npj ‘ Digital Medicine

ARTICLE OPEN

www.nature.com/npjdigitalmed

Detecting the impact of subject characteristics on machine
learning-based diagnostic applications
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Collection of high-dimensional, longitudinal digital health data has the potential to support a wide-variety of research and clinical
applications including diagnostics and longitudinal health tracking. Algorithms that process these data and inform digital
diagnostics are typically developed using training and test sets generated from multiple repeated measures collected across a set
of individuals. However, the inclusion of repeated measurements is not always appropriately taken into account in the analytical
evaluations of predictive performance. The assignment of repeated measurements from each individual to both the training and
the test sets (“record-wise” data split) is a common practice and can lead to massive underestimation of the prediction error due to
the presence of “identity confounding.” In essence, these models learn to identify subjects, in addition to diagnostic signal. Here, we
present a method that can be used to effectively calculate the amount of identity confounding learned by classifiers developed
using a record-wise data split. By applying this method to several real datasets, we demonstrate that identity confounding is a
serious issue in digital health studies and that record-wise data splits for machine learning- based applications need to be avoided.
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INTRODUCTION

The development of clinically actionable digital health assess-
ments derived from high fidelity data obtained from wearables,
smartphones, and in-home monitoring systems can transform the
early diagnosis and treatment of health complications and
diseases. Development of successful assessments requires strong
interplay between experts from medical and analytical domains,
as synthesizing high-dimensional sensor-based data often
requires the use of sophisticated machine learning methods to
derive robust inferences. Although few digital health measures
have made it into clinical practice, early research have shown the
clinical potential of digital biomarkers for assessment and remote
management of diseases.'®

As the sensors embedded in consumer grade devices get
increasingly sophisticated at capturing data of high fidelity and
frequency, machine learning models trained on such data are
often able to uniquely identify the individual from whom each
data stream is collected,” illustrating the high sensitivity of sensor
data to capture individualized “digital fingerprints” of the data
contributors. In addition to privacy concerns, this also has major
implications for development of diagnostic algorithms.

Development of diagnostic algorithms is typically performed by
training a classifier in a “training dataset” and then estimating
prediction performance in a second “test dataset”. Because
classifiers will detect both biological and technical variation that
are correlated with diagnostic state within the training dataset,
any predictive approach needs to demonstrate model general-
izability, e.g., high precision and recall, on a completely separate
test dataset. Only classifiers that can effectively classify diagnoses
across multiple datasets are deemed clinically useful. Because
datasets are not always easy to obtain, initial development and
evaluation of potential classifiers are often performed using data
collected within a single study that is split into the training and
test sets. In digital health applications, where it tends to be easy to
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collect dense longitudinal data from study participants, there are
two main approaches for splitting the data into training and test
sets:® (i) “record-wise” split where each measurement or record is
randomly split into training and test sets, allowing records from
each subject to contribute to both the training and test sets; and
(ii) “subject-wise” split where all the records of each subject are
randomly assigned as a group to either the training set or to the
test set.

Recently, Saeb et al.? used a human activity recognition dataset
to illustrate that the classification error rates estimated with
record-wise and subject wise cross-validation could differ to a
large extent. Furthermore, Saeb et al.® demonstrated via simula-
tion studies that (for diagnostic applications) splitting the data
into training and test sets in a record-wise fashion can lead to
massive underestimation of prediction error achieved by the
machine learning algorithm. The problem arises because, in a
record-wise split, the data from each subject can be in both the
training and test sets so that the algorithm is not only learning
about the outcome variable of interest but is also learning
characteristics of the individual being measured. In a way, it is
possible to build a digital fingerprint of individuals. In other words,
the relationship between feature data and disease labels learned
by the classifier is confounded by the identity of the subjects
(from now on denoted as “identity confounding”). Since the easier
task of subject identification replaces the harder task of disease
recognition, classifiers trained on data split in a record-wise
manner end up achieving overly optimistic prediction accuracy
estimates,® that are not disease relevant. Noteworthy, this practice
is extremely common—a literature review by Saeb et al.® found
out that 28 out of 62 papers using repeated measurements for
diagnostic purposes employed the record-wise data split.
Furthermore, researchers in the field® continue to advocate the
use of record-wise data splits, arguing that the adoption of
subject-wise data splits in heterogeneous datasets might lead to
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Fig. 1 Permutation scheme to detect identity confounding. The schematic shows a toy example for a data-set with eight subjects (four cases
and four controls), where each subject contributed two records. a and b show, respectively, the disease label vector and the feature matrix. c
Shows distinct “subject-wise random permutations” of the disease labels, where the permutations are performed at the subject level, rather
than at the record level (so that all records of a given subject are assigned either “case” or “control” labels). For example, in the first
permutation, the labels of subjects 2 and 3 changed from “case” to “control’ the labels of subjects 5 and 8 changed from “control” to “case’
and the labels of subjects 1, 4, 6, and 7 remained the same. (Note that for each subject, the labels are changed across all records). The subject-
wise label permutations destroy the association between the disease labels and the features, making it impossible for a classifier trained with
shuffled labels to learn the disease signal. Adopting the record-wise data split strategy, with half of the records assigned to the training set (d),
and the other half to the test set (e), we have that both training and test sets contain 1 record from each subject. Most importantly, in each
permutation the shuffled labels of each subject are the same in both the training and test sets. For instance, in the first permutation

(highlighted by the red boxes in d, e) we have that the shuffled labels of subjects 1 to 8, namely, “case’ “control’ “control’ “case’, “case’; “control’
“control’ “case’ are exactly the same in the training and test sets. Consequently, any classifier trained with the shuffled labels will still be able
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to learn to identify individuals, even though it cannot learn the disease signal

model under-fitting and larger classification errors. (See ref. ° for a
discussion, and different points of view, on this debate).

While the simulation approach adopted by Saeb et al.2 provides
a clear illustration of the identity confounding issue, it only
demonstrates the problem in synthetic data-sets and depends on
a number of modeling choices (e.g., the relative strength of the
disease and confounding signals, distributional assumptions for
simulated data, etc) which might not be representable of actual
data. Here, we propose a simple permutation approach that can
be used on any dataset to quantify the amount of identity
confounding learned by classifiers trained and evaluated using
record-wise data splits.

Our non-parametric approach does not require any distribu-
tional assumptions, or a specific machine learning method and
can be easily implemented on any dataset at hand. It can help to
resolve some of the controversy around the adoption of record-
wise versus subject-wise data splits” and provides a valuable
resource that editors and reviewers can use to stop over-optimistic
estimates of predictive performance from being published. The
ability to correctly assess the predictive performance of machine
learning diagnostic systems has important practical implications
since overestimated predictive accuracies can negatively impact
decisions made by funding agencies, and might stimulate the
deployment of untested health related apps, a current serious
concern in the mobile health field."
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RESULTS
Identity confounding in Parkinson’s disease digital health studies

We illustrate the application of our permutation approach using
three real datasets from digital health studies of Parkinson’s
disease, namely: the UCI Parkinson’s dataset;'" the UCI Parkinson’s
Speech with Multiple Types of Sound Recordings dataset'? (from
now on denoted as UCI Parkinson’s MSRD dataset); and the
mPower dataset.”® For the mPower data, we focused on the voice
and tapping activity tasks.

The basic idea behind our permutation approach is to generate
a null distribution (for a chosen predictive performance metric)
where the association between the disease labels and the features
is destroyed while the associations between the features and the
subject identities is still preserved. (See “Methods” for details and
Fig. 1 for an illustration of the permutation scheme.) In practice,
the presence of identity confounding can be informally inferred
from the location of the permutation null distribution. More
specifically, the ability to identify subjects allows the classifier to
make correct predictions at a higher rate than a random guess, so
that the permutation null distribution is located away from the
baseline random guess value. (For instance, for the area under the
receiver operating characteristic curve—AUC—metric, the base-
line random guess value corresponds to a 0.5 AUC score.
Therefore, the presence of identity confounding can be detected
whenever the permutation null distribution is located at an AUC
value larger than 0.5).

Scripps Research Translational Institute
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Fig. 2

Identity confounding in digital health data sets. In all panels, the permutation null distribution is represented by the blue histogram

while the observed AUC value is represented by the brown line. In all panels the permutation null distribution is shifted away from 0.5—the
baseline random guess value for the AUC metric. a, b Show the results for the UCI Parkinson’s and UCI Parkinson’s MSRD data sets,
respectively. Note the larger spread of the permutation null distributions (compared to the remaining panels). Panel ¢ shows the results for the
mPower voice data based on 22 subjects. Note that the observed AUC falls right in the middle of the permutation null distribution. Panel d
shows the results for the tapping task based on 22 subjects. In this case, however, the observed value falls in the tail of the null distribution. c,
e, and g compare the results for the mPower voice data across increasing numbers of subjects (namely, 22, 42, and 240 subjects). d, f, h show
the analogous comparison for the mPower tapping data (based on 22, 48, and 290 subjects, respectively). The results were generated using
the random forest classifier, and were based on 1000 permutations. See the Methods section for a description of the permutation scheme

used to generated the permutation null distributions

The analysis of the three digital health datasets described above
uncovered strong amounts of identity confounding. Figure 2
reports the results based on the AUC metric, and shows that the
permutation null distributions were centered far away from 0.5 for
the UCI Parkinson’s dataset (panel a), the UCI Parkinson’s MSRD
dataset (panel b), and the mPower dataset (panels c to h). The
identity confounding issue was particularly strong for the classifier
built from the voice data collected from a subset of 22 participants
from the mPower study (Fig. 2c) where the permutation null
distribution (which captures the identity confounding) was
centered at a 0.95 AUC score.

In addition to detecting identity confounding, the permutation
null distributions in Fig. 2 can also be used to check if the classifier
is learning the disease signal in addition to learning subject
specific signals. This can be done by simply comparing the
location of the permutation null distributions relative to the
observed AUC score computed using the original (unshuffled)
data. (Note that the proportion of permutations showing a value
equal or greater than the observed AUC corresponds to a
permutation p-value to test if the classifier is learning the disease
signal in the presence of identity confounding). For instance, for
the classifier built with the voice data based on a small subset of
subjects (Fig. 2¢), the fact that the observed AUC falls right in the
middle of the permutation null indicates that the classifier is
mostly performing subject identification with no or little
additional learning of disease. On the other hand, the fact that
the observed AUC falls at the tail of the permutation null
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distribution for the classifier built with the tapping data (Fig. 2d)
indicates that it was still able to learn the disease signal in addition
to the subject identity signal. (As described in the Supplementary
Methods, the number of permutations showing AUC scores above
the observed AUC corresponds to a permutation p-value to test if
the classifier has learned the disease signal in addition to the
identity signal).

In order to evaluate the influence of the number of subjects on
the classifier's ability to learn the identity confounding, we
considered three subsets of participants composed of increasing
numbers of subjects in the mPower data. As expected, the
permutation null distributions tended to be located at smaller
AUC values, as the number of subjects used to train the classifiers
increased (since a larger number of subjects makes it more
difficult for the classifier to identify individual subjects). Figure 2c,
e, g shows the comparison for the mPower voice data, while Fig.
2d, f, h shows the analogous comparison for the mPower tapping
data. Overall the trend is the same for both voice and tapping but
with tapping capturing the subject identity signal to a slightly
lesser degree (the permutation null distributions tend to be
located at lower AUC values for the tapping data than for the
voice data), and are better able to perform disease recognition
(the AUC values are located farther away in the tails of the
permutation null distributions).

Finally, note that the larger spread of the permutation null
distributions for the UCI datasets (Fig. 2a, b) is due to the smaller
test set sizes available for these datasets.

npj Digital Medicine (2019) 99



E. Chaibub Neto et al.

DISCUSSION

In this paper, we employ a permutation approach to quantify
identity confounding in clinical machine learning applications
where repeated measures or records have been captured on each
subject. We illustrate the application of the proposed tests with
real data from Parkinson’s disease digital studies.""™'* In all these
examples, the goal is to predict if a given subject has Parkinson’s
or is a “control” subject. Observe that, in these applications, each
subject has a single label type (e.g., each subject is either a
Parkinson’s or a control subject). There are, nonetheless, other
classification problems where each subject can have multiple
labels. For instance, diagnostic applications aiming to classify
disease severity (e.g., mild versus severe disease state) might
actually contain data from the same subject collected at different
times under different disease severity states. (Activity recognition
is another example, where the goal is to classify distinct behaviors
performed by each subject at different times, such as walking,
running, sitting down, etc.). While the permutation approach
described in this paper is not directly applicable to these “multiple
labels per subject” problems, restricted permutations'> might
represent an alternative solution in this setting (this extension is
nonetheless left as future work). Observe, as well, that while our
illustrations are all based on the AUC metric, our permutation
approach can be implemented with any other performance
metrics. Furthermore, the approach can be directly extended to
multi-class classification tasks (with a single label per subject), and
can also be adapted for regression tasks.

While in this paper we present the permutation approach in an
informal (although precise) style, it can be used to derive formal
hypothesis tests to evaluate if a classifier has learned the disease
signal in the presence (or absence) of identity confounding.
Furthermore, a simple extension of the permutation approach can
also be used to perform a statistical test to detect identity
confounding per se. For the sake of the more technically inclined
reader, the Supplementary Methods presents: (i) a more technical
description of our methods; (ii) several illustrative examples using
synthetic data; (iii) a more detailed analysis of the mPower data;
and (iv) a simulation study showing the statistical validity of our
permutation tests.

Our analyses of the voice and tapping data, collected by the
mPower study, showed undeniable evidence of a high degree of
identity confounding for classifiers built using record-wise data
splits. Although it is true that our results also showed evidence of
model under-fitting for classifiers trained with subject-wise data
splits (see the Supplementary Methods for the subject-wise
analyses), we point out that model under-fitting can be
ameliorated by simply increasing the number of subjects used
in the analyses. (The rationale is that, as the number of subjects
used to train the classifier increases, the chance that the training
set is missing a critical part of the pattern that relates features to
disease labels decreases, so that the classifier has a better chance
to generalize to new unseen cases, even when the data is fairly
heterogeneous). But, most importantly, our results do not support
the hypothesis that model under-fitting (alone), rather than
identity confounding, could explain the discrepancy in classifica-
tion performance between the record-wise and subject-wise
strategies.’

Furthermore, in the Supplementary Methods, we illustrate with
simulations that many different sources of heterogeneity in the
feature data can easily give rise to identity confounding. These
results clearly show that identity confounding is a serious issue in
digital health studies and that record-wise data splits should be
avoided. In agreement with Saeb et al.® and others'>'®" our
recommendation is that subject-wise data splits (where all records
of a given participant are assigned either to the training or
to the test set, but not to both) should be used in machine
learning diagnostic applications. Clearly, any source of identity
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confounding is automatically neutralized by the subject-wise data
splitting strategy.

The use of record-wise data splits can lead to the over-
estimation of the real accuracy of machine learning-based
diagnostic systems. This practice might lead to disinformation of
the scientific community, funding of follow-up research studies
based on false promises of good performance, or even to
increased misdiagnosis of patients if systems evaluated with
record-wise data splits get deployed in clinical practice. Scientists
in the field continue to advocate for the use of record-wise
splitting, particularly for applications with small sample sizes such
as is seen with emerging data modalities or those that are difficult
to collect. This tool is designed to help those scientists—and the
larger field—evaluate diagnostic classifiers developed in that
manner. We believe that the availability of a simple, yet, rigorous
method able to demonstrate the presence and strength of
identity confounding will help researchers to evaluate the
strength of this common artifact in digital health diagnostic
applications. In particular, reviewers of manuscripts and research
grants now have a new tool to objectively evaluate studies that
employ record-wise data splits.

Finally, we point out that detection of identify confounding is
one of several important assessments that must be performed
when evaluating the reliability of a classifier. In a previous
contribution,’®"'® we proposed a distinct permutation approach to
quantify the contribution of demographic confounders such as
age, gender, etc, to the predictive performance of a classifier.

METHODS
Datasets

UCI Parkinson’s dataset. This dataset (https://archive.ics.uci.edu/ml/datasets/
parkinsons) is composed of 22 features extracted from voice measure-
ments'"?° of 32 subjects (24 PD cases and 8 healthy controls). Each subject
contributed 6 or 7 records, generating a total of 195 records.

UCI Parkinson speech with multiple types of sound recordings dataset. This
dataset (https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+
with-++Multiple+Types+of+Sound+Recordings) is composed of 26 linear
and time frequency based features, extracted from 26 voice measurements'?
including sustained vowels, numbers, words and short sentences. The
training dataset is composed of 1040 records, contributed by 20 PD
cases and 20 healthy controls (each subject contributed 26 records).
Note that while an additional test set composed of a separate cohort of
28 PD cases is available in this dataset, we restricted our analyses to the
training data.

mPower dataset. This data set contains voice, tapping, walk, and rest
activity tasks collected by smartphones, contributed by thousands of self-
reported PD case and control participants.'® For our illustrations we focus
on the voice and tapping data, and evaluate three subsets of participants
for each task. For the voice task we evaluated: (i) a subset of 11 PD cases
and 11 controls that contributed at least 100 records; (ii) a subset of 21 PD
cases and 21 controls that contributed at least 50 records; and (jii) a subset
of 120 PD cases and 120 controls that contributed at least 10 records. For
the tapping task we evaluated: (i) a subset of 11 PD cases and 11 controls
that contributed at least 100 records; (ii) a subset of 25 PD cases and 24
controls that contributed at least 50 records; and (iii) a subset of 145 PD
cases and 145 controls that contributed at least 10 records. All case and
control participants were males, and were first matched by age (using
exact matching), and then by education level (using nearest neighbor
matching?’) whenever there were multiple cases with the same age of a
control, or vice-versa. (In the event that ties persisted after the application
of this second matching criterion, we randomly selected one participant to
perform the matching.) The analyses were based on 13 voice features and
41 tapping features proposed in the literature.?*?* Participants of the
mPower study completed an interactive, in-app informed consent process
that included a quiz on the risks, benefits, and options for study
participation and sharing. The study was approved by Western Institutional
Review Board (WIRB protocol #20141369), and registered at ClinicalTrials.
gov (identifier #NCT02696603).

Scripps Research Translational Institute
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Model training and evaluation

In all illustrations, we adopted the area under the receiver operating
characteristic curve (AUC) as the performance metric, and employed the
random forest classifier** implemented in the randomForest R package,®
using the default tuning parameter specifications. In all analyses, each
dataset was randomly split into a training and test set of roughly equal
sizes. (The Supplementary Methods also presents the analyses of the
mPower data based in data splits assigning 90% of the records to the
training set, and 10% to the test set (Supplementary Figs 14 and 15). As
described in more detail in the Supplementary Methods, increasing the
amount of training data tends to improve the ability of the classifiers to
identify the subjects).

The AUC calculations were performed according to the following steps.
First, we train the classifier using the training set. Second, we use the test
set features to generate the class membership probabilities for the test set
label predictions. Third, we use the positive class probabilities together
with the test set labels to compute the AUC score using the pROC*® R
package. Note that the observed AUC score is computed as described
above using the original (i.e., unshuffled) data, while the permutation null
distribution for the AUC metric is computed applying these three steps to
training and test sets with shuffled label data (as described in the next
section).

Generation of the permutation null distribution

The basic idea is to generate a permutation null distribution for a chosen
predictive performance metric (e.g., AUC), where the association between
the disease labels and the features is destroyed while the associations
between the features and the subject identities is still preserved. To this
end, we generate a permutation null distribution as follows. First, we
shuffle the disease labels of each subject as a block across all records, so
that all records of a given subject are assigned either “case” or “control”
labels during the permutation process. By shuffling the disease labels in
this subject-wise fashion we destroy the association between the disease
labels and the features, hence removing the ability of the classifier to learn
disease signal. Second, we split the data in a record-wise manner so that
part of the records of each subject are assigned to the training set, while
the remaining records are assigned to the test set. Note that the shuffled
labels of each subject are the same in both the training and test sets. As a
consequence, any classifier trained with the shuffled labels will still be able
to learn to identify individuals, even though it cannot learn the disease
signal. Figure 1 provides a toy illustrative example.

Algorithm 1 in the Supplementary Methods describes in detail the
generation of the Monte Carlo permutation null distribution (blue
histograms in Fig. 2). Here, we present a summary of the process. Basically,
the permutation null is computed as follows: (i) generate a random split of
the data by generating two sets of indexes (training and test indexes)
representing which data points will be assigned to the training and test
sets, respectively; (i) split the feature data into training and test sets using
the data-split indexes generated in step i; (iii) generate a subject-wise
shuffled version of the label data; (iv) split the shuffled label data into
training and test sets using the data-split indexes generated in step i; (v)
train a classifier using the training features and training shuffled labels; (vi)
evaluate the performance of the classifier on the test set (where the test
set features are used to generate predictions that are compared to the test
set shuffled labels); (vii) record the value of the performance metric
calculated on step vi; and (viii) repeat steps (iii) to (vii) a large number of
times. The procedure used to generate the subject-wise label permutations
in step (iii) is described in detail in Algorithm 2 in the Supplementary
Methods.

DATA AVAILABILITY

The UCI Parkinson’s dataset is available from the UCI repository®” at: https://archive.
ics.uci.edu/ml/datasets/parkinsons. The UCI Parkinson’s MSRD dataset is available
from the UCI repository?” at: https:/archive.ics.uci.edu/ml/datasets/Parkinson
+Speech+Dataset+with++Multiple+Types-+of+Sound+Recordings. The mPower
dataset supporting the results presented on this article is available from Synapse
at: https://doi.org/10.7303/syn11623804. To gain access to the mPower dataset,
researchers must follow the instructions described in the wiki, https://www.synapse.
org/#!1Synapse:syn4993293/wiki/247860. This qualification process will provide access
to the entire mPower data,'” in addition to the subset used in this article.
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CODE AVAILABILITY

The R code used in this paper is available in github: https://github.com/Sage-
Bionetworks/mHealthldentityConfounding
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