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Abstract

Objective—To develop an automated vessel wall segmentation method using convolutional 

neural networks (CNN) to facilitate the quantification on magnetic resonance (MR) vessel wall 

images of patients with intracranial atherosclerotic disease (ICAD).
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Methods—Vessel wall images of 56 subjects were acquired with our recently developed whole-

brain 3D MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) 

framework was presented to extract, straighten, and resample the interested vessel segment into 2D 

slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated 

vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features.

Results—The network was trained and validated on 1160 slices and tested on 545 slices. The 

proposed segmentation method demonstrated satisfactory agreement with manual segmentations 

with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further 

applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% 

ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index (NWI) at the focal 

MCA ICAD lesions was found significantly larger in symptomatic patients compared to 

asymptomatic patients.

Conclusion—We have presented an automated vessel wall segmentation method based on FCN 

as well as the IVA framework for 3D intracranial MR VWI.

Significance—This approach would make large-scale quantitative plaque analysis more realistic 

and promote the adoption of MR VWI in ICAD management.
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I. Introduction

Intracranial atherosclerotic disease (ICAD) is an important cause of ischemic stroke 

worldwide [1–4]. The disease is characterized by the development, progression, and 

complication of atherosclerotic plaques in the vessel wall of the intracranial arteries [4]. 

Luminography imaging, routinely used in the diagnostic workup of ICAD, is restricted to 

the detection of luminal stenosis, which is, however, not a specific marker for confirming 

and risk-stratifying atherosclerotic plaques [5]. Magnetic resonance (MR) vessel wall 

imaging (VWI) is an emerging noninvasive imaging modality that can directly visualize the 

intracranial vessel wall and characterize plaque features due to excellent soft-tissue contrast 

[6–12]. Several VWI-derived morphological features, in particular quantitative measures 

such as wall area, remodeling ratio, and normalized wall index (NWI), have been 

investigated in ICAD patients and demonstrated the great potential for the identification of 

high-risk ICAD lesions [11, 13–20].

Morphological quantification of ICAD lesions based on MR VWI is currently of limited use 

in clinical practice. ICAD lesions are typically assessed by neuroradiologists in a qualitative 

fashion [21–23]. Dichotomized classification or ordinal scores are used to describe 

morphological features, which is reader experience-dependent and potentially unsatisfactory 

in accuracy and reproducibility. Thus, quantitative assessment of plaque morphology is 

highly desirable. Its feasibility has previously been demonstrated for two-dimensional (2D) 

VWI whereby cross-sectional images were used for manually tracing the lumen and outer 

vessel wall boundaries at each isolated plaque [11]. This segmentation step then allows for 
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subsequent quantitative analyses. However, when moving into the era of three-dimensional 

(3D) VWI [24], this manual approach to vessel segmentation becomes prohibitively time-

consuming because of the need for analyzing a largely increased number of imaging slices 

from multiple plaques and/or arterial segments. An automated vessel wall segmentation 

method would make quantitative plaque analysis more realistic, which would in turn 

promote the adoption of 3D MR VWI in the clinical management of ICAD.

To date, there is a paucity of literature on automated segmentation of the vessel wall from 

intracranial MR VWI. A challenge unique to the intracranial vessel wall is that the ultra-thin, 

tortuous structure is immediately surrounded by brain parenchyma or cerebrospinal fluid 

(CSF) that may show similar contrast. Recent technological advancements, such as isotropic, 

high spatial resolution imaging [6, 8, 25, 26] and CSF signal suppression [8, 26–28], have 

achieved enhanced quality of vessel delineation, potentially facilitating automated 

segmentation. Qiao et al. has demonstrated the feasibility by using the software LAVA that 

employs a method of nonuniform rational B-spline surface modeling [14]. However, the 

software was originally developed for carotid vessels, more rigorous evaluations on 

intracranial vessels are warranted.

Convolutional neural network (CNN) is a recently emerged deep-learning technique that can 

be used for image segmentation [29]. Inspired by neurons that make up the human brain, 

CNN organizes neural networks as a layered and hierarchical architecture with sufficient 

flexibility to represent complex multisource data, reveal hidden patterns, and build models 

for prediction. As a type of CNN, fully convolutional networks (FCN) have been 

successfully used in segmentation tasks [30]. In addition to convolutional layers for feature 

extraction and pooling layers for feature contraction, FCN introduces upsampling layers to 

expand the contracted features back to the same size of the input image, which is ideal for 

segmentation. Following this idea, a U-shaped deep convolutional network called U-net was 

proposed that employs multiple upsampling layers along with skip connections between the 

downsampling and upsampling paths to help recover fine-grained information [31].

In this work, we developed a U-net-like CNN segmentation method that can identify vessel 

wall boundaries in cross-sectional vessel wall images as pre-reformatted from whole-brain 

3D MR VWI data [8, 32]. As a preliminary application demonstration, the method was then 

applied in a prospective VWI study to determine the difference in a plaque burden metric, 

NWI, between symptomatic and asymptomatic ICAD patients.

II. Materials and Methods

A. Human Subjects

We retrospectively reviewed our institutional MR VWI database, and prepared a dataset for 

the segmentation network development. Briefly, a total of 56 patients with diagnosed brain 

ischemia (i.e. ischemic stroke or transient ischemic attack) secondary to ICAD were 

selected. Enrollment criteria included: at least one >50% intracranial diameter stenosis on 

MR angiography or CT angiography within the ischemic territory, ⩾ 1 atherosclerotic risk 

factor (hypertension, diabetes mellitus, hyperlipidemia, and cigarette smoking), and 

exclusion of other etiologic causes such as coexistent >50% ipsilateral extracranial stenosis, 
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nonatherosclerosis vasculopathy (e.g. dissection, vasculitis, or Moyamoya disease), and 

cardioembolism based on thorough evaluations.

We prepared a second dataset to further demonstrate the clinical use of the proposed 

framework. For that purpose, we prospectively recruited 12 symptomatic and 12 

asymptomatic patients with age matched to investigate the difference in the NWI of ICAD 

lesions. All subjects had one >50% stenosis at the M1 segment of a unilateral middle 

cerebral artery (MCA) on MR angiography or CT angiography and ⩾ 1 atherosclerotic risk 

factor. Symptomatic subjects qualified if there was an ischemic stroke or transient ischemic 

attack in the territory of the stenotic MCA within the past 8 weeks and had received 

thorough evaluations to exclude other etiologic causes. Asymptomatic subjects were 

considered for inclusion if no ischemic events had occurred in the territory of the stenotic 

MCA and no nonatherosclerosis vasculopathy had been documented.

The above studies were approved by the local ethics committee and the informed consent 

were waived for the retrospective study and obtained from prospectively recruited subjects.

B. Imaging Protocol

Intracranial vessel wall images were acquired on a 3-Tesla whole-body MR system 

(MAGNETOM Verio; Siemens Healthcare, Erlangen, Germany) equipped with a 32-channel 

head coil (Siemens Healthcare) using our recently developed whole-brain 3D VWI sequence 

[8]. The imaging parameters include: 3D sagittal orientation; TR/TE=900/15 ms; field of 

view=70×170 mm2; 240 slices with spatial resolution=0.53 mm isotropic without any 

interpolation. With this, VWI of entire intracranial vasculatures can be completed in 8 

minutes with enhanced T1 contrast weighting and CSF-signal suppression.

C. Image Preprocessing

We propose an intracranial vessel analysis (IVA) framework that provides integrated vessel 

wall image analysis (Fig. 1). All images were preprocessed by a neuroradiologist (over 10 

years of experience) using an in-lab intracranial vessel analysis software plug-in built on 

Horos, a free, open source medical image viewer (http://www.horosproject.org). Briefly, a 

3D image set acquired using an MR VWI sequence was first reformatted for optimal 

visualization of a vessel segment of interest (e.g. pathology involved). For each patient, a 

vessel segment implicated in ICAD was selected. The start and end points of the vessel 

segment were then manually designated. Vessel centerline tracking was then performed in 

Horos with manual modifications if necessary. After that, 3D curved multiplanar 

reconstruction (MPR) was used to straighten the segment, and consecutive 2D cross-

sectional slices with 0.5-mm slice thickness were thus reconstructed and exported in 

DICOM format. Note that the in-plane resolution was upsampled to 0.1 mm for the resulting 

2D slices. Depending on the interrogated vessel segment (i.e. the terminal internal carotid 

artery, the M1 of the middle cerebral artery, the vertebral artery, or the basilar artery) and the 

long-axis diffuseness of the interest of ICAD lesions, 17 to 50 contiguous cross-sectional 

images, covering both normal and thickened vessel wall parts, were generated from each 

subject. These 2D slices were manually delineated for the lumen and vessel wall by an 
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expert rater using ITK-Snap software (http://itksnap.org), providing the ground truth for the 

training and validation of segmentation model.

D. FCN-based Vessel Wall Segmentation

We propose a U-net-like FCN architecture to segment the vessel wall from 2D cross-

sectional image slices, as shown in Fig. 2A. The network architecture consists of an 

encoding path followed by a decoding path. The encoding path includes 3 convolutional 

units, where each of them is composed of a convolutional layer, batch normalization layer, 

parametric rectified linear unit (PReLU) activation layer [33], and another convolution layer. 

Adjacent convolutional units are connected by a max-pooling layer for downsampling the 

image to half its size. An input 2D image sized 128×128, corresponding to a field of view of 

(12.8mm)2, is first processed to improve the local contrast using contrast-limited adaptive 

histogram equalization (CLAHE). CLAHE performs histogram equalization in local regions, 

and neighborhood regions are combined to eliminate artificially induced boundaries. The 

contrast, especially in homogeneous areas, will be limited to avoid amplifying any noise that 

might be present in the image. The contrast-enhanced images are then sent to the first 

convolutional unit in which a total of 32 learnable filters of size K = 3 are used to convolute 

with the input image, respectively, producing 32 feature maps. The size of resulting feature 

maps O is the same as the input image size W according to the equation O = (W – K + 2P)/S 
+ 1, where we set the stride S = 1 and padding P = 1. The following batch normalization, 

PReLU activation, and convolution layers also have the same filter size and feature map 

number. The max-pooling layer downsamples the image to 64×64. Subsequent convolutional 

units further increase feature map numbers while reducing image size, resulting in 

hierarchical extraction of low- and high-order convolutional features.

The features derived from the above encoding path later undergo a decoding path that 

reverses the convolution process. An upsampled segmentation result that eventually has the 

same dimension as the input image is generated. Similarly, 3 convolutional units with the 

same settings as mentioned above are used. Each of them is concatenated with a 

corresponding unit in the encoding path through a skip connection to help the decoding path 

better recover spatially detailed information by reusing feature maps. The skip connection 

has previously proved useful to alleviate the gradient vanish problems in network 

optimization [34].

The proposed FCN network architecture is modified from the originally introduced U-net 

[31] in several aspects. In the decoding path, instead of direct upsampling, we employ a 

transposed convolution layer that achieves transformation in the opposite direction of a 

normal convolution [35]. This layer is trainable and promises better performance. Moreover, 

PReLU is used for the activation function after each convolution layer instead of the 

commonly used rectified linear unit (ReLU) [33]. This is because the PReLU does not have 

the saturate problem and thus avoids the “dead features” caused by zero gradients in ReLU.

Given the input is a 2D image slice, the output is designed as a multi-class image in a form 

of a 128×128×3 matrix, where the three channels are for the background, lumen, and vessel 

wall, respectively. Comparing to the approach that only segment the vessel wall, this multi-

class segmentation may achieve a better segmentation performance in both the lumen and 
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vessel wall since the relative position of them could potentially be utilized. Thus, the final 

activation function is set as softmax instead of sigmoid, where the former one guarantees the 

sum of three channels is 1 in all pixels while the latter one estimates each channel separately. 

Fig. 2B demonstrates an example of the input image, intermediate segmentation, and final 

results.

Dice coefficient is used to evaluate the overlapping ratio between automated segmentation 

and manual ground truth. Conventionally, Dice is defined as: D = 2(A ⋂ M)/(|A| + |M|), 

where the nominator represents twice the number of pixels with the same label in automated 

segmentation A and manual result M and the denominator represents the total number of 

pixels. Note that in our work the output segmentation from FCN is a probability map. To 

take advantage of this information instead of using the Dice on a thresholded map, we define 

a soft Dice coefficient: D′ = 2 ∗ sum(A ∗ M)/(sum(A ∗ A) + sum(M ∗ M)), where the A is 

a probability map, A and M are reshaped as vectors, and the (∗) is a dot operation. Dice 

ranges from 0 to 1, where 1 means perfect match between automated and manual 

segmentations. The Dice is computed separately for the lumen and vessel wall so that they 

have equal importance and the result is not dominated by the one with more voxels. 

Moreover, to accommodate multi-class results, the loss function is defined as: 

L = − 1 ∗ Dlumen′ + Dwall′ /2. The background channel is not included as it is the counterpart 

of other two channels.

E. Implementation

The neural network was implemented in Keras with backend of Tensorflow (https://keras.io). 

The loss function is the mean Dice coefficient of the lumen and vessel wall. Network 

optimization is realized with Adam gradient descent. The learning rate is 1e-5 with a batch 

size of 64. The training time on 1030 slices took around 1 hour on a NVIDIA GeForce GTX 

1080Ti 8GB GPU, including 7 seconds for training an epoch and we set the maximum epoch 

number as 500 and keep the best model determined by the performance in validation data, 

although the algorithm training generally converges around 200 epochs. For testing, it takes 

around 0.1 ms on an unseen slice.

F. Experimental Settings

The first dataset was used for the training, validation, and testing of the segmentation model. 

We randomly split the imaging data of 56 patients into 30 patients for training (1030 slices), 

6 patients for validation (130 slices), and 20 patients for testing (545 slices). For data 

augmentation, the 2D slices in training data were randomly flipped in vertical and horizontal 

directions. Using the Dice metric, the baseline U-net from [31] was compared in testing 

subjects with the approaches involving additional components including batch 

normalization, PReLU, CLAHE, and dropout for further evaluations. Following vessel 

segmentation, morphological measurements were also derived for consecutive cross 

sectional images in the testing group, including wall area Awall, lumen area Alumen, and 

NWI defined as NWI = Awall/(Awall + Alumen), where the index ranges from 0 to 1, and the 

closer to 1 the heavier plaque burden). For each of these metrics, all measurements along the 

analyzed vessel segment were compared between the automatic and manual segmentation 

approaches using the Pearson correlation analysis.
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In the second dataset, the proposed segmentation method was applied to the VWI data of the 

M1 arterial segment in age-matched symptomatic and asymptomatic ICAD patients. Wall 

and lumen areas as well as NWI were generated following automated segmentation. The 

three metrics at the slice with the peak NWI (by definition corresponding to the highest 

plaque burden) were analyzed for the differences between the two groups. Moreover, after 

including neighbouring 2 and 4 slices, these metrics were respectively averaged over totally 

3 and 5 slices and then undergo comparisons. Two-sample t-tests were used for the 

comparison of quantification metrics and Chi-square tests used for comparison of patient 

demographics between the two patient groups. A p-value less than 0.05 indicated statistical 

significance.

III. Results

A. Segmentation network evaluation

As shown in Fig. 3, on the testing subjects, the baseline U-net achieved a Dice coefficient of 

0.852 for the lumen and 0.712 for the vessel wall when comparing automated and manual 

results. The performance kept improving when successively adding batch normalization 

(0.866 and 0.715, respectively), PReLU (0.872 and 0.757, respectively), and CLAHE (0.889 

and 0.767, respectively). The addition of dropout, however, showed the lowest performance 

(0.752 and 0.369, respectively). As a result, our finalized network included batch 

normalization, PReLU activation, and CLAHE for image preprocessing and excluded the 

dropout procedure.

Fig. 4 shows the segmentation results from 10 subjects as well as their manual 

segmentations for references. Our method was able to locate the vessel region and provide 

reasonable segmentation, even when the boundaries in neighboring tissues were essentially 

invisible to naked eyes. Example curves of lumen area, wall area, and NWI (defined as the 

wall area divided by the summation of wall area and lumen area) for automated and manual 

segmentations, respectively, along a vessel segment of 2 test subjects were shown in Fig. 5. 

The average Pearson correlations between the curves on all test subjects were 0.89, 0.84, 

0.88, respectively, on lumen area, wall area, and NWI.

Fig. 6 demonstrates the feasibility of NWI quantification in large-range anterior circulation 

vasculatures (from the intracranial internal carotid artery to the MCA M2) on a subject using 

the IVA framework and proposed segmentation approach. The vessels of interest underwent 

centerline tracking, straighten, and slicing. Following automated vessel wall segmentation, a 

NWI versus slice curve was derived.

B. Clinical Applications in ICAD patients

We also demonstrate the use of IVA in clinical application of ICAD patients. MCA stenosis 

is a major component of ICAD, which could be symptomatic or asymptomatic. Recent 

studies suggest they may belong to distinct groups associated with different stroke risks [11]. 

Table I shows the demographic data of the recruited 24 patients. VWI images were acquired 

and the proposed framework was used for image processing. The consecutive 2D slices from 
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the arterial segments of interest underwent segmentation analysis and quantification 

including lumen area, wall area, and NWI.

The slice with a peak NWI, corresponding to the location with the most severe plaque 

burden, was chosen for comparisons (Table II). To test the robustness, we further included 

the neighboring 2 and 4 slices, along with itself. The lumen area and wall area in 

symptomatic patients were slightly smaller and larger, respectively, than those of 

asymptomatic patients, but the differences did not reach a statistical significance (p > 0.05 

from two-sample t-tests). However, the peak NWI in symptomatic patients were 

significantly higher than that of asymptomatic patients (p = 0.0312), and the difference 

became more prominent when including neighboring slices (p = 0.0073 for 3 slices and p = 

0.0045 for 5 slices).

IV. Discussion

In this work, we developed an automated vessel wall segmentation method for the 

intracranial arteries based on convolutional neural networks. The proposed method achieved 

good agreements with manual segmentation. With this method, a significant difference in 

lesion NWI between symptomatic patients and asymptomatic patients was detected, 

although lumen area and raw wall area were comparable in the two groups.

MR VWI is increasingly being adopted in ICAD studies. However, current plaque analysis 

heavily relies on qualitative assessment of a few plaque features through expert image 

review. This is in part due to the fact that a proper computer-aided tool for quantitative 

plaque analysis is unavailable. Vessel wall segmentation is a challenging task but 

prerequisite for automating quantitative analysis. For medical images of anatomic structures 

other than intracranial vessels, deep learning has shown its advantages in object localization 

and segmentation over conventional methods such as histogram thresholding, shape filters, 

and surface models. Our study, the first report to our knowledge, presented a deep-learning 

based approach for automated segmentation of intracranial vessels.

There are only few semi-automatic segmentation methods previously proposed for 

extracranial vessels [17, 36–39]. These methods may not be robust when applying to smaller 

vessels, for example intracranial arteries, due to the possible leak at low-contrast outer wall 

boundary. Advantageous over conventional machine-learning approaches where features are 

hand-engineered, FCN can automatically learn the comprehensive data-driven features from 

training data. In this work, specifically, we proposed a U-net-like FCN to strengthen the 

capacity of resolving the outer wall boundary. Our results suggest that the combination of 

baseline U-net with three other components, including batch normalization PReLU, and 

CLAHE, are necessary for a high performance in segmentation. Also, we performed a multi-

class segmentation to extract both lumen and wall instead of only segmenting wall, which is 

a superior strategy as the latter approach may result into a C-shape segmentation for the wall 

that is difficult to restore lumen or wall through post-processing such as morphological 

opening (see Fig. S1 in the supplementary material). As we continue to accumulate the 

image and label data, the neural network weights could be further tuned for improved 

segmentation performance.
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The utility of the automated vessel wall segmentation method was demonstrated in this 

study. When integrated into an intracranial vessel analysis framework, the proposed method 

permitted efficient analysis for large-range anterior circulation vasculatures, which is 

otherwise tremendously time-consuming in a manual fashion (see Fig. S2 in the 

supplementary material). In addition, a significantly higher NWI was observed in 

symptomatic ICAD lesions compared to asymptomatic ones despite their similar severity of 

stenosis. More importantly, NWI exhibited a stronger association with symptomatic lesions 

compared to wall and lumen areas. Hence, it is anticipated that this marker may have 

significant clinical value for early identifying event-prone plaques or informing the response 

of medical management in ICAD patients. Our results also highly suggest that the most 

stenotic location of a focal ICAD lesion is associated with a locally peak NWI. Whether this 

finding would hold true and could be utilized to automatically detect focal ICAD lesions is 

worthy of investigations in the future.

In this study, we proposed to simplify the segmentation task by straightening the vessel and 

using 2D cross-sectional slices. The reason is that the original vessels are tortuous in 3D 

space that is difficult for manual rater to delineate. Also, automated segmentation of 3D 

images would need a lot more training data to learn the segmentation in that complex 

environment. Result checking find most failure cases are at the vessel branching area, where 

one vessel is splitting to two or more vessels and so the vessel wall boundary in this 2D slice 

is no longer the general circle shape (see Fig. S3 in the supplementary material). To improve 

this, we could include more vessel branching slices in the training sample and so the 

program could learn this shape better. Second, neighboring cross-sectional slices from the 

same vessel may provide additional regularization for the segmentation results. The program 

could be extended to work on multiple 2D slices or even 3D images to get better overall 

structure information. Third, we measured the NWI as well as the areas of lumen and wall in 

this study. In future work, we would further evaluate vessel wall thickness, or eccentricity 

index (EI) [40] when considering the effects of stenosis, as relevant clinical parameters in a 

multi-center large-scale clinical study.

V. Conclusion

We have presented an automated vessel wall segmentation method for intracranial arteries 

based on convolutional neural networks. The proposed method achieved good agreements 

with manual rater in terms of Dice coefficient, lumen area, wall area, and NWI. With the 

method, a significant difference in lesion NWI between symptomatic patients and 

asymptomatic patients was detected, although lumen area and raw wall area were 

comparable in the two groups. Such an automated vessel segmentation approach would 

permit large-scale quantitative plaque analysis and promote the adoption of MR VWI in 

ICAD management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Image processing pipeline proposed in IVA framework. Top row shows the image preparing 

steps and bottom row demonstrates the image segmentation and quantification steps. The 

originally acquired 3D VWI image set is first reviewed to identify the interested intracranial 

vessel (the green box). Then this region is zoomed up where the start and end points of the 

vessel could be manually designated. It is followed by vessel centerline tracking and vessel 

straighten using curved MPR (the yellow line in the “Straightened vessel” panel corresponds 

to the location marked by a greed dot in the “vessel tracking” panel), and sliced into 

contiguous cross-sectional 2D slices that will in turn undergo vessel segmentation and 

quantification analysis.
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Fig. 2. 
Illustration of the (A) architecture of the proposed FCN segmentation and (B) examples of 

input image, intermediate result, and final segmentation.
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Fig. 3. 
Segmentation performance evaluation on different methods. Boxplot shows the median with 

25th and 75th percentiles. The “+” symbol points the mean and “o” shows the outliers. In 

this work, we adopted the U-net+BatchNorm+PReLU+CLAHE method that has Dice 

coefficient of 0.889±0.041 and 0.767±0.104 for lumen and vessel wall, respectively.
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Fig. 4. 
Illustration of segmentation results from 10 random subjects. The numbers below the 

manual results show Dice coefficient of lumen and vessel wall, respectively.
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Fig. 5. 
Results of lumen area, wall area, and NWI from 2 testing subjects, showing comparable 

patterns for determining plaque existence and measuring its characteristics.
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Fig. 6. 
Illustrations of the anterior circulation vessel wall analysis for a subject. From left to right, 

after defining the start and ending points, the intracranial internal carotid artery and middle 

cerebral artery are centerline tracked and straightened. The sliced images are then processed 

with the proposed segmentation and used to calculate NWI. Three interested locations in the 

vessel, as marked by yellow arrows, could be further checked for the NWI values, cross-

sectional slices and their corresponding segmentations.
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TABLE I.

Demographic data of 24 patients

Symptomatic Asymptomatic p-value

Number 12 12 -

Age (yrs) 48.1±10.9 49.2±13.1 0.83

Male 6 (50%) 9 (75%) 0.23

Stenosis located in the left MCA (others are at right MCA) 6 (50%) 6 (50%) 1
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