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ABSTRACT  The best-known appetite-regulating factors identified in rodents 
are leptin, an appetite inhibitor, and ghrelin, an appetite stimulator. Rare cas-
es of loss-of-functions mutations affecting leptin and its receptor, as well as 
polymorphisms concerning ghrelin and its receptor, have been documented in 
human obesity, apparently validating the relevance of leptin and ghrelin for 
human physiology. Paradoxically, however, the overwhelming majority of 
obese individuals manifest high leptin and low ghrelin plasma levels, suggest-
ing that both factors are not directly disease-relevant. We recently discovered 
that acyl-CoA-binding protein (ACBP), also known as diazepam-binding inhibi-
tor (DBI), acts as an efficient lipogenic and appetite stimulator in mice. In-
deed, in response to starvation, ACBP/DBI is released from tissues in an au-
tophagy-dependent fashion and increases in the plasma. Intravenous injec-
tion of ACBP/DBI stimulates feeding behavior through a reduction of circulat-
ing glucose levels, and consequent activation of orexigenic neurons in the 
hypothalamus. In contrast, neutralization of ACBP/DBI abolishes the hyper-
phagia observed after starvation of mice. Of note, ACBP/DBI is increased in 
the plasma of obese persons and mice, pointing to a convergence (rather than 
divergence) between its role in appetite stimulation and human obesity. 
Based on our results, we postulate a novel ‘hunger reflex’ in which starvation 
induces a surge in extracellular ACBP/DBI, which in turn stimulates feeding 
behavior. Thus, ACBP/DBI might be the elusive ‘hunger factor’ that explains 
increased food uptake in obesity. 
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Overweight has beaten undernutrition as the most fre-
quent pathological state throughout the world, affecting 
close to 25% of the adult population. This has severe impli-
cations for global health, given that obesity is the major 
risk factor for most if not all non-communicable diseases, 
including the entire spectrum of cardiovascular, neoplastic, 
metabolic and neurodegenerative diseases. Among the 
G20 countries, the US is the uncontested leader (adult 
obesity rate ~36%) followed by countries with a rate of 30-
35% (Saudi Arabia, Turkey), a large group of countries with 

a rate of 20-30% (Argentina, Australia, Brazil, Canada, 
France, Germany, Mexico, Russia, South Africa, United 
Kingdom), one European Country that is just undercutting 
20% (Italy) and a group of Asian Countries with obesity 
rates well under 10% (China, India, Indonesia, Japan, South 
Korea). These numbers (http://worldpopulationrev 
iew.com) eloquently underscore the cause of the obesity 
pandemic, which is the Western lifestyle characterized by 
excessive consumption of calories (and in particular carbo-
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hydrates and ultra-processed food) coupled to sedentarism, 
as well as the failure of public health education [1-4].  

In spite of the extremely high prevalence of obesity, 
multiple studies have been designed to define genetically 
determined ‘risk factors’ that would explain why only one 
third of the population reaches a body mass index (BMI) 
>30 [5-7]. Such studies were spurred by the discovery of 
leptin, the satiety hormone. Loss-of-function mutation of 
leptin in mice causes hyperphagy and obesity (in Ob/Ob 
mice), as does that of its receptor (in Db/Db mice) [8, 9]. 
Later exceptionally rare cases of human obesity with muta-
tions in the genes coding for leptin or its receptor were 
described [10, 11]. However, the vast majority of obese 
patients exhibit an increase in circulating leptin levels (per-
haps as a failing homeostatic mechanism in which leptin 
levels are upregulated yet fail to tame appetite), meaning 
that leptin deficiency is not a major pathogenic factor in 
obesity [12-14]. Other studies have led to the discovery of 
a major appetite-stimulatory factor, ghrelin, in rodents [15]. 
However, obese patients exhibit a decrease in circulating 
ghrelin levels (again, likely as a failing homeostatic mecha-
nism), indicating that excessive ghrelin cannot be the cause 
of human obesity [16, 17]. Moreover, in patients with ano-
rexia nervosa, ghrelin levels are paradoxically high [18, 19], 
while leptin levels are paradoxically low [20, 21]. These 
results indicate that major appetite control circuitries dis-
covered in mice cannot be pharmacologically manipulated 
to prevent or treat human eating disorders.  

In eukaryotes, autophagy is the phylogenetically most 
ancient response to dwindling nutrient resources, allowing 
cells and organisms to sequester and to digest non-
essential macromolecules contained in the cytoplasm [22, 
23]. Continuous or periodic stimulation of autophagy by 
caloric restriction or intermittent fasting, respectively, im-
proves the fitness of model organisms ranging from yeast 
to primates [24-28]. Indeed, autophagy is the mechanisms 
through which constant or periodic limitations in food ac-
cess increases the healthspan and lifespan of model organ-

isms [29-31]. Caloric excess suppresses autophagy, thereby 
abolishing an important cytoplasmic recycling mechanism, 
favoring the storage of excessive lipid in a variety of cell 
types, reducing cellular and organismal fitness, and likely 
precipitating the manifestation of age-related diseases, 
which are the ‘co-morbidities’ of obesity [32, 33]. Indeed, 
obesity is linked to a state of autophagic suppression [34] 
and autophagy induction by pharmacologic manipulations 
has anti-obesity effects [35], suggesting that autophagy 
inhibition is causally involved in the pathogenic cascade 
that leads to supraphysiological adiposity [33, 36].  

Intrigued by these insights, we have been attempting 
to develop ‘caloric restriction mimetics’ (CRMs), i.e. phar-
macological agents that mimic the biochemical effects of 
caloric restriction [37-39]. Nutrient deprivation causes au-
tophagy induction through the depletion of the cytosolic 
pool of acetyl coenzyme A (AcCoA), resulting in deacetyla-
tion of cytoplasmic proteins (including a number of pro-
teins involved in the regulation and execution of autopha-
gy), thereby stimulating autophagic flux [40, 41]. CRMs 
mimic the effect of caloric restriction because they inhibit 
enzymes that generate AcCoA (such as ATP citrate lyase) or 
that use AcCoA for protein acetylation (such as the EP300 
acetyltransferase) or, alternatively, stimulate deacetylases 
(such as sirtuin 1), resulting in autophagy induction [38, 39]. 
The collection of CRMs includes several compounds reput-
ed for their capacity to extend healthspan and/or lifespan 
such as aspirin [42], chalcones [43], resveratrol [44] and 
spermidine [30, 45]. This latter agent is a natural polyam-
ine present in food items. Epidemiological studies suggest 
that ingestion of high levels of spermidine reduces overall 
mortality as well as disease-specific mortality from cancer 
and cardiovascular disorders [46-48], supporting prior evi-
dence in yeast, nematodes, fruit flies and mice that sper-
midine delays age-associated disease and death [30, 45].  

Given that autophagy seems to antagonize obesity-
associated disease pathogenesis [35, 49], we searched for 
novel ways to stimulate this process. Back in 2010, several 

FIGURE 1: Effects of recombinant 
ACBP/DBI in mice. Metabolic effects 
detailed after intravenous injection of 
recombinant ACBP/DBI (recACBP/DBI) 
protein, including an increase of lipo-
genesis, food intake and consequent 
adiposity and decrease of autophagy, 
glycemia and fatty acid (FA) oxidation. 
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groups reported that fungal species can release one partic-
ular protein, acyl-coenzyme A binding protein (ACBP, also 
known as diazepam-binding inhibitor, DBI) in an autopha-
gy-dependent fashion [50-52]. Based on the fact that cell 
stress is usually communicated to other cells, a phenome-
non that can be referred to ‘inside-outside communication’ 
[53], we wondered whether extracellular ACBP/DBI protein 
might be a target for modulating autophagy or even impact 
on pathogenic processes. In mice and humans, ACBP/DBI is 
ubiquitously expressed (though particularly high in adipo-
cytes, https://www.proteinatlas.org/). As indicated by its 
dual name, ACBP/DBI has two functions, as an intracellular 
buffer and transporter for acyl coenzyme A, and as a 
modulator of benzodiazepine receptors (and in particular 
the gamma-aminobutyric acid (GABA) A receptor) [54-56]. 
Intriguingly, we found that any type of human or murine 
cell released ACBP/DBI upon starvation (which is the most 
physiological stimulus of autophagy) in vitro and in vivo 
through a process that can be inhibited by deletion of es-
sential autophagy genes or by pharmacological autophagy 
inhibitors [57]. Thus, the autophagy-associated release of 
intracellular ACBP/DBI into the extracellular space appears 
to be a general, phylogenetically conserved phenomenon 
that applies to both fungal and mammalian systems.  

We then set out to determine the effects of ACBP/DBI 
on autophagy and general metabolism. Interestingly, in 
human and mouse cell cultures the depletion of intracellu-
lar and extracellular ACBP/DBI do not have the same ef-
fects on autophagy. Depletion of intracellular ACBP/DBI by 
small interfering RNAs (siRNAs) inhibits autophagy, while 
neutralization of extracellular ACBP/DBI with suitable anti-
bodies stimulates autophagy [57]. These results may be 
interpreted to mean that the autophagy-associated secre-
tion of ACBP/DBI is involved in a negative feedback loop 
limiting autophagy. In mice, fasting was associated with an 
increase in the plasma concentration of ACBP/DBI, and 
intravenous injection of recombinant ACBP/DBI protein 
inhibited starvation-induced autophagy, while ACBP/DBI 

neutralization (by means of an intraperitoneally injected 
antibody) enhanced autophagy [57].  

Intravenous injection of recombinant ACBP/DBI protein 
had multiple effects on metabolism (Fig. 1) including a rap-
id (30 min) increase in the expression of the glucose trans-
porter GLUT1 on hepatocytes. This was accompanied by a 
reduction in plasma glucose levels that could be prevented 
by GLUT1 inhibitors. Experiments involving isotope-
labelled glucose revealed the presence of labeled-glucose 
in the adipose tissue a few hours after ACBP/DBI injection. 
ACBP/DBI concomitantly inhibited fatty acid oxidation. 
Most importantly, mice injected with ACBP/DBI manifested 
a close-to-immediate (30 min) hyperphagic response that 
was accompanied by the activation of orexigenic neurons 
in the hypothalamus. When glucose levels were main-
tained in an artificial fashion (by injection of glucose into 
the peritoneal cavity) both hyperphagy and the activation 
of orexigenic neurons were prevented, suggesting that the 
effects of ACBP/DBI on central appetite control were sec-
ondary to its metabolic effects on peripheral tissues. Of 
note, in this time frame ACBP/DBI injection did not affect 
insulin or ghrelin levels. Of note, sustained overexpression 
of a transgene coding for ACBP/DBI in hepatocytes was 
sufficient to cause a significant increase in weight gain 
coupled to an augmentation of perigonadal and visceral 
adiposity [57].  

Altogether, the aforementioned data suggest that 
ACBP/DBI is an orexigenic and obesogenic factor. In accord 
with this interpretation, neutralization of ACBP/DBI had 
anorexigenic and lipolytic effects (Fig. 2). Thus, the hyper-
phagic response of mice that had been starved for 24 
hours (which causes ~10% weight loss) was largely abol-
ished by intraperitoneal injection of neutralizing ACBP/DBI 
antibodies, which, in parallel, prevented the reduction of 
glycemia that normally accompanies a 24-hour fasting pe-
riod, caused a decrease in circulating insulin levels, and 
caused the activation of anorexigenic neurons in the hypo-
thalamus. In mice, ACBP/DBI neutralization led to in-

FIGURE 2: ACBP/DBI neutralization 
and its effects in mice. Metabolic 
effects observed after intraperitoneal 
injection of neutralizing anti-
ACBP/DBI antibody, including an 
increase of lipolysis, glycemia and 
autophagy and decrease of lipogene-
sis, food intake, hepatosteatosis and 
body weight. 

https://www.proteinatlas.org/
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creased lipolysis from white adipose tissue, an increase in 
gluconeogenesis from glycerol (which may explain the 
maintenance of glucose levels), as well as an important 
raise in fatty acid oxidation. ACBP/DBI neutralization could 
be achieved for longer periods by a specific immunization 
protocol designed to break autotolerance and to elicit au-
toantibodies against ACBP/DBI. The surge in neutralizing 
ACBP/DBI autoantibodies led to a reduction in weight gain 
induced by high-fat diet (in normal mice) or by feeding a 
normal diet to leptin-deficient (Ob/Ob) mice. These effects 
were accompanied by a reduction in the abundance of 
white adipose tissue, a reduction in the median diameter 
of adipocytes, browning of fat, amelioration of the glucose 
tolerance test, as well as a reduction of hepatosteatosis. Of 
note, an inducible whole-body knockout of ACBP/DBI reca-
pitulated many of these features, suggesting that the pre-
dominant effect of both (intracellular + extracellular) pools 
of ACBP/DBI is indeed orexigenic and obesogenic [57]. In a 
plausible scenario, ACBP/DBI would be involved in a ‘hun-
ger reflex’ in which starvation leads to a transient, autoph-
agy-dependent release of ACBP/DBI from tissues, and ex-
tracellular ACBP/DBI then causes metabolic changes that 
ultimately stimulate feeding behavior, favor lipo-anabolic 
reactions and inhibit catabolic pathways including autoph-
agy (Fig. 3).  

We also examined the levels of ACBP/DBI expression in 
patients with anorexia and obesity. Of note, we found a 
high (Spearman r>0.8) positive correlation between the 
body mass index and plasma ACBP/DBI levels across sever-
al patient cohorts. Thus, anorexic patients manifested sub-
normal ACBP/DBI plasma concentrations, while obese indi-
viduals were characterized by supranormal ACBP/DBI. Af-
ter successful bariatric surgery ACBP/DBI levels decline 
when patients lose weight, but increase again when they 
relapse. Dietary interventions that cause transient weight 

loss also temporarily reduce ACBP/DBI mRNA expression in 
the periumbilical fat tissue [57]. In mice, we observed a 
similar trend. Murine obesity was associated with higher 
ACBP/DBI plasma concentrations, as well as with increased 
ACBP/DBI mRNA and protein expression in the liver and 
white adipose tissue. In obese humans, we found a positive 
association between, on one hand, plasma ACBP/DBI and, 
on the other hand, fasting insulin levels as well as aspar-
tate transaminases (AST). Thus, ACBP/DBI correlates with 
laboratory parameters indicative of insulin-resistant (type 
2) diabetes and liver damage [57]. However, such clinical 
observations do not allow to establish any cause-effect 
relationships beyond these correlations.  

Altogether, these results support the notion that 
ACBP/DBI has not only an obesogenic function in mice but 
that it is indeed increased in obesity in humans. Thus, at 
difference with leptin and ghrelin, ACBP/DBI exhibits a 
concordant (rather than discordant) behavior in mice and 
in humans with eating disorders (Table 1). At this stage, we 
postulate that ACBP/DBI may well be the elusive ‘hunger 
factor’ that is elevated in obesity. Obviously, clinical studies 
must be designed to neutralize ACBP/DBI or its receptor 
and to validate this assumption.   
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