Skip to main content
. 2019 Oct 11;9:14704. doi: 10.1038/s41598-019-51264-z

Table 1.

Calibration, cross-validation and prediction results of the PPC, TVB-N values and sensory score of rainbow-trout samples by hyperspectral imaging system.

Model n LVs Calibration Cross-validation Prediction RDP
R2C(adj) RSMEC R2CV(adj) RSMECV R2P(adj) RSMEP Bias
PPC (Log 10 CFU/g)
PLSR 9 6 0.923 0.504 0.901 0.548 0.899 0.579 0.077 3.17
MLR 9 0.923 0.522 0.908 0.551 0.918 0.533 0.106 3.43
LS-SVM 9 0.920 0.515 0.904 0.505 0.917 0.517 0.103 3.55
BP-ANN 9 0.922 0.508 909 0.550 0.921 0.504 0.128 3.64
TVB-N (mg N/100 g)
PLSR 9 5 0.889 3.084 0.874 3.304 0.857 3.585 0.257 2.645
MLR 9 0.892 3.164 0.870 3.355 0.855 3.593 0.174 2.640
LS-SVM 9 0.889 3.101 0.872 3.327 0.862 3.542 −0.208 2.678
BP-ANN 9 0.881 3.307 0.862 3.526 0.853 3.643 0.073 2.603
Sensory score (6–30)
PLSR 9 4 0.927 1.572 0.919 1.604 0.902 1.987 −1.009 3.024
MLR 9 0.930 1.544 0.918 1.609 0.909 1.991 −0.983 3.018
LS-SVM 9 0.928 1.523 0.921 1.599 0.912 1.802 −0.996 3.335
BP-ANN 9 0.920 1.597 0.913 1.664 0.910 1.848 −1.001 3.251

LV: latent variable; R2C(adj): adjusted determination coefficient of calibration; R2CV (adj): adjusted determination coefficient of cross-validation; R2P(adj): adjusted determination coefficient of prediction; RMSEC: root-mean-square errors estimated by calibration; RMSECV: root-mean-square errors estimated by cross-validation; RMSEP: root-mean-square errors estimated by prediction; MLR: Multi-linear regression; PLSR: partial least squares regression; LS-SVM: least squares support vector machine BP-ANN: back-propagation artificial neural network.