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Abstract: CD38 is expressed on the surface of many immune cells, which are closely associated with antitumor im-
munity and immune tolerance of tumor cells. Therefore, monitoring CD38 expression has gained great attention for 
tracking the progression of tumors and cancer treatment. Herein, we aim to develop a PET tracer using an anti-CD38 
monoclonal antibody (daratumumab) to monitor CD38 expression in hepatocellular carcinoma (HCC). In this study, 
daratumumab was radiolabeled with 64Cu (t1/2=12.7 h) to obtain 64Cu-NOTA-daratumumab. Relative CD38 expres-
sion in HepG2 and Huh7 HCC cell lines was assessed using western blot. The specificity of 64Cu-NOTA-daratumumab 
to both cell lines was examined using an in vitro cell-binding assay. PET imaging in subcutaneous models of HCC was 
performed to evaluate the capability and specificity of 64Cu-NOTA-daratumumab to target CD38 in vivo. Region-of-
interest analysis and ex vivo biodistribution were performed to verify the tracer targeting capability of CD38. Through 
cellular studies of two HCC cell lines, CD38 expression was found to be higher in HepG2 and minimal in Huh7 cells. 
64Cu-NOTA-daratumumab showed relatively high affinity to CD38 (Ka=18.21 ± 1.74 nM), while the affinity of Huh7 
was in the micromolar range for daratumumab binding to the cells (Ka=3.98 ± 0.87 μM). At 48 h post-injection, PET 
imaging of subcutaneous models with 64Cu-NOTA-daratumumab revealed tumor uptakes of 12.23 ± 2.4 and 2.7 ± 
1.2 %ID/g for HepG2 and Huh7, respectively (n=4), which correlated well with relative CD38 expression of the cells. 
Moreover, the 64Cu-NOTA-IgG nonspecific analogue showed a significantly lower uptake in HepG2 subcutaneous 
model in mice, suggesting a specific binding of daratumumab with CD38 in vivo. Our cellular studies and PET imag-
ing confirmed the capability and specificity of 64Cu-NOTA-daratumumab for the imaging of CD38 in murine models 
of HCC. This study supports our claim that 64Cu-NOTA-daratumumab is an effective PET tracer for the non-invasive 
evaluation of CD38 expression and sensitive detection of CD38-positive tumor lesions in HCC. 
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Introduction

Hepatocellular carcinoma (HCC) is a leading 
cause of cancer-related death worldwide [1]. 
Despite making a rapid progress in new tech-
nologies for diagnosis and treatment, incidence 
and mortality still maintain growth [2]. There 
are many risk factors for the development of 
HCC, such as hepatitis B, hepatitis C and alco-
hol abuse [3]. For example, there is the signifi-
cant correlation between hepatocarcinogenici-
ty and chronic Hepatitis B virus infection [4], 
and 80% of patients with hepatitis C will prog-
ress to chronic hepatitis [5]. In addition, studies 

in Europe demonstrated that alcohol abuse 
accounts for 40%-50% of all HCC cases in 
Europe [6]. Although patients with HCC can get 
significant benefits from surgery remediation, 
such as orthotopic liver transplantation (OLT), 
this specific therapy cannot be widely per-
formed due to the shortage of available organs 
[7, 8]. Therefore, finding effective therapeutic 
strategies is still a major challenge for the treat-
ment of HCC. 

Recent understanding of various types of 
molecular aberrations underlying HCC’s patho-
genesis has revealed a variety of molecular 
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subclasses and gene signatures, demonstrat-
ing that molecular subclasses are correlated 
with HCC’s clinical features [9, 10]. This will 
contribute to the generation of patient-tailored 
therapies. Yet so far, effective targeting and 
treatment of HCC is still limited to a group of 
patients who display certain molecular altera-
tions. Therefore, it is key to find new relevant 
molecular markers that allow for effective tar-
geted therapy of HCC. Molecular sub-classifica-
tion of HCC tumors has been instrumental in 
identifying new biomarkers of drug response 
that might allow the emergence of novel diag-
nostics and therapeutic paradigms.

CD38 belongs to the ribosyl cyclase family, and 
is expressed on many kinds of cellular surfac-
es, such as that of immune cells and non-
hematopoietic cells [11]. Its function has been 
explored in multiple immune cell types, and var-
ies during lymphocyte development, activati- 
on, and differentiation [12]. For example, CD38 
plays many important roles in regulating im- 
mune cell adhesion and signal transduction 
pathways [13, 14], and a high percentage of 
CD38-expressing leukemic cells is closely relat-
ed to unfavorable prognosis of leukemia [15, 
16]. Although extensive data exists describing 
CD38 in a variety of immune cells, noninvasive 
in vivo molecular imaging of CD38 in HCC 
tumors has remained unexplored. In this study, 
we devote our efforts to validate CD38 as a  
biomarker for noninvasive diagnosis of CD38-
expressing HCC. We believe that the findings 
provide evidence for the clinical translation of 
this molecular targeting strategy.

Methods and materials 

Radiolabeling of daratumumab

Radiolabeling of daratumumab with 64Cu was 
performed through conjugation of the chelator 
p-SCN-Bn-NOTA (NOTA; Macrocyclics, Dallas, 
TX, USA) to the antibody, as described in previ-
ous protocols [17-19]. Briefly, daratumumab in 
1 x PBS solution was adjusted to pH 8-8.5 
using 0.1 M Na2CO3. NOTA was mixed with the 
antibody solution at a molar ratio of 1:10 (dara-
tumumab: NOTA). After reacting for 2-3 h at 
room temperature, NOTA-daratumumab was 
purified from unconjugated NOTA by using one 
PD-10 column (GE Healthcare, Aurora, OH, 
USA). 64Cu was produced in a CTI RDS 112 
cyclotron via 64Ni(p, n)64Cu reaction and sepa-

rated from the enriched nickel target. After 
NOTA-daratumumab was mixed with 64CuCl2 in 
a 0.1 M sodium acetate buffer (pH 5.5) for 30 
min at 37°C, 64Cu-NOTA-daratumumab was 
purified, collected, and filtered before injection 
into mice. Similarly, the same procedure was 
used for radiolabeling IgG (Thermo Fisher Sci- 
entific, Waltham, MA, USA) to obtain 64CuNOTA-
IgG [20, 21].

Cell culture

Two HCC cell lines, HepG2 and Huh7, were 
obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). HepG2 
cells were cultured in Dulbecco’s minimum 
essential medium (DMEM), containing 4.5 g/L 
glucose, and supplemented with 10% fetal bo- 
vine serum (GibcoBRL, Grand Island, NY, USA), 
1% penicillin/streptomycin, and 1% non-essen-
tial amino acids. Huh7 cells were cultured in 
DMEM containing 10% fetal bovine serum. All 
cells were maintained at 37°C in a humidified 
5% CO2 atmosphere.

Flow cytometry 

Flow cytometry was used to examine the bind-
ing and immune-reactivity of daratumumab to 
HepG2 and Huh7 cells. After being harvested, 
counted, and re-suspended in PBS (1 × 106 
cells/mL), cells were incubated for 30 min on 
ice with either PBS, 5 μg/mL of daratumumab, 
25 μg/mL of daratumumab, 5 μg/mL of NOTA-
daratumumab, or 25 μg/mL of NOTA-daratu- 
mumab. At the end of incubation, cells were 
washed with PBS buffer and then incubated 
with 5 μg/mL of Cy3-labeled secondary anti-
body for 30 min on ice. Lastly, a BD FACSAria 
cell sorter was used for testing samples, and 
data was analyzed using the FlowJo V10 soft- 
ware.

Saturation binding assay 

64Cu-NOTA-daratumumab was used to deter-
mine the cellular binding affinity in HepG2 and 
Huh7 cells. After being seeded in a 96-well 
plate (5 × 105/well), cells were incubated with 
increasing concentrations of 64Cu-NOTA-dara- 
tumumab (range 0.03-100 nM) for 2 h at room 
temperature. To test the nonspecific binding,  
1 μmol of unlabeled daratumumab was added 
to the corresponding wells. Finally, cells were 
harvested and counted using an automated 
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γ-counter (PerkinElmer, Waltham, MA, USA). 
The maximum binding ability (Bmax), affinity con-
stant (Ka), and receptor density on HepG2 cells 
were determined using GraphPad Prism soft-
ware (La Jolla, CA, USA).

Development of the animal tumor model

All animal studies were conducted under the 
approval of the University of Wisconsin Insti- 
tutional Animal Care and Use Committee. For 
tumor implantation, HepG2 and Huh7 cells (1 × 
106) were suspended in 100 μL of 1:1 PBS and 
Matrigel (BD Biosciences), and subcutaneously 
injected to the lower flank of female athymic 
nude mice (Envigo, Madison, WI, USA). Tumor 
size was monitored visually every other day, 
and in vivo experiments were performed when 
the tumor reached 5-10 mm in diameter.

PET imaging and image analysis 

HepG2 and Huh7 tumor-bearing mice were 
intravenously injected with 3.7-7.4 MBq of 
64Cu-NOTA-daratumumab. PET images were 
acquired at 6, 12, 24, and 48 h post-injection 
of 64Cu-NOTA-daratumumab or 64Cu-NOTA-IgG. 
PET scans of 20-40 million coincidence events 
were acquired per mouse and PET images we- 
re reconstructed using the 3D ordered subset 
expectation maximization (OSEM3D) algorithm 
and quantitative region of interest analyses 
were performed in the Inveon Acquisition Work- 
place (Siemens Medical Solutions, Malvern, PA, 
USA). 

Ex vivo biodistribution studies

Ex vivo biodistribution studies were performed 
after the final imaging time point at 48 h post-

In accordance with a previous study, immuno-
fluorescence staining was performed to evalu-
ate CD38 expression [16]. Briefly, tissue slices 
were fixed, rinsed with PBS, and blocked with 
10% donkey serum for 20 min at RT. After being 
incubated with a primary mouse anti-human 
anti-CD38 antibody (1:400, Novus Biologicals), 
these slices were stained with a secondary 
goat anti-mouse AlexaFluor488 and DAPI, and 
imaged using a Nikon A1RS confocal microsco- 
pe.

Statistical analysis

Quantitative data were presented as mean ± 
standard deviation (SD). Comparisons between 
tissue uptake data were made using the 
Student’s t-test, where P < 0.05 was consid-
ered as statistically significant.

Results

CD38 expression in HepG2 and Huh7 cells 

Relative expression levels of CD38 in HepG2 
and Huh7 cells were evaluated by western blot-
ting. The expression of CD38 in Huh7 cells was 
only 28.9 ± 7.7% of HepG2 cells, demonstrating 
the higher expression levels of CD38 in HepG2 
compared with Huh7 cells (Figure 1). 

Binding affinity of daratumumab, NOTA-
daratumumab, and 64Cu-NOTA-daratumumab

HepG2 and Huh7 cells were tested by flow cy- 
tometry using daratumumab or NOTA-dara- 
tumumab as the primary antibody. The high lev-
els of binding affinity were found in HepG2 ce- 
lls treated with daratumumab or NOTA-daratu- 

Figure 1. CD38 expression in different liver tumor cells. A. Western blot analysis 
shows CD38 expression in HepG2 and Huh7 cell line. B. Histogram shows the 
relative grey-scale value of CD38 bands compared to β-tubulin bands (n=3). **P 
< 0.01.

injection. Mice were euth-
anized by CO2 and organs 
of interest were harvest-
ed, including the heart, 
liver, spleen, kidneys, mu- 
scle, and tumor. The por-
tions of these organs we- 
re weighed before the 
activities were counted in 
an automatic γ-counter, 
and the results recorded 
as %ID/g (mean ± SD).

Immunofluorescence 
staining
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mumab (Figure 2A). For HepG2 cells, there  
is no difference between daratumumab and 
NOTA-daratumumab. These data suggested 
that NOTA conjugation had no effect on the 
binding ability of daratumumab at high or low 
concentrations.

64Cu-NOTA-daratumumab demonstrated a ra- 
diolabeling yield of 89.8 ± 2.2% and the spe- 
cific activity was in the range of 370-740  
MBq/mg (n=11). The receptor binding assay 
was used for quantifying the Bmax and Ka of 
64Cu-NOTA-daratumumab in HepG2 cells. The 
specific binding curve revealed that 64Cu-NOTA-
daratumumab reached its maximum binding of 
approximately 0.4 pmol, and the Ka value was 
18.21 ± 1.74 nM, with a receptor density of 
(1.43 ± 0.16) × 105 per cell for HepG2 cells 
(Figure 2B), suggesting that 64Cu-NOTA-daratu- 
mumab has a high binding affinity for HepG2 
cells. 

PET imaging of subcutaneous liver tumors

PET imaging was performed at 6, 12, 24, and 
48 after injection of 64Cu-NOTA-daratumumab 
or 64Cu-NOTA-IgG in HepG2 and Huh7 cell line 
liver tumor models (Figure 3A). For HepG2 
tumor-bearing mice, 64Cu-NOTA-daratumumab 
uptakes in tumor were 7.85 ± 0.50, 11.5 ± 
1.27, 13.55 ± 1.64, and 13.8 ± 1.49 %ID/g at 
6, 12, 24, and 48 h post-injection (n=4), respec-
tively. In mice bearing Huh7 tumors, the aver-
age tumor signal was significantly lower at each 
time point, with 3.50 ± 0.27, 3.98 ± 0.47, 3.95 

± 0.47 and 4.01 ± 0.52 %ID/g at 6, 12, 24, and 
48 h post-injection (n=4, P < 0.01 when com-
pared with the HepG2), respectively. 64Cu-NO- 
TA-IgG, as non-specific control probe, exhibited 
a non-specific tumor uptake which was still 
lower than 64Cu-NOTA-daratumumab in all time 
points after injection. The passive tumor target-
ing of IgG antibody was reported previously by 
our group and was attributed to the enhanced 
permeability and retention (EPR) effect [17, 
21-24]. Non-specific tumor uptake of IgG anti-
bodies depends on the leakiness of vascula-
ture around tumor sites. This means fast grow-
ing tumors may have a higher passive uptake of 
IgG. However, the difference in HepG2 tumor 
uptakes of daratumumab and non-specific IgG 
clearly demonstrated a specific accumulation 
of 64Cu-NOTA-daratumumab for CD38-positive 
tumor (Figure 3B).

Quantitative region-of-interest (ROI) analysis of 
the blood pool, liver, spleen and kidney was 
also performed at different time points (Figure 
3C-F). After injection of 64Cu-NOTA-daratumu- 
mab, the uptake in other organs began to de- 
crease, and there were no other significant dif-
ferences among all three groups. 

Biodistribution

To strengthen the PET analysis, ex vivo biodis-
tribution analysis was performed at 48 h post-
injection of 64Cu-NOTA-daratumumab (Figure 
4). The uptake in HepG2 tumors was found to 
be 13.8 ± 1.5 %ID/g, which was higher than 

Figure 2. A. Flow cytometry showed differentiated CD38 expression in HepG2 and Huh7 cell lines. Results also 
verified that NOTA conjugation would not affect CD38 binding of daratumumab. B. Cellular binding assay showed 
NOTA-conjugated daratumumab bound specifically to HepG2 cells with a Ka value of 18.21 ± 1.74 nM, while the Ka 
for Huh7 cells was estimated to be 3.98 ± 0.87 µM.
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Huh7 tumors at 4.1 ± 0.7 %ID/g (P < 0.05, n=4). 
The tumor uptake of 64Cu-NOTA-IgG in HepG2 
tumors was only 7.2 ± 0.9 %ID/g, which is also 
significantly lower than that of 64Cu-NOTA-da- 
ratumumab, suggesting the non-specific bind-
ing of IgG in HepG2 tumors. In other organs, 
including the heart, liver, spleen, and kidneys, 
64Cu-NOTA-daratumumab showed a similar 
trend but lower uptake values in mice bearing 
HepG2 tumors than those bearing Huh7 tu- 
mors, which might be related to the enhanced 
HepG2 tumor uptake and decreased off-target 
accumulation.

Immunofluorescence staining of CD38 in tu-
mor tissue

To confirm the differential CD38 expression, 
different tumor tissues were detected by immu-
nofluorescence staining. We found a higher 
expression of CD38 in HepG2 tumors than 
Huh7 tumor tissues (Figure 5). This data also 
demonstrated that there is a correlation 
between CD38 expression and tumor uptakes, 
and that the 64Cu-NOTA-daratumumab can be 
used to visualize non-invasively CD38 in HepG2 
tumor tissue.

Figure 3. (A) PET maximum intensity projection (MIP) images of HepG2 and Huh7 lymphoma tumor-bearing models 
from 6 to 48 h post-injection of 64Cu-NOTA-daratumumab (DTZ-64Cu). Quantitative results of PET imaging in tumor 
(B), heart (C), liver (D), spleen (E) and kidney (F) after injection of 64Cu-NOTA-daratumumab or 64Cu-NOTA-IgG in 
HepG2 and Huh7 liver tumor models. n=4 per group. 
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Discussion

Previous research has shown that CD38 is a 
simple and clinically useful biomarker to diag-
nose chronic lymphocytic leukemia [25]. How- 
ever, its association with HCC is still unclear. In 
this study, we developed a molecular imaging 
probe to noninvasively detect CD38 expression 
in HCC in vivo. 64Cu-NOTA-daratumumab was 
prepared using daratumumab, labeled with a 
radionuclide (64Cu) and was detected by PET 
imaging. Importantly, our data demonstrated 

sion in lung cancer murine models [32] or B-cell 
lymphoma [16]. In order to expand on our previ-
ous research, 64Cu-NOTA-daratumumab was 
used for evaluating CD38+ HepG2 liver cells. 
Our data also demonstrated that the higher 
uptake of 64Cu-NOTA-daratumumab was found 
in CD38+ HepG2 liver tumor than Huh7 liver 
tumor, suggesting the potential of clinical appli-
cation for 64Cu-NOTA-daratumumab.

CD38, as transmembrane protein, is also 
expressed in many hematopoietic lineages 

Figure 4. Biodistribution results at 48 h post-injection of 64Cu-NOTA-
daratumumab or 64Cu-NOTA-IgG. HepG2 tumors displayed significant-
ly higher uptake than Huh7 tumors and the non-specific IgG group. 
Relatively high uptake was observed in blood and blood-rich organs, 
such as heart. **P < 0.01; n=4.

Figure 5. Immunofluorescence staining of tumor tissue sections. 
HepG2 tumors displayed a high CD38 expression (Green) on the cell 
surface. Nuclei were stained with DAPI (Blue), Scale bar: 10 μm.

that 64Cu-NOTA-daratumumab is an 
effective PET tracer for the non-inva-
sive evaluation of CD38 expression 
in CD38-positive liver tumor.

Common diagnostic tools, such as 
X-ray, low-dose whole-body comput-
ed tomography (WB-CT) and MRI, are 
effective ways to detect of myeloma 
[26, 27], but these methods cannot 
show molecular changes of the tar-
gets. The immune-phenotypic and 
polymerase chain reaction (PCR)-ba- 
sed molecular techniques are effec-
tive tools for CD38 detection in 
myeloma [16, 28], but they are inva-
sive. Our study showed the ability of 
64Cu-NOTA-daratumumab to help vi- 
sualize the specific expression of 
CD38 in HepG2 liver tumor models 
by PET. This immune-PET imaging 
probe provided a non-invasive meth-
od for detecting the CD38+ HCC 
tumor model. 

A previous study had demonstrated 
that the uptake of PET tracers, such 
as 18F-FDG [29] or 99mTc-methoxyiso-
butylisonitrile [30], was related to 
the level of CD38 expression in some 
multiple myeloma (MM) clinical stud-
ies. However, the quantitative analy-
sis of CD38 expression is still inva-
sive. Therefore, the development of 
effective tracking agents for CD38 
has been a focus in clinical research. 
Importantly, clinic results have also 
shown the great potential of daratu-
mumab for imaging research [31]. In 
addition, our previous studies dem-
onstrated that 89Zr-labeled daratu-
mumab was safe and well-tolerated 
method for imaging of CD38 expres-
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[33]. In addition, it also widely distributed in dif-
ferent tissues and performs receptor function 
[34]. In some diseases, there is an increased 
expression of CD38, such as: rheumatoid arth- 
ritis synovial tissues [35], systemic lupus ery-
thematosus [36], and liver transplantation re- 
jection [37]. As an immune checkpoint protein, 
CD38 plays important roles on tumor cell 
escape from PD-1/PD-L1 blockade [38]. There- 
fore, immunoPET imaging of CD38 will provide 
insight into patient-specific evaluation of CD38 
expression non-invasively in various CD38-re- 
lated diseases. In this study, 64Cu-NOTA-dara- 
tumumab provided an excellent method to mo- 
nitor CD38 expression after CD38-targeted tre- 
atment.

CD38 therapies have shown their clinical poten-
tial to improve efficacy for patients with cancer 
[38, 39]. However, only a fraction of patients 
got long-term benefit, and extensive efforts are 
ongoing to understand the underlying mecha-
nisms of CD38 expression and their relation-
ship to the long-term benefit of CD38 therapy. 
The ability to track biomarkers effectively for 
immunotherapy response prediction or CD38+ 
related diseases identification is a key goal for 
the clinical use of CD38 targeting vectors for 
diagnosis and combinational therapies. The 
excellent efficacy in patients treated with dara-
tumumab enhanced the interest in immuno-
therapy of CD38 combined with radiation treat-
ment. Here in the study, 64Cu-NOTA-daratumu- 
mab could provide a simple method for evaluat-
ing the response of anti-CD38 treatment, which 
might yield potential clinical application in the 
future.
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