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Abstract

Respondent-driven sampling (RDS) is a chain-referral method for sampling members of hidden or 

hard-to-reach populations, such as sex workers, homeless people, or drug users, via their social 

networks. Most methodological work on RDS has focused on inference of population means under 

the assumption that subjects’ network degree determines their probability of being sampled. 

Criticism of existing estimators is usually focused on missing data: the underlying network is only 

partially observed, so it is difficult to determine correct sampling probabilities. In this article, the 

author shows that data collected in ordinary RDS studies contain information about the structure 

of the respondents’ social network. The author constructs a continuous-time model of RDS 

recruitment that incorporates the time series of recruitment events, the pattern of coupon use, and 

the network degrees of sampled subjects. Together, the observed data and the recruitment model 

place a well-defined probability distribution on the recruitment-induced subgraph of respondents. 

The author shows that this distribution can be interpreted as an exponential random graph model 

and develops a computationally efficient method for estimating the hidden graph. The author 

validates the method using simulated data and applies the technique to an RDS study of injection 

drug users in St. Petersburg, Russia.
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1. INTRODUCTION

Hidden populations, such as drug users, men who have sex with men, sex workers, or 

homeless people, are often subjected to social stigma or criminalization. Learning about 

these populations can be challenging for sociologists, epidemiologists, and public health 

researchers, because potential subjects may fear exposure or prosecution. Several survey 

techniques have been developed for sampling from hidden populations, including social link 

tracing and snowball designs (Goodman 1961; Thompson and Frank 2000). Respondent-

driven sampling (RDS) is a common survey method for hidden or hard-to-reach populations 

for which no convenient sampling frame exists (Broadhead et al. 1998; Heckathorn 1997). In 
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RDS, study participants recruit members of their social network who are also members of 

the hidden population. Starting with a set of “seeds,” participants are given a fixed number 

of coupons tagged with a unique code. Participants then recruit members of their social 

network by giving them coupons. The recipient of the coupon redeems it at the study site (or 

over the phone, online, etc.), is interviewed, and receives coupons to recruit others. A dual 

incentive encourages recruitment: subjects receive a small reward for participating in the 

study and for each new subject they recruit. Subjects cannot be recruited more than once, 

and only a small number of coupons are given to new participants, to prevent the local 

network from being saturated with coupons or the emergence of a secondary market for 

coupons. To safeguard the privacy of subjects not participating in the study, subjects do not 

reveal the identities of their social contacts to researchers. The only network information 

typically reported by subjects is their network degree, the number of social contacts who are 

also members of the study population.

Although RDS is an effective procedure for recruiting members of a hidden population, 

estimation of population characteristics from data obtained by RDS is controversial. Most 

methodological work on RDS assumes that the recruitment process takes place in a hidden 

social network connecting members of the study population. With the understanding that the 

structure of this hidden network likely affects individual subjects’ likelihood of being 

recruited, many researchers have sought to determine sampling probabilities for design-

based estimation of population means (e.g., human immunodeficiency virus [HIV] infection 

prevalence). Salganik and Heckathorn (2004) constructed a model of the recruitment process 

in which subjects receive only one coupon and can be recruited infinitely many times. They 

modeled the recruitment as a random walk with replacement on the hidden population social 

network. When this walk is at “equilibrium,” they argued that the probability that a given 

subject is sampled is proportional to his or her network degree. Salganik and Heckathorn 

and Volz and Heckathorn (2008) proposed a Horvitz-Thompson type estimator for the 

population mean, in which observations are weighted by the inverse of the subject’s degree. 

Aronow and Crawford (2015) clarified the conditions under which this estimator has good 

statistical properties, and Gile (2011) derived a related estimator whereby sampling is 

without replacement.

Unfortunately, the characterization of the RDS recruitment process as a sampling design, 

whereby sampling probability is a function of network degree alone, suffers from some 

fundamental flaws. First, RDS recruitment is always without replacement, because subjects 

cannot be recruited more than once; second, a without-replacement random walk on a 

network is never at equilibrium with respect to its probability of sampling particular subjects

—once a subject is recruited, he or she can never be visited by the recruitment process again; 

and third, if the recruitment process operates on the social network connecting the sampled 

individuals and seeds are not chosen at random, the network structure itself determines the 

probability that a given person will be reached by the recruitment chain. Indeed, for a given 

sample size n on a fixed population network, any potential subject whose minimum path 

length to a seed is greater than n has sampling probability 0, regardless of his or her network 
degree. The random walk characterization of RDS also neglects the fundamental role of 

coupon depletion in the dynamics of recruitment. Depletion of certain recruiters’ coupons 

can block paths to isolated parts of the network, providing no way for the recruitment chain 
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to reach some members of the population. Researchers have raised serious concerns about 

the empirical properties of population estimates from data obtained by RDS and the Volz 

and Heckathorn (2008) estimator in particular (Gile and Handcock 2010; Goel and Salganik 

2010; Johnston et al. 2010; Mills et al. 2014; Salganik 2012; White et al. 2012). Studies 

comparing RDS with traditional sampling or census of the same population have highlighted 

serious bias in estimates (McCreesh et al. 2012) or problems with variance estimation 

(Wejnert 2009).

It is difficult to determine the correct sampling probabilities for recruited subjects under 

RDS because the underlying social network is only partially observed (Gile and Handcock 

2010, 2015). The unobserved links between recruited subjects, and between recruited and 

unrecruited population members, constitute missing data in RDS studies. Characterization of 

the network on which the sampling process takes place is therefore a major methodological 

frontier in research on estimation from RDS (Handcock and Gile 2010). Remarkably, a 

typical RDS study reveals a great deal of information about the network of respondents: the 

observed degrees, recruitment chain, and patterns of coupon allocation and depletion are all 

readily available and provide valuable information about the local structure of the population 

network. Insight into the information content of data from RDS studies would clarify exactly 

which network and population properties researchers can hope to estimate, and which they 

cannot, in real-world studies. In particular, a better understanding of the network on which 

RDS recruitment operates could facilitate computation of marginal sampling probabilities 

similar to those calculated by Gile and Handcock (2015) for use in Horvitz-Thompson-type 

estimators for population means (e.g., Volz and Heckathorn 2008). Alternatively, 

specification of a probability model for dependence between trait values of vertices that 

share an edge in G may allow regression approaches to population estimation and 

adjustment for dependence in outcomes induced by the network structure (e.g., Bastos et al. 

2012). An estimate of the subnetwork of respondents in an RDS study could also be used to 

estimate the size of the target population in a manner analogous to the “network scale-up” 

population size estimator (Bernard et al. 2010; Feehan and Salganik 2014; Killworth et al. 

1998).

In addition to its statistical uses for population-level inference, the subnetwork of 

respondents is of inherent sociological and epidemiological interest. The network connecting 

sampled subjects reveals social links between participants and possible avenues for 

transmission of ideas, behaviors, practices, or infectious agents. Comprehensive socio-metric 

mapping can be difficult and costly in hidden populations, and many researchers have 

attempted to estimate epidemiological properties of recruited individuals’ networks from 

recruitment data obtained by RDS (e.g., Cepeda et al. 2011; Li et al. 2011; Liu et al. 2009; 

Stein, Steenbergen, Buskens, et al. 2014; Stein, Steenbergen, Chanyasanha, et al. 2014). The 

ability to estimate features of the subnetwork of respondents in an RDS study would place 

sociological and epidemiological inquiries about the local network onto firmer theoretical 

and methodological ground.

In other areas of network theory, researchers have made progress in reconstructing networks 

from partial observation. When links are missing, some techniques assume that subjects with 

similar traits are likely to be connected (Atchade 2011; Leskovec, Huttenlocher, and 
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Kleinberg 2010; Lü and Zhou 2011; Koskinen et al. 2013). When vertices, edges, or 

egocentric networks are sampled, several authors have proposed ways of estimating global 

network properties (Bliss, Danforth, and Dodds 2014; Goyal, Blitzstein, and de Gruttola 

2014; Smith 2012) or when vertices can be observed more than once (Frank and Snijders 

1994; Yan and Gregory 2013). Sometimes dynamic or random processes can reveal 

structural information about networks (Kramer et al. 2009; Shandilya and Timme 2011; 

Linderman and Adams 2014). Gile (2011) and Gile and Handcock (2015) presented methods 

for random graph model-assisted inference of the degree distribution from RDS, but they 

still assume that sampling probability is a function of network degree alone.

In this article, we show how to use data from RDS studies to probabilistically reconstruct the 

social network of respondents. We first define the observed data under RDS and construct a 

realistic continuous-time model of the RDS recruitment process on a graph. The model is a 

simple and natural formalization of the RDS recruitment procedure initially defined by 

Heckathorn (1997). Interrecruitment waiting times carry information about the network 

edges linking recruiters to unsampled individuals at each moment in time. We combine this 

timing information, knowledge of who recruited whom, who had coupons at which times, 

and the network degrees of recruited subjects to place a well-defined probability distribution 

on the structure of the recruitment-induced subgraph. A fundamental result of this article is 

that under simple and realistic assumptions, the likelihood of the recruitment process on a 

hidden graph can be interpreted as an exponential random graph model (ERGM). We 

describe a technique for jointly estimating the recruitment-induced subgraph and recruitment 

rate. An important feature of the algorithm is a computationally efficient method to calculate 

the likelihood of the recruitment-induced subgraph. We validate the proposed technique 

using simulated and real networks and apply it to an RDS study of injection drug users in St. 

Petersburg, Russia. We conclude with a new perspective on the information content of data 

from RDS studies.

2. DEFINITIONS AND ASSUMPTIONS

We begin by stating definitions and assumptions to ensure that the graph inference problem 

is well posed. (We use the terms graph and network interchangeably.) The first is implicit in 

the foundational work on RDS and guarantees that the objects under study exist (Heckathorn 

1997; Salganik and Heckathorn 2004; Volz and Heckathorn 2008).

Assumption (A-1): The hidden population exists and has finite size N. The social 

network connecting members of the hidden population is an undirected graph G = (V, 
E) with |V| = N and no parallel edges or self-loops.

Members of the hidden population are vertices in V. A vertex is recruited if it is known to 

the study. A vertex is a recruiter if it has at least one coupon and at least one unrecruited 

neighbor; a susceptible vertex is unrecruited and has at least one neighbor who is a recruiter. 

A susceptible edge connects a recruiter and a susceptible vertex, and recruitments can take 

place only across susceptible edges. A recruited vertex cannot be recruited again. At the 

moment it is recruited, a vertex is endowed with a non-negative number of coupons it may 

use to recruit its susceptible neighbors. Every recruitment reduces the number of coupons 

held by the recruiter by one. When all the coupons belonging to a recruiter vertex are 
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depleted, the vertex is no longer a recruiter, and any edges incident to it are no longer 

susceptible. Seeds are recruited vertices chosen from the entire population of vertices by 

some mechanism, not necessarily random, usually at the beginning of the study. Seeds are 

not considered to have been recruited by any other vertex.

Definition 1 (Recruitment-induced Subgraph): The recruitment-induced subgraph is 

GS = (VS, ES), where VS ⊆ V consists of n = |VS| sampled vertices (including seeds), 

and {i, j} ∈ ES if and only if i ∈ VS, j ∈ VS, and {i, j} ∈ E.

Definition 2 (Recruitment Graph): The directed recruitment graph is GR = (VR, ER), 

where VR = VS is the set of n sampled vertices and (i, j) ∈ ER means i recruited j.

Because subjects cannot be recruited more than once, GR is acyclic. Assumption (A-1) does 

not require that G be connected, nor that the RDS sample take place in the largest connected 

component, or even a single component. Therefore the recruitment-induced subgraph GS 

may not be connected. Let d be the n×1 vector of recruited subjects’ degrees (in the order of 

their recruitment into the study) and let t = (t1, …,tn) be the n×1 vector of recruitment times, 

where t1<⋯<tn.

Definition 3 (Coupon Matrix): Let C be the n×n coupon matrix whose element Cij is 

1 if subject i has at least one coupon just before the jth recruitment event, and zero 

otherwise. The rows and columns of C are ordered by subjects’ recruitment time.

The RDS recruitment process reveals only some of this information to researchers.

Assumption (A-2): The observed data consist of Y = (GR, d, t, C).

In particular, researchers do not observe the recruitment-induced subgraph GS of the 

sampled vertices. Figure 1 shows an example graph G and a realization of the RDS 

recruitment process on G. The recruitment graph GR, recruitment-induced subgraph GS, 

degree vector d, recruitment times t, and coupon matrix C are also shown.

We now state three assumptions about the behavior of recruiters and their knowledge of the 

recruitment status of their neighbors.

Assumption (A-3): Vertices become recruiters immediately upon entering the study 

and receiving one or more coupons. They remain recruiters until their coupons or 

susceptible neighbors are depleted, whichever happens first.

Assumption (A-4): When a susceptible neighbor j of a recruiter i is recruited by any 

recruiter, the edge connecting i and j is immediately no longer susceptible.

By assumption (A-4), recruitment is competitive: the first recruiter to recruit a given 

susceptible vertex immediately removes it from the pool of susceptibles. Finally, we specify 

a parametric waiting time distribution for the time it takes for a recruiter to recruit a 

susceptible neighbor.

Assumption (A-5): The time to recruitment along an edge connecting a recruiter to a 

susceptible neighbor has exponential distribution with rate λ, independent of the 

identity of the recruiter, neighbor, and all other waiting times.
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By assumption (A-5), waiting times to recruitment along susceptible edges are independent 

and elapse concurrently in continuous time, so recruitment is simultaneous. Together, 

assumptions (A-3), (A-4), and (A-5) place a well-defined probability distribution on the 

recruitment-induced subgraph of respondents.

2.1. Consequences of the Waiting Time Assumption

The results below follow directly from assumption (A-5). Let R be the set of recruiters with 

coupons and let S be the set of susceptible vertices at a certain moment in the recruitment 

process. Let Su be the set of susceptible vertices that are neighbors of the recruiter u ∈ R. 

Likewise, let Rv be the set of possible recruiters of a susceptible vertex v ∈ S. Clearly, v ∈ 
Su if and only if u ∈ Rv.

Proposition 1: Given that the recruiter u recruits one of its susceptible neighbors v ∈ 
Su before any other recruiter, the waiting time to this recruitment event is distributed 

as Exponential (λ|Su|). The probability that the susceptible vertex v ∈ Su is the next 

recruit is uniform 1/|Su| and independent of the waiting time to the recruitment event.

Proposition 2: The waiting time to the next recruitment of any susceptible vertex is 

distributed as Exponential λ∑u ∈ R Su . The probability that the susceptible vertex v 

∈ S is the next recruit is Rv /∑k ∈ S Rk  independent of the waiting time.

Proofs of propositions 1 and 2 are given in the online Appendix. Intuitively, proposition 2 

means that the new recruited vertex is chosen with probability proportional to the number of 

edges along which it can be recruited. These results formalize the consequences of 

simultaneous and competitive recruitment in continuous time.

Interestingly, assumptions (A-3) to (A-5) and the resulting recruitment probability differ 

starkly from the recruitment dynamics used in simulations by other researchers to test the 

performance of estimators for RDS. Gile and Handcock (2010) simulated the RDS 

recruitment process by first choosing seeds, after which “subsequent sample waves were 

selected without-replacement by sampling up to two nodes at random from among the 

unsampled alters of each sampled node” (p. 303). This leads to a brief corollary establishing 

the difference between these approaches.

Corollary 1: Assumptions (A-3) to (A-5) (simultaneous and competitive recruitment) 

result in different conditional recruitment probabilities than the RDS recruitment 

implementation of Gile and Handcock (2010).

A proof is given in the online Appendix. The process defined by Gile and Handcock (2010) 

requires that recruiters “take turns.” This approach implicitly requires that recruiters have 

knowledge about the behavior of other recruiters—even those to whom they are not 

connected in the network. This process induces a different distribution on the susceptible 

degree, and hence on the overall degree, of the new recruit than the model described in 

assumptions (A-3) to (A-5) of this article. Most existing methods for population inference 

from RDS data depend intimately on the degree distribution of recruited vertices (e.g., Gile 

2011; Salganik and Heckathorn 2004; Volz and Heckathorn 2008), so it is important to 

highlight scenarios when methods for simulation of recruitment dynamics differ.
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3. LIKELIHOOD OF THE RECRUITMENT TIME SERIES

Proposition 2 shows that under assumptions (A-3) to (A-5), the rate of recruitment is 

proportional to the number of susceptible edges. Given a realization of the recruitment-

induced subgraph GS, it is not immediately obvious how to determine quickly the number of 

susceptible edges just before each recruitment. When a given susceptible vertex is recruited, 

all susceptible edges incident to it disappear from the set of susceptible edges (assumption 

A-4). Furthermore, the newly recruited vertex now has coupons, so there may be new 

susceptible edges connected to it. Finally, if the new vertex is not a seed, its recruiter has 

used one coupon; if its coupons are now depleted, any other susceptible edges incident to the 

recruiter are no longer susceptible. Clearly, the number of susceptible edges can increase, 

decrease, or stay the same from one recruitment to the next. In this section, we derive a 

computationally efficient representation of the likelihood of the recruitment time series using 

matrix algebra. This approach obviates costly enumeration of all |ES| edges to determine 

whether they are susceptible at each step in the recruitment process. A preliminary definition 

will assist in this task. Let 1{X} be the indicator of an event X, which takes value 1 when X 
is true and zero otherwise.

Definition 4 (Compatibility): An estimated subgraph GS = VS, ES  is compatible with 

the observed data Y = (GR, d, t, C) if the following conditions are met:

1. The vertices in the estimated subgraph are identical to the set of recruited 

vertices: v ∈ VS if and only if v ∈ VR.

2. All directed recruitment edges are represented as undirected edges: for each 

i, j ∈ ER,   i, j ∈ ES.

3. The number edges in GS belonging to each sampled vertex does not exceed 

the vertex’s degree: for all v ∈ VR,   ∑u ∈ VR\v1 u, v ∈ ES ≤ dv where dv is 

the degree of vertex v.

Let 𝒞 GR, d  denote the set of all compatible subgraphs. These compatibility conditions 

provide topological constraints on the structure of GS. Combining these with the likelihood 

of the recruitment time series allows probabilistic reconstruction of GS.

Let A be the n×n adjacency matrix (sociomatrix) of a compatible estimate GS, where the 

rows and columns of A correspond to subjects in the order of their recruitment. The product 

of A and the coupon matrix C gives an n×n matrix whose elements describe the number of 

recruiters connected to each vertex in GS over time. Let w = (0, t2 − t1, …,tn − tn−1) be the 

n×1 vector of waiting times between recruitments. Let u be the n×1 vector of the number of 

edge ends belonging to each vertex (in the order of recruitment) that are not connected to 

any other sampled vertex. When j ≤ i, {AC}ij is the number of recruiters connected to i just 

before the time tj of the jth recruitment. Then lt(AC), the lower triangle of AC, is the number 

of recruiters connected to each vertex at each time before recruitment of that vertex. 

Likewise, the jth element of C′u is the number of susceptible edges connecting sampled 
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vertices to unsampled vertices at time tj. Figure 2 shows examples of these matrices. Finally, 

let M be the set of seeds.

Proposition 3: Under assumptions (A-1) to (A-5), the likelihood of the recruitment 

time series is

L(w GS, λ) = ∏
k ∉ M

λsk exp −λs′w , (1)

where

s = lt AC ′1 + C′u (2)

is a vector whose elements are the number of susceptible edges just before each 

recruitment event.

A proof is given in the online Appendix. As before, the rate of recruitment is proportional to 

the number of susceptible edges, and proposition 3 generalizes proposition 2 by providing 

an explicit expression for the number of susceptible edges at each step, taking coupons into 

account and allowing for seeds to be added at any time.

Although equation (1) is the likelihood of the recruitment time series w, we can also view it 

as a function of the recruitment-induced subgraph adjacency matrix A with λ and w held 

fixed. Consider the statistic T(A) = − λs, where s is defined by equation (2), θ = w, and 

B A = ∑k ∉ M log λsk . Then we can renormalize the likelihood (equation 1) to form the 

probability Pr A |θ = exp T A ′θ + B A /κ θ , where κ(θ) is a normalizing constant that does 

not depend on A. It is clear that Pr (A|θ) is a member of the exponential family of 

distributions. In particular, it can be interpreted as an ERGM, also known as a p* graph 

(Frank and Strauss 1986; Wasserman and Pattison 1996). Regardless of whether we view 

equation (1) as the likelihood of the random waiting times w or as the probability of the 

random graph GS, the inference procedure we develop below benefits from Markov chain 

Monte Carlo algorithms developed for sampling edges in ERGMs (see Snijders and Van 

Duijn 2002 for an example).

4. RECONSTRUCTING THE RECRUITMENT-INDUCED SUBGRAPH GS

Together, the compatibility conditions (definition 4) and proposition 3 make possible 

simultaneous estimation of the recruitment-induced subgraph GS and the waiting time 

parameter λ under the recruitment model. Because proposition 3 implies a probability model 

for GS ∈ 𝒞 GR, d , we can learn about this distribution by drawing samples from joint 

posterior

p GS, λ Y ∝ L w GS, λ Pr GS π λ , (3)
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where Y = (GR, C, d, t) is the observed data, and Pr (GS) and π(λ) are prior distributions. 

We take the uniform prior distribution over the recruitment-induced subgraph: 

Pr GS = 1/ 𝒞 GR, d  for every GS ∈ 𝒞 GR, d . To draw pairs (GS, λ) from p(GS, λ|Y), we use 

a Metropolis-within-Gibbs sampling scheme. To sample GS conditional on λ, suppose λ is 

fixed and we have a compatible subgraph GS. We generate a new compatible subgraph 

GS* = VS, ES*  using a proposal algorithm given in the online Appendix. To sample λ 

conditional on GS, we use a Metropolis-Hastings step based on an approximation of the 

conditional distribution of λ given in the online Appendix. By alternating these steps, we 

define a reversible Markov chain whose equilibrium distribution is the given by equation (3).

Computationally efficient Monte Carlo sampling of GS via the Metropolis-Hastings 

algorithm depends on rapid evaluation of the likelihood ratio L w |GS*, λ /L w |GS, λ , where 

GS* is a new proposed subgraph. The online Appendix presents simple expressions for these 

likelihood ratios that depend only on a simple change statistic and do not require evaluation 

of the matrix products required in the likelihood equation (1). More generally, the 

computational burden of the procedure scales with the sample size n and is not affected by 

the total size N = |V| of the target population.

When only a single “most likely” subgraph GS is desired, a faster algorithm is available for 

maximum likelihood (or maximum a posteriori [MAP]) estimate of GS and λ. This Monte 

Carlo optimization approach is called “simulated annealing” (e.g., see Robert and Casella 

2004 for details) and produces a sequence of estimates (GS, λ) that tend toward the most 

likely values under the likelihood or posterior distribution. The simulated annealing 

procedure is outlined in the online Appendix.

5. VALIDATION BY SIMULATION

In simulation studies, reasonably accurate reconstruction of the recruitment-induced 

subgraph GS can be achieved using the proposed recruitment model (equation 1). In the 

online Appendix, we analyze the performance of reconstruction in simulated networks and a 

real-world social network. Conditional on the population network, we simulate the RDS 

recruitment process with n subjects, |M| seeds, and recruitment rate λ, under assumptions 

(A-3) to (A-5). From the simulated recruitment data, we extract the observed data Y = (GR, 

t, d, C) in accordance with assumption (A-2). We place a gamma prior distribution on the 

waiting time parameter, π λ ∝ λη − 1e−ξλ, where η>0 and ξ>0. We assess the accuracy of 

reconstruction over 100 repetitions of simulated RDS recruitment over different networks, 

and for each simulated data set, we find the joint MAP estimate of GS and λ using the 

procedure outlined in Section 4. MAP estimates represent the mode of the posterior 

distribution over (GS, λ) and provide a convenient point estimate for comparing results over 

many repetitions of the simulation. We also assess the accuracy of reconstruction under a 

misspecified waiting time model in which assumption (A-5) is violated; reconstruction 

remains robust, with corresponding bias in estimates of λ.
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6. APPLICATION

The HIV epidemic in St. Petersburg, Russia, is concentrated in people who inject drugs 

(PWID). At least 12,000 people are registered as drug users, but the number of current 

PWID is likely much higher (Heimer and White 2010). Injection drug use is highly 

stigmatized in the Russian Federation, and criminal penalties for drug possession can be 

severe. PWID suffer from high rates of HIV infection and may lack access to treatment and 

health-related educational resources (Niccolai et al. 2010, 2011).

As part of a study to assess perceived barriers to use of HIV prevention and treatment 

services, n = 813 PWID were recruited using RDS in St. Petersburg during 2012 and 2013. 

Outreach workers identified 17 seed subjects using venue-based sampling in six city 

districts. Interviews collected demographic information, injection practices, sex practices, 

mental health measures, and knowledge of HIV/AIDS and tuberculosis resources, but we 

focus solely on network structure in this analysis. Figure 3 shows the raw RDS data: the 

recruitment trees, number of new recruits per day, cumulative number of recruits, and 

reported network degrees.

Participation in the study was limited to current injection drug users over the age of 21 years 

who had injected within the previous four weeks. Subjects’ status as PWID was verified 

either by inspection of arms for injection marks or explanation of drug preparation. Subjects 

received a voucher with a value of about US$20 for being interviewed and a secondary 

reward with value about US$10 for recruiting another eligible subject. Following their 

interview, each subject received three coupons, and no subject could be recruited more than 

once. Informed consent was obtained from all participants, and the study was approved by 

the Yale University and Stellit (St. Petersburg) institutional review boards.

Figure 4 shows the observed data Y = (GR, d, t, C) from this study. The recruitment graph 

GR was constructed by matching participants’ coupon ID with the IDs of coupons given to 

their recruiter. The coupon matrix C was constructed by calculating the number of coupons 

held by each subject just before each recruitment event. Interviews assessed network degree 

by asking, “How many people do you know (you know one another’s names) who you have 

seen within the last 4 weeks who inject drugs?”

A subject’s minimum degree was defined as the number of undirected edges incident to that 

subject in the recruitment graph GR. We assumed a subject’s network degree was accurately 

reported, except when a subject’s reported degree was less than his or her minimum degree. 

In these cases, we replaced the reported degree by the minimum degree. The average 

reported degree of subjects was 10.3. Interview dates and times were recorded for each 

subject; the elapsed time between a subject’s interview and the next interview (in days) was 

treated as the interrecruitment waiting time. To estimate the edgewise recruitment rate λ 
more reliably, we removed weekends and other breaks during which no interviews were 

scheduled. This slightly changed the units of λ but allowed better estimation of the true 

waiting time distribution. The online Appendix describes the prior specification for l. In a 

few cases, the interview times for a subject and his or her recruit were the same, presumably 

because both individuals came to the interview site together. In these cases, we resolved the 

Crawford Page 10

Sociol Methodol. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tie by jittering the recruiter’s interview time to be slightly earlier than the recruitee’s 

interview time.

Construction of GR and C revealed a minor violation of the RDS recruitment specification: 

we found seven recruits whose coupon IDs matched the IDs of already redeemed coupons. 

The financial reward for recruiting another eligible subject may provide a strong incentive 

for participants to fraudulently inflate the number of coupons they hold by creating a 

facsimile of the original coupon and giving it to another potential subject to redeem. This 

appears to be what happened: the recruiter photocopied the original coupon, this 

reproduction was not detected by the interviewer, and both the new recruit and recruiter 

received their corresponding rewards. Rather than breaking the recruitment chain by 

omitting data from the seven subjects with duplicated coupon IDs, we instead artificially 

increased the number of coupons held by the apparent recruiter to be equal to the number of 

subjects who redeemed coupons bearing the ID of the recruiter.

Overall recruitment of participants in this study was rapid: the mean time between 

interviews was 0.28±0.74 days. However, the mean time between a particular subject’s 

interview and his or her recruiter’s interview was 23.4±18.0 days, indicating that the per 

edge waiting times for recruited subjects were substantially longer (the maximum waiting 

time from interview to recruitment was 112 days). Indeed, this calculation is conditional on 

the subject’s actually being recruited within the study time frame, so any longer waiting 

times are censored by the end of the study. We evaluated the posterior mode with η ranging 

from 0.1 to 10, and in every case the estimate ranged from 0.0050 to 0.0053. The rate of 

recruitment across susceptible edges is estimated to be approximately 1/λ = 199 days with 

posterior quantiles (186, 215), nearly as long as the study duration of 223 days. The apparent 

discrepancy between the high frequency of interviews and very slow recruitment across 

susceptible edges is explained by the fact that researchers observe the minimum waiting time 

to recruitment across all susceptible edges at each step in the recruitment process.

Figure 5 shows the MAP estimate of the adjacency matrix for all 813 sampled subjects (left) 

and inset submatrix (right). Recruitment edges appear in gray. The apparent bands in the 

adjacency matrix represent high-degree individuals with many nonrecruitment edges. 

Probabilistic assignment of these edge ends to other recruited individuals depends on the 

timing of recruitments of other subjects. The blocklike structure evident in this adjacency 

matrix may indicate subnetworks of highly connected individuals. Subjects recruited nearby 

in time may be more likely to know one another, even if they are not linked by a recruitment 

edge.

7. DISCUSSION

Nearly every paper on statistical methods for RDS data states or assumes a version of 

assumption (A-1): the social network connecting members of the hidden population exists 

and determines the sampling probabilities. But because this network is only partially 

observed in real-world RDS studies, assumption (A-1) is usually disregarded in the 

formulation of statistical estimators. Instead, researchers usually make the simplifying 

assumption that sampling probability is proportional to degree and does not otherwise 
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depend on subjects’ location in the network. This simplification is justified by a thought 

experiment in which the rules of the game are altered: subjects can be recruited infinitely 

many times, each subject receives only one coupon, and this process continues for an 

infinitely long time (Goel and Salganik 2009; Salganik and Heckathorn 2004; Volz and 

Heckathorn 2008).

In this paper, we have embraced assumption (A-1) and its natural consequence: RDS 

recruitment happens across edges in the network connecting members of the hidden 

population. This point of view emphasizes that RDS is more like a stochastic spreading 

process on a hidden network than a survey sampling method. We define a simple 

continuous-time model for RDS recruitment on a hidden population graph using the kind of 

data obtained by every RDS study. The model results in sensible nonuniform conditional 

recruitment probabilities: the next subject is recruited with probability proportional to the 

number of edges he or she shares with recruiters (proposition 2), not their total network 
degree. Combining this model with the observed data from an RDS study allows joint 

estimation of the recruitment-induced subgraph GS and the waiting time parameter λ. Most 

important, the model directly connects the observed data to the recruitment process on the 

underlying network.

This approach yields two computational benefits. First, the time required to evaluate the 

likelihood via proposition 3 is a function of the sample size n alone, and it does not depend 

on the population size N, which is likely to be much larger. In particular, we never simulate 

unobserved portions of the population network G; the ERGM (equation 1) specifies a 

probability model for the recruitment-induced subgraph GS only. In contrast, some 

researchers dealing with partially observed network data marginalize over the entire 

unsampled portion of the graph, which may be burdensome or impossible for large N (Gile 

and Handcock 2015). Second, the likelihood (outlined in the online Appendix) does not 

require computation of the matrix products implied by equation (2). Instead, efficient update 

expressions given in the online Appendix depend only on a change statistic that can be 

efficiently updated.

Our approach is unique because it uses all the available data Y = (GR, d, t, C) from real-

world RDS studies. Several researchers have attempted to estimate the population degree 

distribution but they use only GR and d (and sometimes d alone), ignoring t and C (Gile 

2011; Gile and Handcock 2015; Handcock, Gile, and Mar 2015; Salganik and Heckathorn 

2004; Volz and Heckathorn 2008). Berchenko, Rosenblatt, and Frost (2013) gave a 

formulation of recruitment event intensity similar to assumption (A-2) by using a multitype 

epidemic model in which active recruiters correspond to infective individuals. In their 

model, the rate of recruitment of a new subject with degree k is proportional to the product 

of the number of active recruiters and the number of susceptible subjects with degree k. 

However, they use only d, t, and C but do not take advantage of the topological information 

contained in GR.

Historically, there have been two major statistical objections to RDS as a survey design for 

inference of population quantities. First, sampling probabilities cannot be computed directly 

from the observed data without additional assumptions (Gile 2011; Gile and Handcock 
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2010). Second, there may be statistical dependence between the traits of a given subject and 

his or her neighbors (particularly their recruiter) in the network (Fisher and Merli 2014; 

Heckathorn 1997, 2002; Tomas and Gile 2011). This dependency might be due to 

homophily—the tendency for people to form social ties with others similar to themselves—

or preferential recruitment of certain types of people, conditional on existing social ties. 

Clearly, the network structure local to the seeds and recruitment chain encodes the sampling 

probabilities and the statistical dependencies between subjects’ attributes. This leads us to 

the conclusion that a fundamental obstacle to principled statistical inference for RDS is 

missing data: in RDS, not all network neighbors of a vertex i are observed, either because 

they remain unsampled, or because the recruitment graph GR does not reveal a tie between i 
and the sampled vertices to which it is connected. Objections to RDS typically under-state 

the information about this network contained in the recruitment graph GR and the time series 

of interviews. Our results—revealing the graphical structure of data obtained by RDS—raise 

the possibility that researchers can account for both of these sources of missing data without 

imposing strong prior assumptions about the network.

Although the network may be of interest for sociological reasons, it can also be viewed as a 

nuisance parameter when population attributes are of primary interest. Marginalizing 

(integrating) over the recruitment-induced subgraph GS can be understood as multiple 

imputation, repeatedly filling in the missing data in accordance with its distribution under 

the model (Little and Rubin 1986; Huisman 2009; Koskinen, Robins, and Pattison 2010; 

Koskinen et al. 2013). In the absence of any other information, we could marginalize over 

compatible graphs in 𝒞 GR, d  with respect to the uniform distribution. However, the 

reconstructed graph would be subject to two types of reconstruction inaccuracy. First, for 

three sampled vertices i, j, and k with at least one pendant edge each, the uniform 

distribution provides no basis to distinguish an edge {i, j} from an edge {i, k} unless a 

recruitment event took place along one of those edges. For any given pendant edge, there are 

usually many more incorrect ways to connect it to sampled vertices than there are correct 

ways. Second, marginalization with respect to the uniform distribution usually results in 

inclusion of too many or too few edges overall in GS. The waiting time model developed in 

this paper provides a coherent basis for adding edges to the recruitment subgraph GR and 

helps ensure that estimates of GS have approximately the same number of edges as the true 

underlying graph.

In conclusion, we offer a mixed message about the prospect for statistically rigorous analysis 

of data from real-world RDS studies. First, current estimators for population characteristics 

depend on assumptions that bear little similarity to RDS recruitment processes on social 

networks, and they do not use all the available data. This may account for their poor 

performance in empirical studies. Second, and more optimistically, data from RDS studies 

contain far more information about the social network connecting respondents than has been 

acknowledged. Estimation of population-level characteristics should therefore proceed from 

knowledge about the network of sampled subjects: The subgraph GS is the maximal network 

object that can be estimated directly from the observed data without further assumptions. 

Extrapolation to the population network requires stronger assumptions than those given in 

this article. By introducing a simple technique for probabilistic reconstruction of the 
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recruitment-induced subgraph, we hope to offer researchers a new tool for sociological 

inquiry: a social network sampling method that delivers the network.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of unobserved and observed data in respondent-driven sampling (RDS). The true 

hidden population network is G. One seed is chosen (the vertex marked 1), and the RDS 

recruitment proceeds with each recruited vertex receiving two coupons. The directed 

recruitment graph GR is shown superimposed on G. The recruitment-induced subgraph GS is 

the subgraph of the recruited vertices. The degrees d = (d1, …,d8) of each recruited vertex 

are observed, along with the recruitment times t = (t1, …,t8). The coupon matrix C shows 

which recruiters had at least one coupon just before each recruitment event. In RDS, 

researchers observe neither G nor GS; the observed data consist of Y = (GR, d, t, C).
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Figure 2. 
Examples of matrices used to calculate the recruitment time series likelihood. At top left is 

the recruitment graph GR overlaid on the population graph G, with recruited vertices 

numbered and other vertices and edges in gray. The true recruitment-induced subgraph GS is 

not directly observed. We estimate GS by GS and let A be the adjacency matrix of GS. The 

coupon matrix C and the number of pendant edges attached to each recruited vertex is u. 

Pendant edges connect recruited vertices to unknown/unsampled vertices. The i, jth element 

of lt(AC) is the number of recruiters connected to i just before the jth recruitment event.
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Figure 3. 
Raw data from a respondent-drivien sampling (RDS) sample of n = 813 people who inject 

drugs in St. Petersburg, Russia. In the top left panel, 14 RDS recruitment chains originating 

from different seeds are shown. Recruited subjects are organized into “waves” along the 

vertical axis. The top right panel shows the number of subjects interviewed on each day of 

the study, with seeds indicated by gray bars. The bottom left panel shows the cumulative 

number of recruits over the course of the study, and the bottom right panel shows a 

histogram of the reported degrees of subjects, with bin size 1.
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Figure 4. 
Raw respondent-driven sampling data Y = (GR, d, t, C) extracted from study recruitment 

information.
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Figure 5. 
Maximum a posteriori (MAP) estimate of GS for the St. Petersburg respondent-driven 

sampling study. The left panel shows the MAP estimate of the adjacency matrix of GS, and 

the right panel shows the inset submatrix in detail. Edges in the recruitment graph are shown 

in gray.
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