The MathWorks, Natick, 2014).

Construction of spatio-temporal co-expression gene networks

The BrainSpan dataset was divided into 12 sub-sets according to

4 anatomical regions of the brain and 3 predefined developmental

stages (Supplementary Table S2). In particular, the brain was parti-

tioned into non-overlapping regions: FC, TP, SM, and SC; and sam-

ples were categorized into developmental stages according to their

ages: fetal (8–37 post-conception weeks), early infancy to late child-

hood (4 months to 8 years), and adolescence to adulthood (13–40
years) (Gulsuner et al., 2013) (see Supplementary Table S2 for more

details). For each sub-set, the absolute Pearson correlation coeffi-

cients (denoted as PCC) of expression of each pair of the schizophre-

nia risk genes were calculated. As strong correlation of expression

between a pair of genes may potentially indicate high relevance to

function, we applied a common threshold of PCC > 0.8, and set

values below the threshold to 0. Twelve spatio-temporal specific

weighted gene co-expression networks, each with risk genes as

nodes and edges assigned with threshold PCCs, were thus con-

structed. The co-expression strength of a set of genes was char-

acterized by interconnectedness, which was defined as the sum

of the edges’ weights among the set of genes.

We applied a resampling procedure to test if the candidate

genes are highly interconnected. The stabilities of the results were

also evaluated by comparing different PCC thresholds (PCC=0.8,

unweighted networks and merged networks (Supplementary Text

S5). The analysis was performed using R environment (https://

www.R-project.org/).

Construction of grey matter HCs based on collective genetic

effects

Since many common genetic variants of small effect may con-

tribute to the variation of GMV, we clustered the voxels with GMV

closely associated with a number of candidate gene/SNPs. All vox-

els were first weighted by the number of SNPs which were signifi-

cantly associated with their GMV. The weights of the voxels were

further corrected taking into consideration the linkage disequilib-

rium (LD) among SNPs that are physically located on the same

chromosome (Supplementary Text S6) and spatially smoothed by

an isotropic Gaussian kernel (full-width at half-maximum=8 mm).

Voxels with weight exceeding a pre-defined threshold of 0.2304

(Supplementary Text S7) were merged to form clusters based on a

connectivity rule, that is, voxels sharing at least one edge or side.

We named these identified clusters as HCs.

Subtyping schizophrenic patients by HCs

We applied the K-means clustering approach using GMV of

the HCs to divide the 67 patients that PANSS scores (Kay et al.,

1987) into different groups. For each patient, the GMV of HCs

was extracted and used as multidimensional features. The met-

ric used for clustering was unity minus the correlation of the

corresponding multidimensional features. In-group proportion

(IGP; Kapp and Tibshirani, 2007), which quantifies the propor-

tion of samples in a group whose nearest neighbors are also in

the same group, was adopted to measure the quality of the

clustering results.

The optimum number of groups (clusters) was determined

according to the average IGP of all groups (the numbers of

groups tested were from 2 to 10). For each number of groups

chosen, 1000 replicate runs were conducted with locations of

the centroid for each group initiated randomly. The sum of the

pointwise distances to their centroid within groups was calcu-

lated for each replicate, and the minimum sum was chosen as

the final outcome.

The total PANSS score (TT), and four subscales, namely, the

positive scale score (P), the negative scale score (N), the gen-

eral psychopathology scale score (G), and the composite scale

score (defined by subtracting the negative from the positive

score, i.e. PN), were calculated for each patient. The mean

scores were compared across groups for each subscale by ran-

dom permutation of the group label of patients for 10000 times.

The P-values were obtained as the percentile where the true

value lies in the empirical distribution from 10000 permutations.
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All analyses were performed using R environment (https://www.

R-project.org/).

Supplementary material

Supplementary material is available at Journal of Molecular

Cell Biology online.
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