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Influenza A virus M2 protein triggers mitochondrial
DNA-mediated antiviral immune responses
Miyu Moriyama1,2,3, Takumi Koshiba 2 & Takeshi Ichinohe 1*

Cytosolic mitochondrial DNA (mtDNA) activates cGAS-mediated antiviral immune respon-

ses, but the mechanism by which RNA viruses stimulate mtDNA release remains unknown.

Here we show that viroporin activity of influenza virus M2 or encephalomyocarditis virus

(EMCV) 2B protein triggers translocation of mtDNA into the cytosol in a MAVS-dependent

manner. Although influenza virus-induced cytosolic mtDNA stimulates cGAS- and DDX41-

dependent innate immune responses, the nonstructural protein 1 (NS1) of influenza virus

associates with mtDNA to evade the STING-dependent antiviral immunity. The STING-

dependent antiviral signaling is amplified in neighboring cells through gap junctions. In

addition, we find that STING-dependent recognition of influenza virus is essential for limiting

virus replication in vivo. Our results show a mechanism by which influenza virus stimulates

mtDNA release and highlight the importance of DNA sensing pathway in limiting influenza

virus replication.
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The detection of viral nucleic acids is a major strategy by
which the innate immune system senses viral infection1,2.
Cyclic guanosine monophosphate-adenosine monopho-

sphate (cGAMP) synthase (cGAS, also known as MB21D1)
detects double-stranded DNA (dsDNA) derived from DNA
viruses such as herpes simplex virus 1 (HSV-1) and vaccinia
virus3–5 or reverse-transcribed DNA of retroviruses6. In the
presence of dsDNA, cGAS produces cGAMP, which in turn binds
to and activates stimulator of interferon genes (STING, also
known as MITA, MPYS, ERIS, and TMEM173) that resides in the
endoplasmic reticulum (ER) to enhance interferon (IFN)-β
expression and innate immune defense against HSV-1
infection7–11. The cGAS-produced cGAMP is transferred from
vaccinia virus-infected cells to adjacent non-infected cells through
gap junction to facilitate STING-dependent antiviral immune
signaling12. In addition, recent reports indicate that certain
enveloped DNA viruses, including vaccinia virus and murine
cytomegalovirus, HSV-1, and retroviruses incorporate and
transfer cGAMP to newly infected cells to trigger STING-
dependent IFN responses13,14.

Interestingly, STING also plays a critical role in production of
IFN-β and limiting viral replication after infection with certain
RNA viruses, such as vesicular stomatitis virus (VSV)7, Sendai
virus (SeV)7,9,11, EMCV7, or Newcastle disease virus (NDV)11. It
has been demonstrated that membrane fusion activity of influ-
enza virus stimulates interferon production in a STING-
dependent manner15. In addition, STING inhibits the transla-
tion of viral mRNAs to prevent viral protein synthesis during
VSV infection16. Furthermore, recent studies highlighted the
importance of cytosolic mtDNA in cGAS-mediated antiviral
immune responses after infection with certain RNA viruses, such
as VSV, lymphocytic choriomeningitis virus (LCMV), Sindbis
virus, and dengue virus17–20. Accumulation of cytosolic mtDNA
induced by TFAM (transcription factor A, mitochondrial) defi-
ciency promotes the cGAS-dependent interferon-stimulated
genes (ISGs) expression and confers resistance to acute infection
by LCMV18. In addition, Aguirre et al. showed that dengue virus
NS2B protein degrades cGAS to prevent its activation by cytosolic
mtDNA released during dengue virus infection17. Although these
observations indicate that cytosolic mtDNA promotes cGAS-
STING-dependent innate antiviral immunity and confers resis-
tance to RNA viruses17–20, the mechanism by which RNA virus
infection stimulates mtDNA release remains unclear.

In this study, we examine the cellular mechanism by which
influenza virus infection triggers mtDNA release. We demon-
strate that viroporin activity of influenza virus M2 or EMCV 2B
protein is essential for cytosolic mtDNA release into the cytosol.
In addition, influenza virus NS1 protein associates with cytosolic
mtDNA to attenuate cGAS- and DDX41-dependent innate
immune responses. Furthermore, we find that the STING-
dependent signals are essential for limiting influenza virus repli-
cation in vivo. These results highlight the importance of cytosolic
mtDNA in influenza virus-induced innate antiviral immune
responses.

Results
Influenza A virus triggers mtDNA release. Infection with HSV-
1, HSV-2, and murine gammaherpervirus 68 (MHV-68) but not
VSV, influenza, LCMV, or vaccinia virus triggers mtDNA stress
in mouse embryonic fibroblasts (MEFs)18. In addition, dengue
virus stimulates mtDNA release into the cytosol in human lung
carcinoma cell line A54917,19. To determine whether influenza
virus stimulates mtDNA release in a cell type-specific manner, we
first examined mtDNA release in candidate cell types, including
mouse lung fibroblasts, human A549, and human embryonic

kidney cell line 293FT (HEK293FT) cells, in which influenza virus
infected and replicated efficiently (Supplementary Fig. 1). To
detect mtDNA in the cytosol, we first extracted pure cytosolic
fractions from mock- or virus-infected cells (Fig. 1a). Analysis of
the pure cytosolic extracts demonstrated that wild-type (WT)
influenza A virus significantly induced mtDNA release in
HEK293FT cells (Fig. 1b, c), A549 cells stably expressing the
STING protein (termed STING-A549 cells), and mouse lung
fibroblasts (Supplementary Fig. 2) in a multiplicity of infection
(MOI)-dependent manner within 24 h post infection. Flow
cytometric and confocal microscopic analysis confirmed that
influenza virus-induced high levels of dsDNA in cytosol (Fig. 1d,
e). In addition, we found that cytosolic mtDNA release was sig-
nificantly enhanced by infection with recombinant influenza virus
lacking the NS1 gene (ΔNS1), which is known to induce large
amounts of type I IFNs21 and commonly used as a potent IFN
inducer, compared with that of WT virus (Fig. 1f and Supple-
mentary Fig. 2d, h). The NS1 protein of influenza virus inhibits
IFN responses including IFN regulatory factor 3 (IRF3) phos-
phorylation either by sequestering viral RNA or binding to RIG-I
and other host proteins required for RIG-I- and MAVS-
dependent signaling pathways22–26. These observations suggest
that the NS1 protein of influenza virus directly inhibits mtDNA
release into the cytosol or full activation of RIG-I/MAVS-
dependent signals are essential for mtDNA release in influenza
virus-infected cells. To address these possibilities, we infected
EGFP- or NS1-transfected HEK293FT cells with ΔNS1 influenza
virus. The cytosolic translocation of mtDNA in response to ΔNS1
influenza virus was significantly inhibited by the NS1 protein
(Fig. 1g). We next examined whether MAVS is required for
influenza virus-induced mtDNA release. To this end, we infected
WT or MAVS-deficient HEK293FT cells with ΔNS1 influenza
virus. Strikingly, we found that influenza virus-induced mtDNA
release into the cytosol was diminished in MAVS-deficient
HEK293FT cells (Fig. 1h). To provide definitive evidence that
MAVS was responsible for influenza virus-induced mtDNA
release, we performed a complementation experiment. Intact
MAVS expressed from a lentivirus was able to completely restore
the ability of MAVS-deficient MEFs to trigger cytosolic mtDNA
release after ΔNS1 influenza virus infection (Fig. 1i). Previous
studies have demonstrated that Bax/Bak play a critical role for
mtDNA release into the cytosol27,28. In the case of SeV infection,
the virus activated-IRF3 associates with Bax to translocate to the
mitochondria and cause cytochrome c release29. Indeed, infection
with ΔNS1 influenza virus induced more IRF3 phosphorylation
than the WT virus (Supplementary Fig. 3a). In addition, both WT
and ΔNS1 influenza virus-induced IRF3 phosphorylation in a
MAVS-dependent manner (Supplementary Fig. 3b). Further-
more, the cytosolic mtDNA release was significantly reduced in
BAX knockdown HEK293FT cells after ΔNS1 influenza virus
infection (Fig. 1j). Together, these data suggest that influenza
virus stimulates mtDNA release into the cytosol and MAVS-
dependent signals are required for mtDNA release upon influenza
virus infection.

Influenza virus M2 protein triggers cytosolic mtDNA release.
We next examined the mechanism by which influenza virus sti-
mulates mtDNA release. To identify influenza virus protein that
may stimulate mtDNA release into the cytosol, we transfected
HEK293FT cells with expression plasmids encoding influenza
virus protein. Remarkably, we found that M2 protein of influenza
virus was sufficient to trigger mtDNA release in transfected
HEK293FT cells (Fig. 2a). Influenza virus M2 protein, a proton-
selective ion channel, is important for the viral uncoating during
entry and virus budding30. To test whether M2 ion-channel
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activity is needed to elicit mtDNA release, we transfected
HEK293FT cells with the expression plasmid encoding influenza
virus M2 protein lacking amino acids 29–31 from the trans-
membrane region (M2del29–31). These amino acids are required
for M2 ion channel activity31. Notably, mtDNA release was
completely absent in cells transfected with M2del29–31 plasmid
(Fig. 2b). Treatment of cells with the cell-permeable Ca2+-che-
lator BAPTA-AM but not antioxidant Mito-TEMPO, a scavenger
specific for mitochondrial ROS, significantly blocked cytosolic
mtDNA release by influenza virus M2 protein without affecting
the expression levels of the M2 protein (Fig. 2c). In addition, the
M2-induced cytosolic mtDNA release was MAVS dependent
(Fig. 2d). We next examined whether the requirement of M2 ion
channel activity for mtDNA release can be reproduced by
infection with recombinant influenza virus lacking amino acids
29–31 of the M2 protein. To this end, we generated recombinant
influenza virus lacking amino acids 29–31 of the M2 protein
(rgPR8/M2del29–31 virus) (Supplementary Fig. 4a). Consistent
with our previous report32, the rgPR8/M2del29–31 virus failed to

stimulate the release of IL-1β from LPS-primed bone marrow-
derived dendritic cells (BMDCs) or macrophages (BMMs)
(Supplementary Fig. 4b, c). Although, the extent of infection by
the rgPR8/M2del29–31 virus in HEK293FT cells was similar to that
of WT rgPR8 virus (Supplementary Fig. 4d, e), the M2del29–31
virus significantly reduced cytosolic release of mtDNA from
HEK293FT cells compared to the WT virus-infected cells
(Fig. 2e). In addition, amantadine sensitive-recombinant influ-
enza virus (rgPR8/M2N31S)33 significantly reduced cytosolic
release of mtDNA from HEK293FT cells in the presence of
amantadine (Fig. 2f). We previously demonstrated that ion
channel activity of the influenza virus M2 protein is essential for
caspase-1 activation32. In addition, previous studies have
demonstrated that caspase-1- or caspase-11-cleaved GSDMD
induces the formation of a plasma membrane pore34–36. These
observations prompted us to examine whether GSDMD is
involved in mtDNA release from the mitochondria upon influ-
enza virus infection. Consistent with previous results35, over-
expression of GSDMD residues 1–275 (GSDMD1–275) in
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and Tukey’s test). Source data are provided as a Source Data file
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HEK293FT cells results in cell death (Supplementary Fig. 5a).
However, we found that GSDMD1–275 expression alone was
insufficient to trigger mtDNA release from mitochondria (Sup-
plementary Fig. 5b). In addition, HEK293FT cells, in which the
influenza virus stimulated mtDNA release into the cytosol, did
not express detectable levels of GSDMD (Supplementary Fig. 5c).
Collectively, these data indicate that the ion-channel activity of
M2 protein is important for mtDNA release in influenza virus-
infected cells.

EMCV viroporin 2B stimulates mtDNA release. Next, we
wished to determine whether the viroporins, transmembrane
pore-forming viral proteins, of other RNA viruses could stimulate
release of mtDNA into the cytosol. Infection with EMCV sig-
nificantly stimulated mtDNA release in HEK293FT cells in a
MOI-dependent manner within 24 h post infection (Fig. 3a, b and
Supplementary Fig. 1a). Flow cytometric and confocal micro-
scopic analysis confirmed that EMCV induced high levels of
dsDNA in cytosol (Fig. 3c, d). We have previously demonstrated
that EMCV viroporin 2B activates the NLRP3 inflammasome by
stimulating Ca2+ flux from intracellular storages to the cytosol37.
Thus, we next examined whether 2B protein of EMCV is suffi-
cient to trigger mtDNA release into the cytosol. Notably, over-
expression of the 2B protein in HEK293FT cells significantly
increased mtDNA release into the cytosol (Fig. 3e). In addition,
treatment of HEK293FT cells with the BAPTA-AM blocked
mtDNA release by EMCV infection or overexpression of 2B
protein without affecting the expression levels of the 2B protein
(Fig. 3f, g). Taken together, these results suggest that viroporin

activity of influenza virus and EMCV are essential for mtDNA
release.

Influenza virus stimulates cGAS- and DDX41-dependent IFN-
β mRNA. Given that mtDNA triggers cGAS-dependent innate
immune responses18,19,27,28, the cytosolic mtDNA in influenza
virus- or EMCV-infected cells may trigger cGAS-dependent
antiviral immune responses. To test this idea, we infected cGAS-,
STING-, or MAVS-deficient primary lung fibroblasts with influ-
enza virus. Adenovirus-induced IFN-β gene expression was lar-
gely dependent on cGAS and STING (Supplementary Fig. 6).
Notably, the expression of IFN-β gene was significantly reduced
in cGAS-, STING-, and MAVS-deficient cells upon influenza
virus or EMCV infection (Fig. 4a, b and Supplementary Figs. 7
and 8). Since HEK293FT cells did not express detectable levels of
the cGAS protein, we established HEK293FT cells stably
expressing EGFP or the cGAS protein termed EGFP-293FT or
cGAS-293FT cells, respectively. Although overexpression of cGAS
reduced the expression levels of STING (Supplementary Fig. 9),
we could detect the STING in cGAS-293FT cells (Fig. 4c).
Importantly, the cGAS-293FT cells significantly potentiated IFN-
β gene expression after influenza virus or EMCV infection
(Fig. 4d). In addition, influenza virus-induced high levels of
cGAMP in STING-A549 cells or primary lung fibroblasts within
24 h post infection (Fig. 4e, f). Since TRIM32-mediated K63-
linked ubiquitination of STING is important for SeV or HSV-1-
induced antiviral immune responses38, we established TRIM32-
knockout STING-A549 cells using the CRISPR/Cas9 system
(Supplementary Fig. 10a) and found that TRIM32-knockout
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STING-A549 cells significantly reduced the IFN-β gene expres-
sion after influenza virus infection (Supplementary Fig. 10b).
These data indicate that cGAS-dependent signaling could be
activated upon influenza virus infection.

Although HEK293FT cells did not express detectable levels of
the cGAS protein (Fig. 4c and Supplementary Fig. 9), we found
that the ΔNS1 influenza virus-induced IFN-β gene expression was
dependent on STING in HEK293FT cells (Supplementary
Fig. 11a, b). This led us to consider the possibility that other
DNA sensors may play a role in the induction of IFN-β gene
expression after influenza virus infection. In the case of retrovirus
infection, DDX41 recognizes RNA/DNA hybrid reverse tran-
scription intermediates39. In addition, mtDNA contains RNAs
hybridized to DNA40. These observations prompted us to
examine whether influenza virus-induced cytosolic mtDNA
may trigger DDX41-dependent innate immune response. To
address this possibility, we treated HEK293FT cells with siRNA
targeting DDX41 (Supplementary Table 1). Although knockdown
of DDX41 in D2SC cells, a mouse myeloid DC line, has no effect
on influenza virus-induced IFN-α/β production41, we found that
IFN-β gene expression was significantly reduced in DDX41
knockdown HEK293FT or cGAS-293FT cells after infection with
WT or ΔNS1 influenza virus (Fig. 5a and Supplementary Fig. 11c,
d). In addition, inhibition of Bruton’s tyrosine kinase (BTK),
which phosphorylates DDX41 to facilitate STING-dependent
induction of IFN-β gene expression42, by a chemical inhibitor
LFM-A13 significantly reduced influenza virus-induced IFN-β
gene expression in cGAS-293FT cells (Fig. 5b). To confirm the
importance of DDX41 in influenza virus-induced IFN-β gene

expression, we established DDX41-knockout STING-A549 cells
using the CRISPR/Cas9 system (Supplementary Fig. 12a).
Although DDX41-knockout STING-A549 cells released compar-
able levels of mtDNA into the cytosol upon influenza virus
infection (Supplementary Fig. 12b), DDX41-knockout STING-
A549 cells significantly reduced the IFN-β gene expression after
infection with influenza virus or EMCV (Fig. 5c). In the case of
retrovirus infection, DDX41 recognizes RNA/DNA hybrid
reverse transcription intermediates39. Thus, we next tested the
effects of ribonuclease H (RNase H), an endoribonuclease which
specifically degrades the RNA strand of an RNA/DNA hybrid, on
IFN-β gene expression after influenza virus infection. Although
treatment of pure cytosolic extracts of ΔNS1 influenza virus-
infected cells with RNase H did not change the levels of cytosolic
mtDNA (Fig. 5d), transfection with RNase H-treated cytosolic
extracts significantly reduced IFN-β gene expression in
HEK293FT cells (Fig. 5e), suggesting that RNA/DNA hybrid
could play an important role in influenza virus-induced IFN-β
gene expression. Although treatment of STING-A549 cells with
siRNA targeting DDX41 did not affect the levels of cGAMP
following influenza virus infection (Fig. 5f), mutation of Tyr414,
which is critical for recruitment of STING to DDX4142, to
phenylalanine (Y414F) inhibited the IFN-β gene expression
(Fig. 5g, h). Together, these data suggest that DDX41 is important
for influenza virus-induced IFN-β gene expression.

We further examined the importance of mtDNA in influenza
virus-induced IFN-β gene expression. To this end, we generated
mtDNA-depleted ρ0 HEK293FT (Supplementary Fig. 13a). The
ρ0 HEK293FT cells abrogated mtDNA release into the cytosol in
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response to ΔNS1 influenza virus infection (Supplementary
Fig. 13b). Although depletion of mtDNA did not change the
expression levels of DDX41, RIG-I, MAVS, and STING
(Supplementary Fig. 13c), ρ0 HEK293FT cells significantly
reduced the IFN-β gene expression after infection with ΔNS1
influenza virus (Supplementary Fig. 13d). Similarly, ρ0 cGAS-
293FT cells significantly reduced the IFN-β gene expression after
infection with WT or ΔNS1 influenza virus (Supplementary
Fig. 14), suggesting that mtDNA is important for influenza virus-
induced IFN-β gene expression. Collectively these data indicated
that influenza virus infection stimulates cGAS- and DDX41-
dependent IFN-β gene expression in a cell type-specific manner.

Influenza virus NS1 protein associates with mtDNA. The NS1
protein of influenza virus binds dsRNA with no sequence speci-
ficity to prevent dsRNA-activated protein kinase (PKR)-mediated
antiviral responses43–47. In addition, it has been reported that
influenza virus NS1 protein binds cellular dsDNA to inhibit the
transcription of antiviral genes48. This led us to consider the
possibility that NS1 protein of influenza virus may associate with
cytosolic mtDNA to inhibit cGAS- or DDX41-dependent innate
immune responses. To address this possibility, we first performed
subcellular fractionation and immunoprecipitation studies. Flag-
tagged NS1 or M2 proteins were immunoprecipitated by anti-flag
or control antibodies in HEK293FT cells after infection with
ΔNS1 influenza virus. Although the NS1 protein of influenza
virus did not co-localize with dsDNA in cytosol of influenza
virus-infected cells (Supplementary Fig. 15), we found that the
flag-tagged NS1 protein specifically coimmunoprecipitated with
cytosolic mtDNA after infection with ΔNS1 influenza virus
(Fig. 6a and Supplementary Fig. 16). Similarly, influenza virus
NS1 protein was coimmunoprecipitated with an antibody against

dsDNA (Supplementary Fig. 17a, b). In addition, the anti-dsDNA
antibody coimmunoprecipitated with cGAS, DDX41, and TFAM
in cGAS-293FT cells after infection with WT PR8 influenza virus
(Supplementary Fig. 17b). Further, the biotin-tagged 45 bp
interferon stimulatory DNA (ISD) coimmunoprecipitated with
NS1 and DDX41 in cGAS-293FT cells after infection with WT
PR8 influenza virus (Supplementary Fig. 18). Since two basic
amino acids at positions 38 and 41 within the NS1 protein are
known to be important for its dsRNA- or dsDNA-binding
activity45,48,49, we next examined the role of these two amino
acids (R38 and K41) in association between the NS1 protein and
mtDNA and found that the flag-tagged R38A/K41A NS1 mutant
reduced association with cytosolic mtDNA after infection with
ΔNS1 influenza virus (Fig. 6a). Consequently, the R38A/K41A
NS1 mutant failed to inhibit cytosolic translocation of mtDNA
and IFN-β gene expression after ΔNS1 influenza virus infection
(Fig. 6b). In addition, infection with a recombinant influenza
virus expressing the mutant NS1 R38A/K41A protein (rgPR8/
NS138/41A) significantly enhanced the detectable levels of cytosolic
mtDNA and STING-dependent IFN-β gene expression compared
to WT virus-infected cells without affecting the expression levels
of the NS1 protein (Fig. 6c, d). Collectively these data indicated
that influenza virus NS1 protein may associate with mtDNA
through its RNA-binding domain to block STING-dependent
IFN-β gene expression.

NS1 protein mitigate immunostimulatory potential of
mtDNA. Since the NS1 protein of influenza virus associated with
mtDNA, we next examined whether the NS1 protein inhibits
dsDNA- or mtDNA-mediated activation of IFN-β promoter
activity. WT but not R38A/K41A NS1 protein significantly
inhibited dsDNA- or mtDNA-mediated activation of IFN-β
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promoter activity (Fig. 7a). This led us to consider the possibility
that depletion of the mtDNA-associated proteins including NS1
or TFAM may enhance the ability of mtDNA to stimulate innate
immune responses. Consistent with a previous report18, TFAM
depletion enhanced detectable levels of cytosolic mtDNA and
basal expression levels of IFN-β at steady state (Fig. 7b, c). In
addition, TFAM depletion significantly enhanced detectable levels
of cytosolic mtDNA and IFN-β gene expression after influenza
virus infection (Fig. 7c). Further, treatment of pure cytosolic
extracts of influenza virus-infected cells with proteinase K
depleted both TFAM and NS1 proteins (Fig. 7d) and enhanced
detectable levels of cytosolic mtDNA after influenza virus infec-
tion (Fig. 7e and Supplementary Fig. 19). Consequently, trans-
fection of cGAS-293FT cells with proteinase K-treated cytosolic
extracts from influenza virus-infected cells significantly enhanced
IFN-β gene expression compared with untreated control extracts
of influenza virus-infected cells (Fig. 7f). In addition, we found
that infection with EMCV but not influenza virus or adenovirus
reduced the expression levels of TFAM (Supplementary Fig. 20).
Collectively, these results indicate that the NS1 protein of influ-
enza virus may associate with mtDNA to evade recognition by
cytosolic DNA sensors.

Connexin 43 amplifies STING-dependent antiviral response.
Detection of cytosolic DNA by cGAS leads to the production of
the second messenger cGAMP, which can pass through gap
junctions to trigger STING-dependent antiviral immunity in
bystander cells12. Thus, we next examined whether the innate
immune signals are transferred from influenza virus-infected cells
to neighboring cells. To this end, we infected cGAS-293FT cells
with ΔNS1 influenza virus. At 9 h post infection, uninfected WT
or STING-deficient HEK293FT cells were seeded and co-cultured
with the virus-infected cGAS-293FT cells for an additional 15 h
(Fig. 8a). We found that IFN-β gene expression was significantly
reduced when ΔNS1 influenza virus-infected cGAS-293FT were
co-cultured with STING-deficient HEK293FT cells (Fig. 8a). In
addition, carbenoxolone (CBX), an inhibitor of gap junction,
significantly inhibited the ΔNS1 virus-induced IFN-β gene
expression and IRF3 phosphorylation without affecting the
expression levels of M2 protein (Fig. 8b, c). Thus, we next
examined the role of a gap junction protein connexin 43 (CX43)
in the induction of IFN-β gene expression in response to influ-
enza virus infection. Knockdown of CX43 in ΔNS1 influenza
virus-infected cGAS-293FT cells significantly reduced IFN-β gene
expression when ΔNS1 influenza virus-infected cGAS-293FT
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were co-cultured with CX43-sufficient HEK293FT cells (Fig. 8d,
e). These results indicated that intercellular communication via
gap junction is required to amplify STING-dependent antiviral
immunity from influenza virus-infected cells to bystander cells.

Effect of cGAS or STING deficiency on influenza virus repli-
cation. Finally, we wished to determine the consequence of
mtDNA release in the induction of cGAS/STING-dependent
IFN-β gene expression in the lung tissue after influenza virus
infection in vivo. In WT mice infected with influenza virus,
cytosolic mtDNA release in the bronchoalveolar (BAL) fluid
became apparent starting around day 2 p.i. and peaking around
day 4 p.i. (Fig. 9a). Similarly, the levels of IFN-β mRNA in the
lung tissue of WT mice became apparent starting around day 2 p.
i. and peaking around day 4 p.i. (Fig. 9b). In addition, we found
that the levels of IFN-β mRNA in the lung tissue of cGAS,
STING, and MAVS KO mice infected with influenza virus were
significantly reduced compared to WT mice (Fig. 9c, d). Thus, we
next evaluated the impact of cGAS and STING deficiency on
influenza virus replication in vivo. Consistent with a previous
report50, the virus titers in the lung of infected mice were com-
parable between WT and MAVS KO mice at 5 d p.i. (Fig. 9e).
Similarly, cGAS deficiency did not significantly affected the viral
titer in the lung compared to WT mice (Fig. 9e). In contrast, the
viral titer was significantly elevated in the lung of STING KO
mice compared to WT mice (Fig. 9e). Although these data col-
lectively indicate the importance of the STING-dependent signals
in the induction of IFN-β gene expression and limiting influenza
viral replication in vivo, it remains possible that cGAS and other

DNA sensors induce redundant signaling pathways required for
limiting viral replication in a cell type-specific manner.

Discussion
The innate immune system utilizes pattern recognition receptors
to detect pathogen-associated molecular patterns, such as viral
nucleic acids. While TLR7 and RIG-I detect influenza viral RNA,
the NLRP3 senses intracellular ionic fluxes following influenza
virus infection. We previously demonstrated that the ion channel
activity of viroporins, such as influenza virus M2 or EMCV 2B
protein is essential for NLRP3 inflammasome activation32,37. Our
findings here have identified a previously unknown mechanism
by which influenza virus and EMCV stimulate mtDNA release
into the cytosol through their viroporin activity. The cytosolic
translocation of mtDNA in response to influenza virus or EMCV
infection stimulates cGAS- and DDX41-dependent innate anti-
viral immune responses. Given that the viroporin-induced dis-
turbance in the intracellular ionic milieu is accompanied by
Mn2+ efflux from membrane-enclosed organelles, the ion chan-
nel activity of viroporins may be required for increasing the
sensitivity of cGAS to dsDNA51.

Our data have demonstrated that the infection with ΔNS1
influenza virus enhances cytosolic mtDNA release and the
STING-dependent IFN-β gene expression compared with that of
WT virus. Several possible mechanisms could explain how the
NS1 protein of influenza virus might inhibit mtDNA release into
the cytosol and STING-dependent recognition of influenza virus
infection. First, the NS1 protein of influenza virus might inhibit
cytosolic translocation of mtDNA by inhibiting RIG-I/MAVS-
dependent signals (Fig. 10). Indeed, we found that influenza virus
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stimulated cytosolic mtDNA release in a MAVS-dependent
manner. In the case of SeV infection, the virus activated-IRF3
associates with Bax to translocate to the mitochondria and cause
cytochrome c release29. In addition, previous studies have
demonstrated that Bax/Bak play a critical role for mtDNA release
into the cytosol27,28. Similarly, we found knockdown of Bax
significantly reduced the cytosolic mtDNA release after influenza
virus infection. Formation of Bak/Bax macropores elicits inner
mitochondrial membrane herniation and stimulate mtDNA
release into the cytosol52. These cytosolic mtDNA could be
packaged into distinct levels of higher-order structures depending
on the ratio of TFAM to mtDNA53 (Fig. 10). Given that cGAS
preferentially binds incomplete nucleoid-like structures or U-turn
DNA54, cytosolic U-turn DNA bridged by cross-strand binding of
TFAM53 could play a major role in the induction of cGAS/
STING-dependent IFN-β gene expression in response to influ-
enza virus infection. Second, because the NS1 protein of influenza
virus associated with mtDNA and inhibited detectable levels of
cytosolic mtDNA, the NS1 protein may mask mtDNA from
recognition by cytosolic DNA sensors (Fig. 10). Indeed, we found
that treatment of pure cytosolic extracts of influenza virus-
infected cells with proteinase K enhanced detectable levels of
cytosolic mtDNA after influenza virus infection. Consequently,
transfection of cGAS-293FT cells with proteinase K-treated
cytosolic extracts from influenza virus-infected cells significantly
enhanced IFN-β gene expression compared with untreated con-
trol extracts of influenza virus-infected cells, suggesting that the
NS1 protein of influenza virus may associate with mtDNA to
evade recognition by cytosolic DNA sensors (Fig. 10).

Influenza virus-induces type I IFNs (IFN-α/β) production in a
STING-dependent but cGAS-independent manner through a
membrane fusion process in human monocyte/macrophage-like

cell line THP115. In addition, knockdown of DDX41 in D2SC
cells, a mouse myeloid DC line, has no effect on influenza virus-
induced IFN-α/β production41. Furthermore, knockdown of
STING in MEFs has no effect on influenza virus-induced IFN-β
gene expression16. In contrast, our data have demonstrated that
influenza virus stimulates cGAS-, DDX41-, and STING-
dependent IFN-β gene expression in both mouse (primary lung
fibroblasts) and human (HEK293FT and A549) cells. In addition,
we found that influenza virus-induced high levels of cGAMP in
STING-A549 cells or primary lung fibroblasts within 24 h post
infection. Further, treatment of cells with CBX or knockdown of
CX43 inhibited the STING-dependent IFN-β gene expression.
These data collectively indicate that influenza virus infection
stimulates STING-dependent pathways in a cell type-specific
manner and that intercellular communication via gap junction
plays an important role in spreading STING-dependent antiviral
signals to bystander cells (Fig. 10).

Although cGAS was required to maximize IFN-β gene
expression in the lung after influenza virus infection, cGAS
deficiency did not significantly affected the viral titer in the lung
compared to WT mice. In contrast, the STING-dependent signals
were essential for limiting influenza virus replication in vivo. One
possible explanation for this result is that cGAS and other DNA
sensors induce redundant signaling pathways required for limit-
ing influenza virus replication in the lung tissue. Another possi-
bility is that STING-dependent translation inhibition could
restrict influenza virus replication in vivo, independent of
MAVS16. Since cGAS restricts viral replication of flaviviruses
including dengue virus and West Nile virus17,55, the antiviral
effects of the cGAS could be different for each RNA viruses55.

In summary, our finding substantially expand our under-
standing of how influenza virus and EMCV trigger mtDNA

103

102

101

p = 0.0005

p = 0.27 p = 0.18 p = 0.001

107

106

108

<105

100

104

10–1

40

30

20

10

m
tD

N
A

 (
fo

ld
)

50

0

1000

500

500

400

300

200

100

0

1500

0

Naive
Naiv

eWT
W

T
W

TcGAS–/–

cG
AS

–/
–

M
AVS

–/
–

M
AVS

–/
–STINGgt/gt

STIN
G
gt

/g
t

1 2 3

Days post infection

40 5 0 1 2 3

Days post infection

4 5

Ifn
b 

m
R

N
A

 (
re

la
tiv

e)

Ifn
b 

m
R

N
A

 (
re

la
tiv

e)
Ifn

b 
m

R
N

A
 (

re
la

tiv
e)

V
iru

s 
tit

er
 (

pf
u/

m
l)

a

c d e

b

Fig. 9 Effect of cGAS or STING deficiency on influenza virus replication in vivo. a, b WT mice were intranasally infected with 1,000 pfu of PR8 virus. The
BAL fluids (a) and lung tissues (b) were collected at indicated time points. DNA was extracted from BAL fluids of mock- or influenza virus-infected mice
using QIAquick Nucleotide Removal kit (QIAGEN). Cytosolic mtDNA was assessed by quantitative PCR (a). Total RNAs were extracted from the lung
tissue of mock- or influenza virus-infected mice. IFN-β mRNA levels were assessed by quantitative PCR with GAPDH as an internal control (b). c, d WT,
cGAS−/−, Stinggt/gt, and MAVS−/− mice were intranasally infected with 1000 pfu of PR8 virus. Lung tissues were collected at 4 d post infection. Total
RNAs were extracted from the lung tissue and IFN-β mRNA levels were assessed by quantitative PCR with GAPDH as an internal control. e WT (n= 37),
cGAS−/− (n= 18), Stinggt/gt (n= 16), and MAVS−/− (n= 10) mice were intranasally infected with 1000 pfu of PR8 virus. The BAL fluids were collected at
5 d post infection and viral titers were determined by standard plaque assay. These data are from three independent experiments (a–d; mean ± s.e.m.) or
pooled from four independent experiments (e; mean ± s.e.m.). *P < 0.05, ***P < 0.001; (one-way ANOVA and Tukey’s test). Source data are provided as a
Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12632-5

10 NATURE COMMUNICATIONS |         (2019) 10:4624 | https://doi.org/10.1038/s41467-019-12632-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


release into the cytosol and stimulate the cGAS- and DDX41-
dependent innate antiviral immune responses. Because mito-
chondrial dsRNA released into the cytosol triggers MDA5-
dependent innate antiviral signaling56, our results suggest a
possible effect of viroporin-induced mitochondrial dysfunction in
the induction of the MAVS-dependent innate antiviral immune
responses. Better understanding of crosstalk between RNA and
DNA sensing pathways in response to viral infection will aid the
development of novel therapeutic strategies to treat viral infec-
tions and associated diseases.

Methods
Mice. Age- and sex-matched C57BL/6J obtained from Japan SLC, Inc. were used as
WT controls. cGAS−/−, Stinggt/gt (C57BL/6J-Tmem173gt/J), and MAVS−/− mice
were purchased from Jackson Laboratory (026554, 017537, and 008634 respec-
tively). All animal experiments were performed in accordance with the regulations
of the University of Tokyo Committee for Animal Care and Use and were
approved by the Animal Experiment Committee of the Institute of Medical Sci-
ence, the University of Tokyo.

Cells and viruses. To prepare BMMs, bone marrows from the tibia and femur
were obtained by flushing with Dulbecco’s modified Eagle’s medium (DMEM;
Nacalai tesque). Bone marrow cells were cultured with DMEM supplemented with
10% heat-inactivated fetal bovine serum (FBS), L-glutamine and 30% L929 (pro-
vided by Dr. Akiko Iwasaki) supernatant containing the macrophage colony-
stimulating factor at 37 °C for 5 days. For BMDCs, bone marrow from the tibia
and femur was obtained as described above, and bone marrow cells were cultured
in RPMI 1640 medium (Nacalai Tesque) containing 10% heat-inactivated FBS, L-
glutamine and 5% J558L hybridoma cell (provided by Dr. Heung Kyu Lee) culture

supernatant containing the granulocyte-macrophage colony-stimulating factor
(GM-CSF) in 24-well plate for 5 days. The culture medium containing GM-CSF
was replaced every other day. To obtain primary lung fibroblasts, lungs were
minced using razor blades, and incubated in DMEM containing 0.25% trypsin and
0.5 mM EDTA at 37 °C for 30 min. Then, individual lungs were mechanically
digested into single-cell suspensions by forcing them through a 70 μm cell strainer
(BD) using a sterile syringe plunger. After centrifugation (200 × g, 5 min), pellets
were resuspended in complete DMEM medium and cultured in 10-cm dish for
10 days. cGAS−/− and STINGgt/gt MEFs were generated from embryos according
to standard protocol. HEK293FT cells (#R70007, Invitrogen) and A549 cells
(#CCL-185, ATCC) were maintained in DMEM supplemented with 10% FBS.
Madin-Darby canine kidney (MDCK) cells (provided by Dr. Hideki Hasegawa)
were grown in Eagle’s minimal essential medium (E-MEM; Nacalai Tesque) sup-
plemented with 10% FBS.

WT A/PR8 influenza virus was grown in allantoic cavities of 10-d-old fertile
chicken egg for 2d at 35 °C. Recombinant influenza viruses including WT A/PR8
influenza virus (termed rgPR8) used in this study were generated by using plasmid-
based reverse genetics (Supplementary Table 2)57. Briefly, HEK293FT cells in
collagen-coated 6-well plates were transfected with eight viral RNA-expressing
plasmids together with plasmids expressing PA, PB1, PB2, and NP using transIT-293
(Takara Bio). At 48 h post-transfection, the cells were incubated for 15min at 37 °C
with 1 μg/ml acetylated trypsin. After centrifugation (600 × g, 5 min), cell
supernatants were inoculated into MDCK cells in 6-well plates and cultured for
2–3 days in Opti-MEM containing 1 μg/ml acetylated trypsin to rescue the
recombinant influenza virus. These recombinant influenza viruses were propagated
in MDCK cells or MDCK cells stably expressing the influenza virus NS1 protein for
2 days at 37 °C58. EMCV used for all experiments was grown in L929 cells for 15 h at
37 ˚C. Human adenovirus type 5 was purchased from ATCC (VR-1516). Viruses
were stored at −80 °C, and the viral titer was quantified in a standard plaque assay
using MDCK cells for influenza virus and L929 cells for EMCV. The adenovirus titer
was determined by 50% tissue culture infectious dose (TCID50) assay. Experimental
infections were carried out in the BSL-2 facility at the Institute of Medical Science,
the University of Tokyo. The ethics committees of the Institute of Medical Science,
the University of Tokyo approved all of the experimental protocols.

Influenza virus infection. Cells were infected with influenza virus at a MOI of
1–10 for 1 h at 37 °C, and cultured with complete DMEM for 24 h without trypsin.

For intranasal infection, mice were fully anesthetized by intraperitoneal
injection of pentobarbital sodium (Somnopentyl, Kyoritsu Seiyaku Co., Ltd.,
Tokyo, Japan) and then infected by intranasal application of 30 μl of virus
suspension (1000 pfu in PBS).

Antibodies. The anti-EMCV 2B antibody (1:1000) was generated by immunizing a
rabbit with the C-terminal region of 2B protein, which was supplied by peptide
synthesis (FITPPPRFPTISL). Monoclonal antibody against influenza A virus M2
protein (14C2, Cat#ab5416; 1:1000) and anti-dsDNA (35I9 DNA, Cat#ab27156;
1:600) were purchased from abcam. Monoclonal antibody against Flag (M2,
Cat#F1804; 1:1000), rabbit polyclonal antibodies against Flag (Cat#F7425;
1:10,000) and calnexin (Cat#C4731; 1:2000) were obtained from Sigma-Aldrich.
Anti-GFP (GF200, Cat#04363-66; 1:10,000) was from Nacalai Tesque (Kyoto,
Japan). Anti-cGAS (D1D3G, Cat#15102; 1:1000), anti-DDX41 (D3F1Z, Cat#15076;
1:1000), anti-STING (D2P2F, Cat#13647; 1:1000), anti-MAVS (Cat#3993; 1:1000),
and anti-TFAM (D5C8, Cat#8076; 1:1000) were purchased from Cell Signaling
Technology (Danvers, MA, USA). Anti-influenza virus NS1 (NS1-23-1, Cat#sc-
130568; 1:1000), anti-HA (F-7, Cat#sc-7392; 1:1000), anti-myc (9E10, Cat#sc-40;
1:1000), anti-tubulin (DM1A, Cat#sc-32293; 1:2000), anti-Tom20 (FL-145, Cat#sc-
11415; 1:1000), anti-Mfn2 (XX-1, Cat#sc-100560; 1:1000), and anti-connexin 43
(F-7, Cat#sc-271837; 1:1000) were purchased from Santa Cruz Biotechnology.
Mouse monoclonal antibody against RIG-I (Alme-1, Cat#AG-20B-0009-C100;
1:1000) was from AdipoGen.

Lentiviral vectors. To generate lentiviruses expressing the cGAS protein, the full-
length cDNA encoding the cGAS protein was cloned into the pLenti6.3/V5-TOPO
vector (Invitrogen). HEK293FT cells cultured in a collagen-coated 10-cm dish were
transfected with 3 μg of cGAS-expressing pLenti6.3/V5-TOPO vector together with
ViraPower Packaging Mix (Invitrogen) using Lipofectamine 2000 (Invitrogen). The
culture medium was replaced with fresh medium 24 h later. At 72–96 h post-
transfection, the lentivirus-containing supernatants were harvested. A lentivirus
encoding an irrelevant protein (EGFP) served as a control58. The stock virus,
containing Polybrene (10 μg/ml), was then inoculated into HEK293FT cells. The
culture medium was replaced with fresh medium 24 h later. Finally, the cells were
cultured for 2–3 weeks in complete medium containing blasticidin (10 μg/ml) to
kill nontransduced cells.

Establishment of gene-knockout cell lines. Each of the target sequence of single-
guide RNA was cloned into pX458 (addgene, #48138), followed by annealing of
oligonucleotide pairs (Supplementary Table 3). HEK293FT or A549 cells were
transfected with resulting plasmid and incubated for 2~3 days. EGFP positive cells
were sorted by FACS and formed a single colony. Gene deficiency was confirmed
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Fig. 10 Proposed mechanism by which influenza virus regulates STING-
dependent antiviral immunity. Ion channel activity of influenza virus M2 or
EMCV 2B protein stimulates cytosolic mtDNA release in a MAVS-
dependent manner. These cytosolic mtDNA could be packaged into distinct
levels of higher-order structures depending on the ratio of TFAM to
mtDNA. Cytosolic DNA sensors cGAS and DDX41 may recognize influenza
virus-induced cytosolic mtDNA to stimulate STING-dependent IFN-β gene
expression. The STING-dependent antiviral signaling was amplified in
neighboring cells though gap junctions. The NS1 protein of influenza virus
could associate with mtDNA to evade host DNA sensing pathways
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by sequencing and immunoblotting. A representative single clone for each gene
was used for experiments.

Establishment of mtDNA-depleted ρ0 cell lines. HEK293FT or cGAS-293FT
cells were cultured in DMEM supplemented with 10% FBS, pyruvate (100 μg/mL),
ethidium bromide (EtBr) (500 ng/mL), and uridine (50 μg/mL) for 2 wks, as pre-
viously described59. The depletion of mtDNA was confirmed by quantitative PCR
using the following primers: human mtDNA forward, 5′-cctagggataacagcgcaat-3′, and
reverse, 5′-tagaagagcgatggtgagag-3′; human β-actin forward, 5′-ctggaacggtgaaggtgaca-
3′, and reverse, 5′-aagggacttcctgtaacaatgca-3′ (Supplementary Table 4)60,61. The
relative mtDNA amounts were shown as a ratio of mtDNA to nuclear DNA encoding
β-actin

Detection of mtDNA in cytosolic extracts. BAL fluid was collected by washing the
trachea and lungs twice by injecting a total of 2 ml buffer containing 150mM NaCl,
50mM HEPES pH 7.4, and 20 μg/ml digitonin (Nacalai Tesque) for measurement of
cytosolic mtDNA release in the lung. HEK293FT, A549, primary lung fibroblasts or
MEFs were resuspended in 500 μl buffer containing 150mM NaCl, 50mM HEPES
pH 7.4, and 20 μg/ml digitonin (Nacalai Tesque). The homogenates were incubated
on an end-over-end rotator for 10min. After centrifugation (1000 × g, 3 min) three
times, the supernatants were transferred to fresh tubes and centrifuged at 17,000 × g
for 10min. Cytosolic mtDNA was isolated from these pure cytosolic fractions using
QIAquick Nucleotide Removal kit (QIAGEN). Total mtDNA was isolated from
whole-cell extracts using QIAamp DNA Mini Kit (QIAGEN). Quantitative PCR was
performed on both pure cytosolic fractions and whole-cell extracts using mtDNA
primers: human mtDNA forward, 5′-cctagggataacagcgcaat-3′, and reverse, 5′-
tagaagagcgatggtgagag-3′; mouse mtDNA forward, 5′- gccccagatatagcattccc-3′, and
reverse, 5′-gttcatcctgttcctgctcc-3′ (Supplementary Table 4)60,62. The relative cytosolic
mtDNA levels were normalized to total mtDNA amounts. The value in mock-
infected or EGFP-transfected cells was set to 1.

Quantitative PCR. Total RNA was extracted from cells using TRIzol reagent
(Invitrogen) and reverse transcribed into cDNA using SuperScript III reverse
transcriptase (Invitrogen) with an oligo (dT) primer. SYBR Premix Ex Taq II
(TaKaRa) and a LightCycler instrument (Roche Diagnostics) were used for
quantitative PCR with the following primers: human IFN-β forward, 5′-
ctcctggctaatgtctatca-3′, and reverse, 5′-gcagaatcctcccataatat-3′; human β-actin
forward, 5′-ctggaacggtgaaggtgaca-3′, and reverse, 5′- aagggacttcctgtaacaatgca-3′;
mouse IFN-β forward, 5′-gcactgggtggaatgagactattg-3′, and reverse, 5′-ttctgaggcat-
caactgacaggtc-3′; mouse GAPDH forward, 5′- accacagtccatgccatca-3′, and reverse,
5′-tccaccaccctgttgctgta-3′37,61,62; influenza virus NP forward, 5′-agaacatctga-
catgaggac-3′, and reverse, 5′-gtcaaaggaaggcacgatc-3′ (Supplementary Table 4).

IFN-β reporter assay. cGAS-293FT cells seeded on 24-well cluster plates were
cotransfected with 100 ng of p125-luc (a gift from T. Taniguchi, University of
Tokyo), 2.5 ng of phRL-TK, and 100 ng of poly(dA:dT) or mtDNA together with
100 ng of pCA7-EGFP, pCA7-Flag-NS1, or pCA7-Flag-NS1 (R38A/K41A)58,61.
After 24 h of transfection, cells were lysed in passive lysis buffer (Promega) and
examined for luciferase activity using the dual-luciferase reporter assay system
(Promega). Data were normalized for transfection efficiency against Renilla luci-
ferase activity.

ELISA. Cell-free supernatants were collected at 24 h p.i. The supernatants were
analyzed for the presence of IL-1β using an enzyme-linked immunosorbent assay
(ELISA) utilizing paired antibodies (eBioscience)32. cGAMP ELISA (Cayman
Chemical) was performed according to the manufacturer’s instructions.

Flow cytometry. Cells were fixed and permeabilized using a Cytofix/Cytoperm kit
(BD Biosciences), and intracellularly stained with mouse monoclonal anti-dsDNA
(35I9 DNA, Cat#ab27156; Abcam; 1:600), anti-connexin 43 (F-7, Cat#sc-271837;
Santa Cruz; 1:100) antibodies, or rabbit polyclonal antibodies against influenza
virus M2 (1:600) or EMCV 2B (1:600) proteins followed by FITC-labeled goat anti-
mouse IgG (Cat#405305; BioLegend; 1:300), PE-labeled goat anti-mouse IgG
(Cat#405307; BioLegend; 1:300), or FITC-labeled donkey anti-rabbit IgG
(Cat#406403; BioLegend; 1:300). Flow cytometric analysis was performed with a
FACSVerse flow cytometer (BD Biosciences). The final analysis and graphical
output were performed using FlowJo software (Tree Star, Inc.). All samples were
gated based on forward scatter (FSC) and side scatter (SSC) to gate out cellular
debris or dead cells.

Confocal microscopy. STING-A549 cells were seeded onto coverslips in 24-well
cluster plates and infected with PR8 virus or EMCV. At indicated time points, cells
were fixed and permeabilized with PBS containing 4% formaldehyde and 1%
Triton X-100. Cells were then washed with PBS and incubated with anti-influenza
virus NS1 (Cat#GTX125990; GeneTex; 1:1000), anti-dsDNA (AC-30-10,
Cat#CBL186; Chemicon International, Inc.; 1:500), or anti-Tom20 (FL-145,
Cat#sc-11415; Santa Cruz; 1:200) antibodies, followed by incubation with Alexa
Fluor 488-conjugated donkey anti-mouse IgG (H+L) (Cat#A21202; Life

Technologies; 1:5000), Alexa Fluor 488-conjugated goat anti-mouse IgM
(Cat#ab150121; Abcam; 1:5000), or Alexa Fluor 568-conjugated goat anti-rabbit
IgG (H+L) antibodies (Cat#A11036; Life Technologies; 1:5000). Stained cells were
observed under a confocal microscope (LSM5; Zeiss).

Coimmunoprecipitation (co-IP) and western blot analysis. For co-IP of
mtDNA-protein complexes, subconfluent monolayers of HEK293FT cells in
collagen-coated 10-cm dishes were transfected with 12 μg of pCA7-EGFP, pCA7-
Flag-M2, pCA7-Flag-NS1, or pCA7-Flag-NS138/41A58. At 24 h posttransfection,
cells were infected with ΔNS1 influenza virus for 24 h. Pure cytosolic extracts
prepared from digitonin extracts were incubated for 60 min at 4 °C with protein G-
Sepharose (GE Healthcare AB), which had been pretreated with an anti-Flag (M2,
Cat#F1804; Sigma) or normal mouse IgG1 (Cat#sc-3877; Santa Cruz) antibody
overnight at 4 °C. Complexes were obtained by centrifugation and washed five
times with coimmunoprecipitation buffer (50 mM Tris [pH 7.5], 150 mM NaCl, 1%
Triton X-100, 1 mM EDTA). mtDNA was isolated from these protein complexes
using QIAquick Nucleotide Removal kit (QIAGEN). Quantitative PCR was per-
formed using mtDNA primers (Supplementary Table 4).

For co-IP of ISD-protein complexes, subconfluent monolayers of cGAS-293FT
cells in collagen-coated 10-cm dishes were transfected with 12 μg of biotin-labeled
ISD. At 9 h posttransfection, cells were infected with WT A/PR8 influenza virus. At
15 h postinfection, the cells were washed with PBS and lysed in 1ml PBS by 30
repetitive pipetting through 1ml syringes and 21-gauge needles. The homogenate
was centrifuged at 800 × g for 10min at 4 °C. The supernatant was incubated for 60
min at 4 °C with streptavidin agarose (Thermo Scientific). Complexes were obtained
by centrifugation and washed five times with PBS. The polypeptides within the
precipitated complexes were fractionated by SDS-polyacrylamide gel electrophoresis
(PAGE) (10–15% gels) and electroblotted onto polyvinylidene difluoride (PVDF)
membranes (Immobilon-P; Millipore). The membranes were incubated with mouse
anti-influenza A virus NS1 (NS1–23–1, Cat#sc-130568; Santa Cruz; 1:1000), rabbit
anti-cGAS (D1D3G, Cat#15102; Cell Signaling Technology; 1:1000), rabbit anti-
DDX41 (D3F1Z, Cat#15076; Cell Signaling Technology; 1:1000), rabbit anti-TFAM
(D5C8, Cat#8076; Cell Signaling Technology; 1:1000), or rabbit anti-Flag
(Cat#F7425; Sigma; 1:10,000) antibody, followed by incubation with horseradish
peroxidase-conjugated anti-mouse IgG (Cat#115-035-003; Jackson Immuno
Research Laboratories; 1:10,000) or anti-rabbit IgG (Cat#G21234; Life Technologies;
1:10,000). The PVDF membranes were then treated with Chemi-Lumi One Super
(Nacalai Tesque) to elicit chemiluminescent signals, which were detected and
visualized using an LAS-4000 Mini apparatus (GE Healthcare). All full-length
western blots are available in Source Data file.

Statistical analysis. Statistical significance was tested using nonparametric one-
way analysis of variance (ANOVA), using PRISM software (version 8; GraphPad
software). P-values of < 0.05 were considered statistically significant.

Data availability
The source data underlying Figs. 1a–c, f–j, 2, 3a, b, e–g, 4–9 and Supplementary Figs. 1b,
c, 2, 3, 4b, c, e, 5–14, 17–20 are provided as a Source Data file. All other data are available
from the corresponding author upon reasonable requests.
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