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Abstract

Most time series data mining algorithms use similarity search as a core subroutine, and thus the 

time taken for similarity search is the bottleneck for virtually all time series data mining 

algorithms, including classification, clustering, motif discovery, anomaly detection, and so on. The 

difficulty of scaling a search to large datasets explains to a great extent why most academic work 

on time series data mining has plateaued at considering a few millions of time series objects, while 

much of industry and science sits on billions of time series objects waiting to be explored. In this 

work we show that by using a combination of four novel ideas we can search and mine massive 

time series for the first time. We demonstrate the following unintuitive fact: in large datasets we 

can exactly search under Dynamic Time Warping (DTW) much more quickly than the current 

state-of-the-art Euclidean distance search algorithms. We demonstrate our work on the largest set 

of time series experiments ever attempted. In particular, the largest dataset we consider is larger 

than the combined size of all of the time series datasets considered in all data mining papers ever 

published. We explain how our ideas allow us to solve higher-level time series data mining 

problems such as motif discovery and clustering at scales that would otherwise be untenable. 

Moreover, we show how our ideas allow us to efficiently support the uniform scaling distance 
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measure, a measure whose utility seems to be underappreciated, but which we demonstrate here. 

In addition to mining massive datasets with up to one trillion datapoints, we will show that our 

ideas also have implications for real-time monitoring of data streams, allowing us to handle much 

faster arrival rates and/or use cheaper and lower powered devices than are currently possible.

General Terms:

Algorithms; Experimentation

Additional Key Words and Phrases:

Time series; similarity search; lower bounds

1. INTRODUCTION

Time series data is pervasive across almost all human endeavors, including medicine, 

finance, science, and entertainment. As such, it is hardly surprising that time series data 

mining has attracted significant attention and research effort. Most time series data mining 

algorithms require similarity comparisons as a subroutine, and in spite of the consideration 

of dozens of alternatives, there is increasing evidence that the classic Dynamic Time 

Warping (DTW) measure is the best measure in most domains [Ding et al. 2008].

It is difficult to overstate the ubiquity of DTW. It has been used in robotics, medicine 

[Chadwick et al. 2011], biometrics, music/speech processing [Adams et al. 2005; Muller 

2009; Zhang and Glass 2011], climatology, aviation, gesture recognition [Alon et al. 2009; 

Wobbrock et al. 2007], user interfaces [Hsiao et al. 2005; Laerhoven et al. 2009; Pressly 

2008; Wobbrock et al. 2007], industrial processing, cryptanalysis [Dupasquier and Burschka 

2011], mining of historical manuscripts [Huber-Märk et al. 2011], geology, astronomy 

[Keogh et al. 2009; Rebbapragada et al. 2009], space exploration, wildlife monitoring, and 

so on.

As ubiquitous as DTW is, we believe that there are thousands of research efforts that would 

like to use DTW, but find it too computationally expensive. For example, consider the 

following: “Ideally, dynamic time warping would be used to achieve this, but due to time 

constraints… ” [Chadwick et al. 2011]. Likewise, [Alon et al. 2009] bemoans DTW is “still 

too slow for gesture recognition systems,” and [Adams et al. 2005] notes, even “a 30 fold 

speed increase may not be sufficient for scaling DTW methods to truly massive databases.” 

As we shall show, our subsequence search suite of four novel ideas (called the UCR suite) 

removes all of these objections. We can reproduce all of the experiments in all of these 

papers in well under a second. We make an additional claim for our UCR suite that is almost 

certainly true, but very hard to prove, given the variability in how search results are 

presented in the literature. We believe our exact DTW sequential search is much faster than 

any current approximate search or exact indexed search. In a handful of papers the authors 

are explicit enough with their experiments to see this is true. Consider Papapetrou et al. 

[2011], in which the authors introduce a technique that can answer queries of length 1000 

under DTW with 95% accuracy, in a random walk dataset of one million objects in 5.65 
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seconds. We can exactly search this dataset in 3.8 seconds (on a very similar machine). 

Likewise, a recent paper that introduced a novel inner product-based DTW lower bound 

greatly speeds up exact subsequence search for a wordspotting task in speech. The authors 

state: “the new DTW-KNN method takes approximately 2 minutes” [Zhang and Glass 

2011]; however, we can reproduce their results in less than a second. An influential paper on 

gesture recognition on multitouch screens laments that “DTW took 128.26 minutes to run 

the 14,400 tests for a given subject’s 160 gestures” [Wobbrock et al. 2007]. However, we can 

reproduce these results in less than three seconds.

Our goal in this work is not just to demonstrate that we can search massive time series 

datasets more quickly than the current state-of-the-art approach. We also hope to enable the 

community to do higher level analysis of massive datasets by freely providing all of our 

code and data. Moreover, at least some of the four novel ideas we introduce here may have 

implications for problems beyond similarity search and beyond time series. For example, 

other distance measures may benefit from optimizing the order of evaluation in conjunction 

with admissible early termination, an idea we introduce as reordering early abandoning (cf. 

Section 4.2.2). Likewise the idea of cascading lower bounds (cf. Section 4.2.4) may be 

useful for other distance measures that are computationally expensive and have many 

proposed lower bounds of different time complexities/tightnesses. Both the Earth Mover’s 

Distance and the String Edit Distance are tentative examples.

1.1. Millions, Billions, and Trillions, A Discussion of a Scale

Since we search a trillion objects in this work and to our knowledge, such a large dataset has 

never been considered in a data mining/database paper before, we will take the time to 

explicitly discuss this number. By a trillion, we mean the short scale version of the word 

[Guitel 1975], one million million, or 1012, or 1,000,000,000,000.

If we have a single time series T of length one trillion, and we assume it takes eight bytes to 

store each value, it will require 7.2 terabytes to store. If we sample an electrocardiogram at 

256Hz, a trillion datapoints would allow us to record 123 years of data, or every single 

heartbeat of the longest lived human [Whitney 1997].

As large as a trillion is, there are thousands of research labs and commercial enterprises that 

have this much data. For example, many research hospitals have trillions of datapoints of 

EEG data, NASA Ames has tens of trillions of datapoints of telemetry of domestic flights, 

the Tennessee Valley Authority (a power company) records a trillion datapoints every four 

months, and so on.

1.2. Explicit Statement of Our Assumptions

Our work is predicated on several assumptions that we will now enumerate and justify.

1.2.1. Time Series Subsequences Must Be Normalized.—In order to make 

meaningful comparisons between two time series, both must be normalized. We define 

normalization more formally later, but for now it is sufficient to consider it as the process of 

making two time series commensurate by transforming them to some canonical scale. While 

there are several such transformations possible, the vast majority of the literature uses Z-
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normalization. Z-normalization shifts and scales the time series such that the mean is zero 

and the standard deviation is one. In Matlab, this can be achieved by the single line:

T = (T − mean(T))/std(T)

It is critical to avoid a common misunderstanding. We must normalize each subsequence 

before making a comparison; it is not sufficient to normalize the entire dataset, because then 

when individual subsequences are extracted, they will not be normalized.

While the need for normalization may seem intuitive, and was empirically demonstrated a 

decade ago in a widely cited paper [Keogh and Kasetty 2003], many research efforts do not 

seem to realize this. This is critical because some speedup techniques only work on the 

unnormalized data; thus the contributions of these research efforts may be largely nullified 

[Chen et al. 2009; Papapetrou et al. 2011]. To demonstrate the necessity of normalization we 

will begin with an intuitive and visual example, before considering some objective 

experiments.

In Figure 1(left) we show two examples of snippets of electrocardiograms (ECG) of 

individuals. Note that the mean of the trace labeled chf11 drifts up and down, a commonly 

observed phenomenon known as wandering baseline. This wandering baseline may be 

caused by patient movement, dirty lead wires/electrodes, loose electrodes, and so on. Note, 

however, that it does not have any medical significance; it is considered to be an artifact (in 

electrocardiography, an artifact is used to indicate something that is not “heart-made”). In 

Figure 1(right) we show what the individual heartbeats look like when we extract them 

without any attempt to normalize them.

Note that the two individuals’ beats in Figure 1(right) would be trivially easy to classify or 

cluster by eye. How would Euclidean distance do? To test this, in Figure 2 we performed a 

single-linkage hierarchical clustering of some randomly chosen exemplars from both 

individuals. We consider both the normalized and the nonnormalized versions of the data.

The results are very clear. The similarity measurements of unnormalized data, when used for 

clustering, give the wrong results, on a problem that could not be simpler. In contrast, 

working with the normalized data gives the correct results. Note that this experiment is not 

contrived in any way. Using DTW does not help, a different random subset of heartbeats 

does not help, and choosing other individuals’ ECG traces will not help, as virtually all ECG 

traces have wandering baselines. In fact, the two examples shown were chosen because they 

have relatively little wander, and are thus easer to plot. In the domain of ECG, we must 

normalize the data.

To show more quantitatively the effect of not normalizing data, let us consider the classic 

Gun/NoGun classification problem which has been in the public domain for nearly a decade. 

The data, which as shown in Figure 3(center) is extracted from a video sequence, was Z-

normalized. The problem has a 50/150 train/test split and a DTW one-nearest-neighbor 

classifier achieves an error rate of 0.087.
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Suppose the data had not been normalized. As shown in Figure 3(left) and Figure 3(right), 

we can simulate this by adding a tiny amount of scaling/offset to the original video. In the 

first case we randomly change the offset of each time series by ±10%, and in the second case 

we randomly change the scale (amplitude) by ±10%. The new one-nearest-neighbor 

classifier error rates, averaged over 1000 runs, are 0.326 and 0.193, respectively, 

significantly worse than the normalized case.

It is important to recognize that these tiny changes we made are completely dwarfed by 

changes we might expect to see in a real-world deployment. The apparent scale can be 

changed by the camera zooming, by the actor standing a little closer to the camera, or by an 

actor of a different height. The apparent offset can be changed by this much by the camera 

tilt angle, or even by the actor wearing different shoes.

While we did this experiment on a visually intuitive example, all forty-five datasets in the 

UCR archive increase their error rate by at least 50% if we vary the offset and scale by just 

± 5%.

1.2.2. Dynamic Time Warping Is the Best Measure.—It has been suggested many 

times in the literature that the problem of time series data mining scalability is only due to 

DTW’s oft-touted lethargy, and that we could solve this problem by using some other 

distance measure. As we shall later show, this is not the case. In fact, as we shall 

demonstrate, our optimized DTW search is much faster than all current Euclidean distance 

searches. Nevertheless, the question remains, is DTW the right measure to speed up? Dozens 

of alternative measures have been suggested. However, recent empirical evidence strongly 

suggests that none of these alternatives routinely beats DTW. When put to the test on a 

collection of forty datasets, the very best of these measures are sometimes a little better than 

DTW and sometimes a little worse [Ding et al. 2008]. In general, the results are consistent 

with these measures being minor variants, or flavors, of DTW (although they are not 

typically presented this way). In summary, after an exhaustive literature search of more than 

800 papers [Ding et al. 2008], we are not aware of any distance measure that has been shown 

to outperform DTW by a statistically significant amount on reproducible experiments [Ding 

et al. 2008; Keogh and Kasetty 2003]. Thus, DTW is the measure to optimize (recall that 

DTW subsumes Euclidean distance as a special case).

1.2.3. Arbitrary Query Lengths Cannot Be Indexed.—If we know the length of 

queries ahead of time we can mitigate at least some of the intractability of search by 

indexing the data [Assent et al. 2008; Fu et al. 2008; Shieh and Keogh 2008]. Although to 

our knowledge noone has built an index for a trillion real-valued objects (Google only 

indexed a trillion Web pages as recently as 2008), perhaps this could be done.

However, what if we do not know the length of the queries in advance? At least two groups 

have suggested techniques to index arbitrary length queries [Kahveci and Singh 2004; Lim 

et al. 2007]. Both methods essentially build multiple indexes of various lengths, and at query 

time search the shorter and longer indexes, interpolating the results to produce the nearest 

neighbor produced by a virtual index of the correct length. This is an interesting idea, but it 

is hard to imagine it is the answer to our problem. Suppose we want to support queries in the 
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range of, say, 16 to 4096. We must build indexes that are not too different in size, say, 

MULTINDEX-LENGTHS ={16, 32,64, …, 1024, 2048, 4096}.1 However, for time series 

data, the index is typically about one-tenth the size of the data [Ding et al. 2008; Kahveci 

and Singh 2004]. Thus, we have doubled the amount of disk space we need. Moreover, if we 

are interested in tackling a trillion data objects, we clearly cannot fit any index in the main 

memory, much less all of them, or any two of them.

There is an underappreciated reason why this problem is so hard; it is an implication of the 

need for normalization. Suppose we have a query Q of length 65, and an index that supports 

queries of length 64. We search the index for Q[1:64] and find that the best match for it has a 

distance of, say, 5.17. What can we say about the best match for the full Q? The answer is 

surprisingly little: 5.17 is neither an upper bound nor a lower bound to the best match for Q. 

This is because we must renormalize the subsequence when moving from Q[1:64] to the full 

Q. If we do not normalize any data, the results are meaningless (Section 1.2.1), and the idea 

might be faster than sequential search. However, if we normalize the data we get so little 

information from indexes of the wrong length that we are no better off than sequential 

search.

In summary, there are no known techniques to support similarity search of arbitrary lengths 

once we have datasets in the billions.

1.2.4. There Exist Data Mining Problems That We Are Willing to Wait Some 
Hours to Answer.—This point is almost self-evident. If a team of entomologists has spent 

three years gathering 0.2 trillion datapoints [Shieh and Keogh 2008], or astronomers have 

spent billions of dollars to launch a satellite to collect one trillion datapoints of star-light 

curve data per day [Keogh et al. 2009], or a hospital charges $34,000 for a daylong EEG 

session to collect 0.3 trillion datapoints (Section 5.2) [Mueen et al. 2011], then it is not 

unreasonable to expect that these groups would be willing to spend hours of CPU time to 

glean knowledge from their data.

2. RELATED WORK

Our review of related work on time series indexing is necessarily superficial, given the vast 

amount of work on the topic and our page limits. Instead, we refer the interested reader to 

two recent papers [Ding et al. 2008; Papapetrou et al. 2011], which have comprehensive 

reviews of existing work. It has now become common (although not yet routine) to see 

papers indexing/mining datasets with millions of objects. For example, Jegou et al. [2010] 

have demonstrated very fast approximate main memory search of 10 million images. 

However, this work and much of the current work that addresses multimillion object datasets 

focus on approximate search, whereas we are only considering exact search here. Moreover, 

we are interested in datasets that are five to six orders of magnitude larger than anything else 

considered in the literature [Ding et al. 2008]. Thus, comparisons to related work are very 

difficult to do meaningfully.

1This collection of sizes is very optimistic. The step size should be at most 100, creating two orders of magnitude space overhead.
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Most techniques for speeding up similarity search exploit the triangular inequality. The idea 

is to precompute the distances between objects in the database and then later at query time 

exploit the fact that if the distance between the query Q and an object Oi in the database is 

calculated, then any object Oj can be pruned from further consideration if |d(Q,Oi) – 

d(Oi,Oj)| is not less than best-so-far. Precomputing and storing all of the distances between 

objects in the database is impractical for large datasets; however, most spatial access 

methods can approximate doing this by grouping the similar objects (typically in Minimum 

Bounding Rectangles (MBRS)) and precomputing only the distances between MBRs. 

Unfortunately, these ideas do not help for DTW, which is not a metric and therefore does not 

obey the triangular inequality. Moreover, it does not help for Euclidean distance unless we 

know the length of the query ahead of time, an assumption we are explicitly avoiding. Thus, 

the vast majority of work on speeding up similarity search for time series (see Ding et al. 

[2008] and the references therein) do not help us.

Finally, we note that DTW is at least superficially similar to string edit distance [Chen and 

Ng 2004; Masek and Paterson 1980]. The reader may wonder if any speedup techniques for 

the latter can help us here. We believe the answer is no. Moving from the discrete to the real-

valued creates unique problems. For example, as we will show, similarity search under DTW 

spends more time Z-normalizing the data than computing the actual DTW; however, there is 

no analogue of Z-normalizing for strings. Moreover, when working with strings one can use 

suffix trees, hashing, equality tests, and a host of other techniques that simply are not 

defined for real-valued data.

3. BACKGROUND AND NOTATION

3.1. Definitions and Notations

We begin by defining the data type of interest: time series.

Definition 1. A Time Series T is an ordered list of real-valued numbers: T= t1,t2,…,tm.

While the source data is one long time series with m datapoints, we ultimately wish to 

compare it to shorter regions called subsequences.

Definition 2. A subsequence Ti,k of a time series T is a shorter time series of length k, which 

starts from position i. Formally, Ti,k = ti, ti+1,.., ti+k−1, 1≤ i ≤ m − k + 1.

Where there is no ambiguity, we may refer to subsequence Ti,k as C, as in a candidate match 

to a query Q. We denote |Q| as n. Moreover, a subsequence normalized to have a mean of 

zero and a standard derivation of one is called a Z-normalized subsequence.

Definition 3. The Euclidean distance (ED) between two Z-normalized subsequences Q and 

C, where |Q|=|C|, is defined as:

ED(Q, C) ∑i = 1
n qi − ci

2 .

We illustrate these definitions in Figure 4.
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The Euclidean distance, which is a one-to-one mapping of the two sequences, can be seen as 

a special case of DTW, which allows a one-to-many alignment, as illustrated in Figure 5.

To align two sequences using DTW, an n-by-n matrix is constructed, with the (ith,jth) 
element of the matrix being the Euclidean distance d(qi, cj) between the points qi and cj.

A warping path P is a contiguous set of matrix elements that defines a mapping between Q 
and C. The tth element of P is defined as pt = (i, j)t, so we have:

P = p1, p2, …, pt, …, pT n ≤ T ≤ 2n − 1.

The warping path that defines the alignment between the two time series is subject to several 

constraints. For example, the warping path must start and finish in diagonally opposite 

corner cells of the matrix, the steps in the warping path are restricted to adjacent cells, and 

the points in the warping path must be monotonically spaced in time. In addition, virtually 

all practitioners using DTW also constrain the warping path in a global sense by limiting 

how far it may stray from the diagonal [Ding et al. 2008; Papapetrou et al. 2011]. A typical 

constraint is the Sakoe-Chiba Band, which states that the warping path cannot deviate more 

than R cells from the diagonal [Ding et al. 2008; Papapetrou et al. 2011; Sakurai et al. 2007].

We are finally in a position to define the problem we wish to solve. For searching one 

nearest neighbor under DTW, given a long time series T, and a user-supplied query Q, where 

m =|T| >> |Q|= n. We wish to find the subsequence Ti:i+n−1, such that DTW(Q, Ti:i+n−1) is 

minimized. In other words:

∃i ∀kDTW Q, Ti: i + n − 1 ≤ DTW Q, Tk:k + n − 1 , 1 ≤ i, k ≤ m − n + 1.

The one nearest neighbor ED search requires just the substitution of ED for DTW. The 

generalizations of one nearest neighbor to both K nearest neighbor and range search are 

trivial, and are omitted for clarity.

4. ALGORITHMS

4.1. Known Optimizations

We begin by discussing previously known optimizations of sequential search under ED 

and/or DTW.

4.1.1. Using the Squared Distance.—Both DTW and ED have a square root 

calculation. However, if we omit this step, it does not change the relative rankings of nearest 

neighbors, since both functions are monotonic and concave. Moreover, the absence of the 

square root function will make later optimizations possible and easier to explain. Note that 

this is only an internal change in the code; the user can still issue range queries with the 

original units, as the code simply internally squares the desired value, does the search, and 

after finding the qualifying objects, takes the square root of the distances for the qualifying 

objects and presents the answers to the user.
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Where there is no ambiguity, we will still use “DTW” and “ED”; however, the reader may 

assume we mean the squared versions of them.

4.1.2. Lower Bounding.—A classic trick to speed up sequential search with an 

expensive distance measure such as DTW is to use a cheap-to-compute lower bound to 

prune off unpromising candidates [Ding et al. 2008; Keogh et al. 2009]. Figure 6 shows two 

such lower bounds, one of which we have modified.

The original definition of LB_Kim also uses the distances between the maximum values from 

both time series and the minimum values between both time series in the lower bound, 

making it O(n). However, for normalized time series, these two extra values tend to be tiny 

so it does not pay to compute them, and ignoring them allows the bound to be O(1), a fact 

we will exploit in the following. The LB_Keogh bound is well-documented elsewhere; for 

brevity we ask the unfamiliar reader to refer to Ding et al. [2008], Fu et al. [2008], and 

Keogh et al. [2009] for a review. However, for completeness we present a brief review. The 

upper envelope U and the lower envelope L of subsequence Q are defined in Keogh and 

Ratanamahatana [2005] as:

Ui = max Qi − r, Qi − r + 1, …, Qi + r
Li = min Qi − r, Qi − r + 1, …, Qi + r ,

where r is the size of the warping window, and the LB_Keogh lower bound is simply the 

distance from the closer of the two envelopes to another subsequence, C.

LBkeogh = ∑
i = 1

n
Ci − Ui

2 if Ci > Ui

Ci − Li
2 if Ci > Li

0 otherwise

.

Since its introduction a decade ago, the LB_Keogh lower bound has been the cornerstone of 

most efforts to scale DTW similarity search [Ding et al. 2008; Fu et al. 2008;Keogh et al. 

2009].

4.1.3. Early Abandoning of ED and LB_Keogh.—During the computation of the 

Euclidean distance or the LB_Keogh lower bound, if we note that the current sum of the 

squared differences between each pair of corresponding datapoints exceeds the best-so-far, 
then we can stop the calculation, secure in the knowledge that the exact distance or lower 

bound, had we calculated it, would have exceeded the best-so-far, as in Figure 7.

This simple idea that one can abandon an unpromising calculation the moment one can be 

sure it could not produce a result better than the best-so-far result has a long tradition in 

machine learning, artificial intelligence and image processing [Bei and Gray 1985; Cheng et 

al. 1984; McNames 2000].
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4.1.4. Early Abandoning of DTW.—If we have computed a full LB_Keogh lower 

bound, but we find that we must calculate the full DTW, there is still one trick left up our 

sleeves. We can incrementally compute the DTW from left to right, and as we incrementally 

calculate from 1 to K, we can sum the partial DTW accumulation with the LB_Keogh 

contribution from K + 1 to n. Figure 8 illustrates this idea.

This sum of minj(DTW(Q1:K, C1:K+j)) + LB_Keogh(QK+r+1:n, CK+r+1:n) is a lower bound to 

the true DTW distance (DTW(Q1:n, C1:n)), where r is the size of the warping windows. 

Moreover, with careful implementation, the overhead costs are negligible. If at any time this 

lower bound exceeds the best-so-far distance we can admissibly stop the calculation and 

prune this C.

4.1.5. Exploiting Multicores.—It is important to note that while we can get essentially 

linear speedup using multicores, the software improvements we will present in the next 

section completely dwarf the improvements gained by multicores. As a concrete example, a 

recent paper shows that a search of a time series of length 421,322 under DTW takes “3 

hours and 2 minutes on a single core. The (8-core version) was able to complete the 

computation in 23 minutes” [Srikanthan et al. 2011]. However, using our ideas, we can 

search a dataset of this size in just under one second on a single core. Nevertheless, as it is 

simple to port to the now ubiquitous multicores, we consider them in the following.

4.2. Novel Optimizations: The UCR Suite

We are finally in a position to introduce our four original optimizations of search under ED 

and/or DTW.

4.2.1. Early Abandoning Z-Normalization.—To the best of our knowledge, noone 

has ever considered optimizing the normalization step. This is surprising, since it takes only 

slightly longer than computing the Euclidean distance itself.

Our insight here is that we can interleave the early abandoning calculations of Euclidean 

distance (or LB_Keogh) with the online Z-normalization. In other words, as we are 

incrementally computing the Z-normalization, we can also incrementally compute the 

Euclidean distance (or LB_Keogh) of the same datapoint. Thus, if we can early abandon, we 

are pruning not just distance calculation steps as in Section 4.1.3, but also normalization 

steps.

The fact that the mean and standard deviation of a stream of numbers can be incrementally 

calculated and maintained has long been exploited in computer science [Chan et al. 1983; 

Ling 1974]. Such algorithms are sometimes called “one pass” algorithms. However, to our 

knowledge, this is the first work to show that we can interleave early abandoning 

calculations with the incremental mean and standard deviation calculations.

Recall that the mean and standard deviation of a sample can be computed from the sums of 

the values and their squares. Therefore, it takes only one scan through the sample to 

compute the mean and standard deviation, using the following equations.
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μ = 1
m ∑ xi σ2 = 1

m ∑ xi
2 − μ2 .

In similarity search, every subsequence needs to be normalized before it is compared to the 

query (Section 1.2.1). The mean of the subsequence can be obtained by keeping two running 

sums of the long time series, which have a lag of exactly m values. The sum of squares of 

the subsequence can be similarly computed. The formulas are given here for clarity.

μ = 1
m ∑

i = 1

k
xi − ∑

i = 1

k − m
xi σ2 = 1

m ∑
i = 1

k
xi
2 − ∑

i = 1

k − m
xi
2 − μ2

The high-level outline of the algorithm is presented in Table I.

Note the online normalization in line 11 of the algorithm, which allows the early abandoning 

of the distance computation in addition to the normalization. In the algorithm, we use a 

circular buffer (X) to store the current subsequence being compared with the query Q.

One potential problem of this method of maintaining the statistics is the accumulation of the 

floating-point error [Goldberg 1991]. The effect of such error accumulation is more 

profound if all of the numbers are positive, as in our case with the sum of squares. With the 

“mere” millions of datapoints, which the rest of the community has dealt with, this effect is 

negligible; however, when dealing with billions of datapoints it will affect the answer. Our 

simple solution is that once every one million subsequences, we force a complete Z-

normalization to flush out any accumulated error.

4.2.2. Reordering Early Abandoning.—In the previous section, we saw that the idea 

of early abandoning discussed in Section 4.1.3 can be generalized to the Z-normalization 

step. In both cases, we assumed that we incrementally compute the distance/normalization 

from left to right. Is there a better ordering?

Consider Figure 9(left), which shows the normal left-to-right ordering in which the early 

abandoning calculation proceeds. In this case nine of the thirty-two calculations were 

performed before the accumulated distance exceeded b and we could abandon. In contrast, 

Figure 9(right) uses a different ordering and was able to abandon earlier, with just five of the 

thirty-two calculations.

This example shows what is obvious: on a query-by-query basis, different orderings produce 

different speedups. However, we want to know if there is a universal optimal ordering that 

we can compute in advance. This seems like a difficult question because there are n! 

possible orderings to consider.

We conjecture that the universal optimal ordering is to sort the indices based on the absolute 

values of the Z-normalized Q. The intuition behind this idea is that the value at Qi will be 

compared to many Ci’s during a search. However, for subsequence search, with Z-

normalized candidates, the distribution of many Ci’s will be Gaussian, with a mean of zero. 
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Thus, the sections of the query that are farthest from the mean will on average have the 

largest contributions to the distance measure.

To see if our conjecture is true we took the heartbeat discussed in Section 5.4 and computed 

its full Euclidean distance to a million other randomly chosen ECG sequences. With the 

conceit of hindsight we computed what the best ordering would have been. For this we 

simply take each Ci and sort them, largest first, by the sum of their contributions to the 

Euclidean distance. We compared this empirically optimal ordering with our predicted 

ordering (sorting the indices on the absolute values of Q) and found the rank correlation is 

0.999. Note that we can use this trick for both ED and LB_Keogh, and we can use it in 

conjunction with the early abandoning Z-normalization technique (Section 4.2.1). The proof 

of the optimal ordering for ED is provided in Section 5.6.

4.2.3. Reversing the Query/Data Role in LB_Keogh.—Normally the LB_Keogh lower 

bound discussed in Section 4.1.2 builds the envelope around the query, a situation we denote 

LB_KeoghEQ for concreteness, and illustrate in Figure 10(left). This only needs to be done 

once, and thus saves the time and space overhead that we would need if we built the 

envelope around each candidate instead, a situation we denote LB_KeoghEC.

However, as we show in the next section, we can selectively calculate LB_KeoghEC in a just-

in-time fashion, only if all other lower bounds fail to prune. This removes space overhead, 

and as we will see, the time overhead pays for itself by pruning more full DTW calculations. 

Note that in general, LB_KeoghEQ ≠ LB_KeoghEC, and that on average each one is larger 

about half the time.

4.2.4. Cascading Lower Bounds.—One of the most useful ways to speed up time 

series similarity search is to use lower bounds to admissibly prune off unpromising 

candidates [Ding et al. 2008; Fu et al. 2008]. This has led to a flurry of research on lower 

bounds, with at least eighteen proposed for DTW [Adams et al. 2005; Ding et al. 2008; 

Keogh et al. 2009; Kim et al. 2001; Sakurai et al. 2005; Yi et al. 1998; Zhang and Glass 

2011; Zinke and Mayer 2006]. In general, it is difficult to state definitively which is the best 

bound to use, since there is a tradeoff between the tightness of the lower bound and how fast 

it is to compute. Moreover, different datasets and even different queries can produce slightly 

different results. However, as a starting point, we implemented all published lower bounds 

and tested them on fifty different datasets from the UCR archive, plotting the (slightly 

idealized for visual clarity) results in Figure 11. Following the literature [Keogh et al. 2009], 

we measured the tightness of each lower bound as LB(A, B)/DTW(A, B) over 100,000 

randomly sampled subsequences A and B of length 256.

The reader will appreciate that a necessary condition for a lower bound to be useful is for it 

to appear on the “skyline” shown with a dashed line; otherwise there exists a faster-to-

compute bound that is at least as tight, and we should use that instead. Note that the early 

abandoning DTW discussed in Section 4.1.4 is a special case in that it produces a spectrum 

of bounds, as at every stage of computation it is incrementally computing the DTW until the 

last computation gives the final true DTW distance.
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Which of the lower bounds on the skyline should we use? Our insight is that we should use 

all of them in a cascade. We first use the O(1) LB_KimFL, which while a very weak lower 

bound prunes many objects. If a candidate is not pruned at this stage we compute the 

LB_KeoghEQ. Note that as discussed in Sections 4.1.3, 4.2.1, and 4.2.2, we can incrementally 

compute this; thus, we may be able to abandon anywhere between O(1) and O(n) time. If we 

complete this lower bound without exceeding the best-so-far, we reverse the query/data role 

and compute LB_KeoghEC (Section 4.2.3). If this bound does not allow us to prune, we then 

start the early abandoning calculation of DTW (Section 4.1.4).

Space limits preclude detailed analysis of which lower bounds prune how many candidates. 

Moreover, the ratios depend on the query, data, and size of the dataset. However, we note the 

following. Detailed analysis is available at Supporting Website2; lesion studies tell us that all 

bounds do contribute to speedup; removing any lower bound makes the search at least twice 

as slow; and finally, using this technique we can prune more than 99.9999% of DTW 

calculations for a large-scale search.

5. EXPERIMENTAL RESULTS

We begin by noting that we have taken extraordinary measures to ensure our experiments are 

reproducible. In particular, all data and code will be available in perpetuity, archived at 

Supporting Website2. Moreover, the site contains several videos that visualize some of the 

experiments in real time. We consider the following methods.

• Naïıve. Each subsequence is Z-normalized from scratch. The full Euclidean 

distance or the DTW is used at each step. Approximately 2/3 of the papers in the 

literature do (some minor variant of) this.

• State-of-the-art (SOTA). Each sequence is Z-normalized from scratch, early 

abandoning is used, and the LB_Keogh lower bound is used for DTW. 

Approximately 1/3 of the papers in the literature do (some minor variant of) this.

• UCR Suite. We use all of our applicable speedup techniques.

DTW uses R = 5% unless otherwise noted. For experiments where Naïve or 

SOTA takes more than 24 hours to finish, we terminate the experiments and 

present the linearly extrapolated values, shown in gray. Where appropriate, we 

also compare to an oracle algorithm.

• GOd’s ALgorithm (GOAL) is an algorithm that only maintains the mean and 

standard deviation using the online O(1) incremental calculations.

It is easy to see that, short of an algorithm that precomputes and stores a massive amount of 

data (quadratic in m), GOAL is a lower bound on the fastest possible algorithm for either ED 

or DTW subsequence search with unconstrained and unknown length queries. The acronym 

reminds us that we would like to be as close to this goal value as possible.

2www.cs.ucr.edu/~eamonn/UCRsuite.html
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It is critical to note that our implementations of Naïve, SOTA, and GOAL are efficient and 

tightly optimized, and they are not crippled in any way. For example, had we wanted to 

claim spurious speedup, we could implement SOTA recursively rather than iteratively, and 

that would make SOTA at least an order of magnitude slower. In particular, the code for 

Naïve, SOTA, and GOAL is exactly the same code as the UCR suite, except the relevant 

speedup techniques have been commented out.

While very detailed spreadsheets of all of our results are archived in perpetuity at Supporting 

Website2, we present subsets of our results in the following. We consider wall clock time on 

a 2 Intel Xeon Quad-Core E5620 2.40GHz with 12GB 1333MHz DDR3 ECC Unbuffered 

RAM (using just one core unless otherwise explicitly stated).

5.1. Baseline Tests on Random Walk

We begin with experiments on random walk data. Random walks model financial data very 

well and are often used to test similarity search schemes. More importantly for us, they 

allow us to do reproducible experiments on massive datasets without the need to ship large 

hard drives to interested parties. We have simply archived the random number generator and 

the seeds used. We have made sure to use a very high-quality random number generator that 

has a period longer than the longest dataset we consider. In Table II, we show the length of 

time it takes to search increasingly large datasets with queries of length 128. The numbers 

are averaged over 1000, 100, and 10 queries, respectively.

These results show a significant difference between SOTA and the UCR suite. However, this 

is for a very short query; what happens if we consider longer queries? As we show in Figure 

12, the ratio of SOTA-DTW over UCR-DTW improves for longer queries.

To reduce visual clutter we have only placed one Euclidean distance value on the figure, for 

queries of length 4096. Remarkably, UCR-DTW is even faster than SOTA Euclidean 
distance. As we shall see in our EEG and DNA examples, even though 4096 is longer than 

any published query lengths in the literature, there is a need for even longer queries.

It is also interesting to consider the results of the 128-length DTW queries as a ratio over 

GOAL. Recall that the cost for GOAL is independent of query length, and this experiment is 

just 23.57 seconds. The ratios for Naïve, SOTA, and the UCR suite are 5.27, 2.74, and 1.41, 

respectively. This suggests that we are asymptomatically closing in on the fastest possible 

subsequence search algorithm for DTW. Another interesting ratio to consider is the time for 

UCR-DTW over UCR-ED, which is just 1.18. Thus, the time for DTW is not significantly 

different than that for ED, an idea that contradicts an assumption made by almost all papers 

on time series in the last decade (including papers by the current authors).

5.2. Supporting Long Queries: EEG

The previous section shows that we gain the greatest speedup for long queries, and here we 

show that such long queries are really needed. The first user of the UCR suite was Dr. 

Sydney Cash, who, together with author Bilson Campana, wants to search massive archives 

of EEG data for examples of epileptic spikes, as shown in Figure 13.
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From a single patient, Cash gathered 0.3 trillion datapoints and asked us to search for a 

prototypical epileptic spike Q he created by averaging spikes from other patients. The query 

length was 7000 points (0.23 seconds). Table III shows the results.

This data took multiple sessions over seven days to collect, at a cost of approximately 

$34,000 Supporting Website2, so the few hours of CPU time we required to search the data 

are dwarfed in comparison. We refer the interested reader to Chaovalitwongse et al. [2005] 

and the references therein for a detailed discussion of the utility of similarity search in EEG 

data.

5.3. Supporting Very Long Queries: DNA

Most work on time series similarity search (and all work on time series indexing) has 

focused on relatively short queries, less than or equal to 1024 datapoints in length. Here we 

show that we can efficiently support queries that are two orders of magnitude longer.

We consider experiments with DNA that has been converted to time series. However, it is 

important to note that we are not claiming any particular bioinformatics utility for our work; 

it is simply the case that DNA data is massive, and the ground truth can be obtained through 

other means. As in Shieh and Keogh [2008], we use the algorithm in Table IV to convert 

DNA to time series.3

We chose a section of Human chromosome 2 (H2) to experiment with. We took a 

subsequence beginning at 5,709,500 and found its nearest neighbor in the genomes of five 

other primates, clustering the six sequences with single linkage to produce the dendrogram 

shown in Figure 14.

Pleasingly, the clustering is the correct grouping for these primates [Locke et al. 2011]. 

Moreover, because Human chromosome 2 is widely accepted to be a result of an end-to-end 

fusion of two progenitor ancestral chromosomes 2 and 3 [Locke et al. 2011], we should 

expect that the nearest neighbors for the nonhuman apes come from one of these two 

chromosomes, and that is exactly what we found.

Our query is of length 72,500, and the genome chimp is 2,900,629,179 base pairs in length. 

The single-core nearest neighbor search in the entire chimp genome took 38.7 days using 

Naïve, 34.6 days using SOTA, but only 14.6 hours using the UCR suite. As impressive as 

this is, as we shall show in the next section, we can do even better.

5.3.1. Can We Do Better Than the UCR Suite?—We claim that for the problem of 

exact similarity search with arbitrary length queries, our UCR suite is close to optimal. 

However, it is instructive to consider an apparent counterexample and its simple patch.

Consider the search for a query of length 64 as considered in Section 5.1. Using GOAL took 

9.18 seconds, but the UCR suite took only a little longer, just 10.64 seconds. Assume that 

the original query was:

3To preserve the reversible one-to-one mapping between time series and DNA we normalize the offset by subtracting round(mean) 
and we do not divide by the STD.

RAKTHANMANON et al. Page 15

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Q = [2.34, 2.01, 1.99, …] .

But we make it three times longer by padding it like this:

QP = [2.34, 2.34, 2.34, 2.01, 2.01, 2.01, 1.99, 1.99, 1.99, …] .

Further assume that we do the same to database T, to get TP, which is three times longer. 

What can we now say about the time taken for the algorithms? GOAL will take exactly three 

times longer, and Naïve takes exactly nine times longer, because each ED calculation takes 

three times longer and there are three times as many calculations to do. Our UCR suite does 

not take nine times longer, as it can partly exploit the smoothness of the data; however, its 

overhead is greater than three. Clearly, if we had known that the data was contrived in this 

manner, we could have simply made a one-in-three downsampled version of the data and 

query, done the search on this data, and reported the location and distance back in the TP 
space by multiplying each by three.

Of course, this type of pathologically contrived data does not occur in nature. However, 

some datasets are richly oversampled, and this has a very similar effect. For example, a 

decade ago, most ECGs were sampled at 256 Hz, and that seemed to be adequate for 

virtually all data analysis applications [Bragge et al. 2004]. However, current machines 

typically sample at 2048 Hz which, given this reasoning, would take up to sixty-four times 

longer to search ((2048/256)2) with almost certainly identical results.

We believe that oversampled data can be searched more quickly by exploiting a provisional 

search in a downsampled version of the data that can quickly provide a low best-so-far, 
which, when projected back into the original space, can be used to prime the search by 

setting a low best-so-far at the beginning of the search, thus allowing the early abandoning 

techniques to be more efficient.

To test this idea, we repeated the experiment in the previous section, with a onein-ten 

downsampled version of the chimp genome/human query. The search took just 475 seconds. 

We denoted the best matching subsequence distance rD. We reran the full resolution search 

after initializing the best-so-far to rD*10. This time the search fell from 14.64 hours to 4.17 

hours, and we found the same answer, as we logically must.

Similar ideas have been proposed under the name of Iterative Deepening DTW [Adams et al. 

2005] or Multi Scale DTW [Muller 2009; Zinke and Mayer 2006]; thus, we will not further 

develop this idea here. We simply caution the reader that oversampled (smooth) data may 

allow more speedup than a direct application of the UCR suite may initially suggest.

5.4. Realtime Medical and Gesture Data

The proliferation of inexpensive low-powered sensors has produced an explosion of interest 

in monitoring real time streams of medical telemetry and/or Body Area Network (BAN) data 

[Laerhoven et al. 2009].
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There are dozens of research efforts in this domain that explicitly state that while monitoring 

under DTW is desirable, it is impossible [Wobbrock et al. 2007]. Thus, approximations of, 

or alternatives to DTW are used. Dozens of suggested workarounds have been suggested. 

For example, [Hsiao et al. 2005] resorts to only “dealing with shorter test and class 

templates, as this is more efficient,” many research efforts including Stiefmeier et al. [2007] 

resort to a low cardinality version of DTW using integers, or DTW approximations that 

operate on piecewise linear approximations of the signals [Keogh et al. 2009; Pressly 2008], 

or drastically downsampled versions of the data [Gillian et al. 2011; Raghavendra et al. 

2011]. In spite of some progress from existing ideas such as lower bounding, Alon et al. 

[2009] bemoans DTW is “still too slow for gesture recognition systems,” Pressly [2008] 

laments that the “problem of searching with DTW (is) intractable,” Gillian et al. [2011] says 

“Clearly (DTW) is unusable for real-time recognition purposes” and Srikanthan et al. [2011] 

notes “Processing of one hour of speech using DTW takes a few hours.”

We believe that the UCR suite makes all of these objections moot. DTW can be used to spot 

gestures/brainwaves/musical patterns/anomalous heartbeats in real time, even on low-

powered devices, even with multiple channels of data, and even with multiple simultaneous 

queries.

To see this, we created a dataset of one year of electrocardiograms (ECGs) sampled at 

256Hz. We created this data by concatenating the ECGs of more than two hundred people, 

and thus we have a highly diverse dataset, with 8,518,554,188 datapoints. We created a 

query by asking USC cardiologist Dr. Helga Van Herle to produce a query she searches for 

on a regular basis, she created an idealized Premature Ventricular Contraction (PVC). The 

results are shown in Table V. While this was on our multi-core desktop machine, the fact that 

our results are 29,219 times faster than real-time (256 Hz) suggests that real-time DTW is 

tenable even on low-power devices.

5.5. Speeding Up Existing Mining Algorithms

In this section, we demonstrate that we can speed up much of the code in the time series data 

mining literature with minimal effort, simply by replacing their distance calculation 

subroutines with the UCR suite. In many cases, the difference is small, because the 

algorithms in question already typically try to prune as many distance calculations as 

possible. As an aside, in at least some cases we believe that the authors could benefit from 

redesigning the code in light of the drastically reduced cost for similarity search that the 

UCR suite offers. Nevertheless, even though the speedups are relatively small (1.5X to 16X), 

they are free, requiring just minutes of cut-and-paste code editing.

• Time Series Shapelets have garnered significant interest since their introduction 

in 2009 [Ye and Keogh 2009]. We obtained the original code and tested it on the 

Face (four) dataset, finding it took 18.9 minutes to finish. After replacing the 

similarity search routine with the UCR suite, it took 12.5 minutes to finish.

• Online Time Series Motifs generalize the idea of mining repeated patterns in a 

batch time series to the streaming case [Mueen and Keogh 2010]. We obtained 

the original code and tested it on the EEG dataset used in the original paper. The 
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fastest running time for the code, assuming linear space, is 436 seconds. After 

replacing the distance function with the UCR suite, it took just 156 seconds.

• Classification of Historical Musical Scores [Fornés et al. 2007]. This dataset has 

4027 images of musical notes converted to time series. We used the UCR suite to 

compute the rotation-invariant DTW leave-one-out classification. It took 720.6 

minutes. SOTA takes 142.4 hours. Thus, we have a speedup factor of 11.8.

• Classification of Ancient Coins [Huber-Mörk et al. 2011]. 2400 irregularly 

shaped coins are converted to time series of length 256, and rotation-invariant 

DTW is used to search the database, taking 12.8 seconds per query. Using the 

UCR suite, this takes 0.8 seconds per query.

• Clustering of Star Light Curves is an important problem in astronomy [Keogh et 

al. 2009], as it can be a preprocessing step in outlier detection [Rebbapragada et 

al. 2009]. We consider a dataset with 1000 (purportedly) phase-aligned light 

curves of length 1024, whose class has been determined by an expert 

[Rebbapragada et al. 2009]. Doing spectral clustering on this data with DTW (R 
=5%) takes about 23 minutes for all algorithms, and averaged over 100 runs we 

find the Rand-Index is 0.62. While this time may seem slow, recall that we must 

do 499,500 DTW calculations with relatively long sequences. As we do not trust 

the original claim of phase alignment, we further do rotation-invariant DTW that 

dramatically increases the Rand-Index to 0.76. Using SOTA, this takes 16.57 

days, but if we use the UCR suite, this time falls by an order of magnitude, to 

just 1.47 days on a single core.

5.6. Optimal Ordering in Early Abandoning of Euclidean Distance

In this section we revisit the idea of early abandoning discussed in Section 4.2.2. We will 

show that if we order the distance calculations for a given time series query according to the 

absolute values of the Z-normalized values, then on average the cumulative square distance 

will be maximized. In other words, it is the best ordering in general, or in the average case.

THEOREM 1. Given a time series, the position that gives the maximum average point-to-point 
distance is the position that has the highest absolute Z-normalized value.

PROOF. After Z-normalization, the mean and standard derivation of a time series are 0 and 1, 

respectively.

For any fixed point a, the expected distance between this point and other points is

E (X − a)2 = E X2 − 2Xa + a2 = E X2 − 2aE[X] + a2E[1] = E (X − μ)2 − 2aμ + a2 = Var(X) − 2aμ + a2

= 1 + a2 .

Hence, the expected point-to-point distance from a fixed point a to other points is 1+a2 

Therefore, the point that has the maximum absolute Z-normalized value will maximize the 

expected point-to-point distance. □
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LEMMA 1. The optimal ordering for early abandoning of Euclidean distance is ordering by 
the absolute Z-normalized value.

PROOF. The Euclidean distance is a summation of all point-to-point distances and it is a 

monotonically nondecreasing function. From Theorem 1, if we order the points in the query 

by their absolute of Z-normalized values of each point, the expected contribution to the 

summation will be increased as much as possible. Hence, the number of points used for 

early abandoning is minimized, and this is the optimal ordering. □

According to Lemma 1, we can obtain the optimal ordering in early abandoning simply by 

ordering by absolute Z-normalized value. Next, we will empirically consider the number of 

point-to-point calculations needed in the early abandoning process. The UCR suite computes 

a smaller number of calculations in finding the nearest neighbor compared to SOTA, Figure 

15 shows the typical behavior of the number of point-to-point calculations in the early 

abandoning process from SOTA and the UCR suite when finding the nearest neighbor of a 

query of size 128 in a random walk time series of size 100 million.

As we expect, the average number of point-to-point calculations is greatly reduced when a 

very good candidate (a small best-so-far) has been found. Using the traditional Naïve 

approach, exactly 128 calculations per datapoint are required if one does not apply the early 

abandon technique. With the ordering, the UCR suite can reduce the average number of 

calculations to 3.34, or just 2.6% of the query length. When the query is ten times longer, of 

length 1280, the average number of calculated point-to-point distances from our UCR suite 

is only 11.49, or less than 1% of the length of the query.

When the query is longer, the number of point-to-point calculations is obviously higher; 

however, if we consider the ratio between the number of calculations and the query length, 

surprisingly, this ratio typically decreases for longer queries. Figure 16 shows the 

relationship between the average number of point-to-point calculations and the length of the 

query on a 100-million random walk time series (see also Figure 15).

According to Lemma 1, it is possible to order by the values of either the query or the 

incoming data. The advantage in ordering the query is that we can see the query ahead of 

time and we can do the ordering just once and use that ordering for the entire search process.

In summary, in this section we have explained how to order the individual elements of the 

distance calculations in order to maximize the utility of early abandoning in Euclidean 

distance, and we show that a simple solution of ordering according to its Z-normalized 

values is optimal. However, generalizing this solution to early abandoning with LB_Keogh is 

not easy because the contribution of each point is dependent upon the shape of the envelope. 

Empirically, however, it does seem that the solution used for Euclidean distance also works 

very well for LB_Keogh, although a proof is elusive.

6. SUPPORTING THE UNIFORM SCALING DISTANCE

In this section we show that most of the ideas we have introduced to speed up ED and DTW 

also work for the uniform scaling (US) distance. While DTW is a generalization of ED to 
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allow invariance to local warping or changes of scale, US is a generalization of ED to allow 

global invariance to scale. While the need for scaling invariance shows up in many domains, 

it is easiest to understand if we consider examples in speech or music. For ease of exposition 

we consider the analogue examples in ASCII text; later we will show visual examples 

directly in the time series space.

Consider the opening phrase of Shakespeare’s most famous soliloquy, with spaces indicating 

the length of pauses:

To be or not to be

If a naive speaker reads this, he may pronounce it as:

To be or not to be

The hamming distance (the discrete analogue of ED) would find these utterances very 

different, since they disagree in all of the underlined locations. However, the string edit 

distance (the discrete analogue of DTW) would find them essentially identical,4 since they 

only differ locally.

Let us imagine now that the speaker pronounces the line very slowly, for overly dramatic 

effect:

TToo bbee oorr nnoott ttoo bbee

Here, even the string edit distance would report a huge difference between this utterance and 

the original, as they disagree in all the underlined locations. This is in spite of the fact that a 

listener (or reader) would easily recognize the intended sentence. The solution is to rescale 

this drawn-out version, by uniformly scaling it (downsampling) by a factor of two.

This is what the uniform scaling distance does in the real-valued domain. The task is more 

difficult in the real-valued domain, as the scaling factor does not have to be an integer (we 

can rescale the ASCII text bbee by a factor of two to get be but we cannot scale it by a factor 

of three or two point seven).

In the next section, we show that we can use some of the ideas introduced in this work to 

support uniform scaling. Please note that US and DTW are not mutually exclusive; they can 

be used in conjunction [Fu et al. 2008]. However, for clarity of presentation, we consider 

them separately in this work.

6.1. Why Uniform Scaling?

Although nearest neighbor search with the Euclidean distance is efficient, the quality/

correctness of the neighbors may be dubious for some real-world problems. As empirical 

studies [Keogh et al. 2004; Vlachos et al. 2003] suggest, both ED and DTW may not be 

4In some flavors of string edit distance, the cost of inserting/deleting white space is zero.
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suitable (or at least, fully sufficient) for certain problems. Figure 17 demonstrates a synthetic 

example where uniform scaling distance can outperform both ED and DTW. While we 

formally define uniform scaling in the following, it suffices to say here that uniform scaling 

refers to the global linear stretching/shrinking of patterns (in contrast to warping, which 

refers to local and nonlinear stretching/shrinking). In our toy example, we generated a 

simple set of time series and then created a single-linkage clustering of them. Neither ED 

nor DTW can correctly cluster these simple shapes, in spite of the fact that they are easily 

clustered by humans. Here, uniform scaling can discover the correct clustering as shown in 

Figure 17(right). Note that DTW and uniform scaling each have a single parameter to set; 

the size of warping windows for DTW and the maximum scaling factor for uniform scaling; 

however, we manually set the best parameter for both approaches.

Although the shapes of the time series are simple, the number of peaks in the time series is 

different. The local alignment ability of DTW can align the different positions of peaks but it 

is not robust to different numbers of peaks, as the example in Figure 17 shows. In contrast, 

uniform scaling has been shown to be useful in many situations [Keogh et al. 2004; Vlachos 

et al. 2003] because it can rescale one subsequence to match another in the correct scale, 

truncating off spurious data in one sequence if necessary. While this synthetic example is 

somewhat contrived for visual clarity, existing work has shown that uniform scaling 

invariance can be very useful for real datasets [Keogh et al. 2004]. Moreover, in Section 6.5 

we will show an example of a real-world problem in speech processing, where only uniform 

scaling can produce correct answers. In the next section, we will explain how to compute the 

uniform scaling distance.

6.2. How to Compute Uniform Scaling

As noted in the previous section, uniform scaling is a technique to relax an assumption about 

the correct length of the answer subsequence; this technique can be used to either remove a 

parameter, fixed length, or limit the range or expected length of the answer. A subsequence 

can be rescaled into another length called a scaling subsequence.

Definition 4. A scaling subsequence of length s from subsequence Q of length n is a 

subsequence of length s (s ≤ n) mapped linearly from Q. Precisely, given a subsequence = 

q1, q2,…, qn, a scaling subsequence Qs of length s is defined as Qs = q1, q2, …, qs, where an 

element Qi
s or qi = q i * n/s , 1≤ i ≤ s. A set of all scaling subsequences is defined as 

Q = {Qs | 1 ≤ s ≤ n}.

Note that every scaling subsequence Qs is a Euclidean Z-normalized subsequence. The 

distance between two subsequences has been defined in Definition 3 (Section 3.1). We can 

define the distance between two subsequences of different lengths.

Definition 5. The Euclidean distance (ED) between a scaling subsequence Qs and C is 

defined as:

RAKTHANMANON et al. Page 21

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ED Qs, C = ∑i = 1
s qi − ci

2 .

The minimum distance among all scaling subsequences and a candidate subsequence is 

called the uniform scaling distance.

Definition 6. The uniform scaling Euclidean distance(or just uniform scaling distance) 

between a set of scaling subsequences Q and another subsequence C is defined as:

Uniform_scaling_Dist(Q, C)=minsED Qs, C .

An example of a scaling subsequence is shown in Figure 18(left). The original subsequence 

Q of length 100 is shown on the top, and after rescaling by Definition 4, the subsequence Q 

of length 77, or Q77, is shown as the bottom subsequence. The value in the scaling 

subsequence is linearly mapped from the value of the original subsequence.

The distance between the scaling subsequence and a candidate is shown in Figure 18(right). 

The top figure shows the distance between Q100, or the original subsequence, and the 

candidate C. The bottom figure shows ED(Q77, C) as the summation of the square of the 

hatch lines. In this example, after the correct scaling, much the distance becomes smaller 

than the original Euclidean distance.

To compute the uniform scaling distance, the simple goal is to find the candidate whose 

uniform scaling distance is minimized. One possible approach is using the fastest known 

algorithm (the UCR suite) to search the nearest neighbor of every possible length and pick 

the smallest distance among all scales. However, even though the UCR suite is very fast, 

running it, say, 50 times to find the best match to a query of length 100 to any candidate 

match in the range 75 to 125 would clearly introduce a massive overhead. Fortunately, as we 

show in the next section, the UCR suite can exactly handle uniform scaling with very little 

overhead.

6.3. UCR Suite: Uniform Scaling

To handle uniform scaling directly with the UCR suite, we use the idea of grouping all 

scaling subsequences together as proposed by Keogh et al. [2004]. The idea is simple but 

very effective. We begin by grouping all scaling subsequences together and create 

representatives called upper envelope and lower envelope.

Definition 7. The upper envelope U and lower envelope L of a set of scaling subsequences Q
is defined as:

U = u1, u2, …, us where ui = max Qi
1, Qi

2, …, Qi
n

L = l1, l2, …, ls where li = min Qi
1, Qi

2, …, Qi
n ,
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where s is the user-defined minimum length of scaling subsequence (s≤ n). We also define a 

scaling factor by 1 − s/n. If the scaling factor is 0%, the uniform scaling search degenerates 

to a Euclidean distance search.

Recall that the set of all scaling subsequences Q contains scaling subsequence Qk of any 

length k(s ≤ k ≤ n), and Qi
k is the ith value of the scaling subsequence Qk. Hence, the upper/

lower envelope is a sequence of all maximum/minimum values of all scaling subsequences. 

To demonstrate this, a visual example of the upper/lower envelopes is shown in Figure 19. 

Figure 19(left) shows all scaling subsequences of different lengths created from the 

subsequence Q. The envelopes are created from all values inside those scaling subsequences; 

the upper envelope U is composed of all maximum values and the lower envelope L is 

composed of all minimum values from those subsequences. The length of the envelopes is 

equal to the length of the shortest scaling subsequence.

After the envelopes are created, we can use LB_Keogh to speed up the nearest neighbor 

search, in this case uniform scaling search. Figure 19(top-right) and (bottom) shows 

examples of the upper and lower envelopes when the length is set to 80 and 60, respectively. 

LB_Keogh can be visualized as the summation of the hatch lines in Figure 19(right). 

Although the envelopes are not as long as the query, LB_Keogh can still provide a lower 

bound and can be used to prune candidates efficiently. Note that the early abandoning 

technique and other techniques from the UCR suite (Sections 4.1 and 4.2) can also be 

applied here.

An overview of the uniform scaling search algorithm is shown in Table IV. Note that all 

techniques in the UCR suite, e.g., online Z-normalization, early abandoning, and so on, can 

be applied here, however for the sake of clarity, these techniques are omitted.

To perform uniform scaling search, one parameter is required from a user: the maximum 

scaling factor. Without loss of generality, we use the scaling factor to scale down the size of 

the query. Please note that this parameter can be used to control the range of the final answer 

and it is not that hard to set this parameter if the query length is known; however, it is also 

possible to hide this parameter from end-users by allowing hardcoded scaling factors of, say, 

up to 200% /down to 50%.

The algorithm starts by setting the best-so-far value to the maximum possible value (line 1). 

Next, the algorithm reads the data once with the online Z-normalization technique (Table I); 

the current candidate from the data is stored in C (line 4). Then, in line 6, the envelopes are 

generated, whose size depends on the value of the scaling factor. Classic LB_Keogh is 

calculated according to the envelopes (line 7) and if the lower bound distance is smaller than 

the current best-so-far, the distances from all scaling subsequences to the current candidate 

will be computed (lines 9–11). Hence, the best answer will be selected as the nearest 

neighbor in the end.
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6.4. Experimental Results: Scalability

We compare our uniform scaling search algorithm, UCR-US, in Table III with the Naïve 

approach, which is to search a nearest neighbor using the best known algorithm, the UCR 

suite, many times, and select the best neighbor among different lengths.

Figure 20 shows that, while producing the exact same result, the proposed approach, UCR-

US, is faster than the Naïve approach by an order of magnitude. Again, we emphasize that 

the Naïve approach uses UCR-ED as the search algorithm, and thus all of the speedup is 

directly attributable to the uniform scaling lower bound. When the query is longer, our 

approach is much faster. The running time in this experiment is an averaged running time 

from ten random walk queries of various lengths (32 to 2048) on a random walk time series 

of length 100 million datapoints using a single core machine with a scaling factor of 10%.

When the scaling factor is increased, the speedup gained by using our algorithm is also 

significantly increased. Figure 21 shows experiments on searching uniform scaling nearest 

neighbor on random walk data of size 100 million, with the query length fixed at 128. The 

number of candidate pairs grows dramatically if the range of possible lengths is increased. 

However, using our approach, grouping all scaling subsequences to envelopes can reduce the 

number of needed calculations by two orders of magnitude.

THEOREM 2. LB_Keogh is a lower bound of all of the uniform scaling Euclidean distances.

PROOF. Refer to Keogh et al. [2004]. □

6.5. On the Utility of Uniform Scaling Search: The Raven

In this section, we will demonstrate the utility of uniform scaling search. In particular, we 

show that it can produce superior results compared to ED/DTW search, especially if the 

query is long. We consider the audio of an actor reading a well-known poem, The Raven, by 

Edgar Allan Poe. We convert the audio into a single time series using Mel Frequency 

Cepstral Coefficients (MFCC).

We did a search for a long phrase that appears once in the poem. That phrase is “tapping, 

tapping at my chamber door.” The results of three nearest neighbor search algorithms are 

shown in Figure 22. Figure 22(top) shows the time series created from the audio file with the 

position of the query and the results. Each algorithm finds the nearest neighbor in the time 

series space and projects the results back to the audio file; we can visualize the 

corresponding text in Figure 22(bottom). Although the phrase “tapping, tapping at my 

chamber door” appears only once in the poem, the uniform scaling search objectively 

outperforms other search algorithms (as measured by, say, string edit distance in the ASCII 

space).

7. DISCUSSION AND CONCLUSIONS

While our work has focused on fast sequential search, we believe that for both DTW and 

US, our work is faster than all known indexing efforts. Consider Assent et al. [2008], which 

indexes a random walk time series of length 250,000 to support queries of length 256. They 
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built various indexes to support DTW queries, noting that the fastest of the four carefully-

tuned approaches requires access to approximately 15,000 pages to answer a query. These 

disk accesses are necessarily random accesses. While they did not give wall clock time, if 

we assume an HDD spindle speed of 7200 rpm (average rotational latency = 4.17ms), then 

just the disk I/O time to answer this query must be at least 62.55 seconds. However, as we 

have shown, we can load all of the data into the main memory with more efficient sequential 

disk accesses and answer these queries in 0.4 seconds, including disk I/O time, on a single 

core machine.

Note that all experiments in this article include the time taken to read the data from disk. 

However, for more than a few million objects this time is inconsequential; thus, we did not 

report it separately. We have made a strong and unintuitive claim in the abstract. We said that 

our UCR-DTW is faster than all current Euclidean distance searches. In Table V, for 

example, we show that DTW can be three times faster than state-of-the-art ED searching. 

How is this possible? Recall that all Euclidean searches in the literature require an O(n) data 

normalizing step to be performed for each subsequence. Thus, no matter how effective the 

pruning/search strategy used, the amortized time for a single sequence must be at least O(n). 
In contrast, using the ideas developed in this work, the vast majority of potential DTW 

calculations are pruned with O(1) work, while some require up to O(n) work, and only a 

vanishingly small fraction require O(nR) work. The weighted average of these possibilities 

is less than O(n).

To put our results in perspective, we compare them with a very recent state-ofthe art 

embedding-based DTW search technique, called EBSM (including the variant called BSE) 

[Papapetrou et al. 2011]. This is an excellent paper to use as a benchmark, as it exhaustively 

compares to almost all other methods in the literature, and it tests its contributions over 

different datasets, query lengths, warping widths, and so on. The contrast between EBSM 

and our method are summarized as follows.

• Our method is exact; EBSM is approximate.

• EBSM requires setting some parameters (number of reference sequences, 

dimensionality, number of split points, and so on). Our method requires zero 

parameters.

• EBSM requires offline preprocessing that takes over 3 hours for just 1 million 

objects. We have zero preprocessing time.

• The EBSM method does not, and cannot, Z-normalize. As noted in Section 1.2.1, 

we believe that Z-normalizing is critical, and we have shown that failure to do it 

hurts on 45 out of 45 of the UCR time series classification datasets.

• EBSM can support queries in a limited range, which must be predetermined and 

limited for efficiency. In contrast, we have no minimum/maximum query length.

• We can handle exact queries under uniform scaling [Fu et al. 2008], whereas 

EBSM cannot do this.

• Finally, we are simply much faster! (Section 1).
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Note, however, that there can be great utility in fast approximate search. There exist data 

mining algorithms that can use a combination of (hopefully few) exact distance measures 

and (hopefully much faster) approximate searches to produce overall exact results [Shieh 

and Keogh 2008]. However, an approximate search method being faster than our approach is 

a very high threshold to meet.

We have shown that our suite of ideas is 2 to 164 times faster than the true state-of-the-art, 

depending on the query/data. However, based on the quotes from papers that we have 

sprinkled throughout this work, we are sometimes more than 100,000 times faster than 

recent papers; how is this possible? The answer seems to be that it is possible to produce 

very Naïve implementations of DTW. For example, the recursive version of DTW can be 

one to three orders of magnitude slower than the iterative version, depending on the 

computer language and query length. Thus, the contributions of this article are twofold. 

First, we have shown that much of the recent pessimism about using DTW for real-time 

problems was simply unwarranted [Ding et al. 2008]. If carefully implemented, existing 

techniques, especially lower bounding, can make DTW tractable for many problems. Our 

second contribution is the introduction of the UCR suite of techniques that make DTW and 

Euclidean distance subsequence search significantly faster than current state-of-the-art 

techniques.

We have avoided presenting full pseudo-code to enhance the readability of the text; however, 

full pseudo-code (and highly useable source-code) is readily available at Supporting 

Website2. In future work we plan to revisit algorithms for time series motif discovery 

[Mueen and Keogh 2010; Mueen et al. 2011], anomaly detection [Rebbapragada et al. 2009; 

Shieh and Keogh 2008], time series summarization, shapelet extraction [Ye and Keogh 

2009], clustering, and classification [Ding et al. 2008], in light of the results presented in this 

work.
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Fig. 1. 
(left) Examples of approximately eleven seconds of ECG data from a 22-year-old male 

(chf10) and a 54-year-old female (chf11), both with severe congestive heart failure. Note 

that both traces, but especially chf11, exhibit wandering baseline. (right) Without any 

normalization for offset or amplitude, we extracted 21 and 20 full heartbeats, respectively.
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Fig. 2. 
(left) A single-linkage hierarchical clustering of ten beats randomly chosen from those 

extracted in Figure 1, using the unnormalized Euclidean distance. (right) A single-linkage 

hierarchical clustering of the same ten beats using normalized Euclidean distance. Only 

about one quarter of the data was clustered for clarity; other sized subsets have similar 

outcomes. The randomly extracted heartbeats are: 1, 2, 8, 12, 14 and 2, 4, 9, 17, 19.
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Fig. 3. 
Screen captures from the original video from which the Gun/NoGun data was culled. The 

center frame is the original size; the left and right frames have been scaled by 110% and 

90%, respectively. While these changes are barely perceptible, they double the error rate if 

normalization is not used. (Video courtesy of Dr. Ratanamahatana).
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Fig. 4. 
A long time series T can have a subsequence Ti,k extracted and compared to a query Q under 

the Euclidean distance, which is simply the square root of the sum of the squared hatch line 

lengths.
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Fig. 5. 
(left) Two time series that are similar but out of phase. (right) To align the sequences we 

construct a warping matrix, and search for the optimal warping path (red/solid squares). 

Note that Sakoe-Chiba Band that has width R is used to constrain the warping path.
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Fig. 6. 
(left) The LB_KimFL lower bound is O(1) and uses the distances between the First (Last) 

pair of points from C and Q as a lower bound. It is a simplification of the original LB_Kim 

[Kim et al. 2001]. (right) The LB_Keogh lower bound is O(n) and uses the Euclidean distance 

between the candidate sequence C and the closer of {U, L} as a lower bound.
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Fig. 7. 
An illustration of ED early abandoning. We have a best-so-far value of b. After 

incrementally summing the first nine (of thirty-two) individual contributions to the ED we 

have exceeded b, thus it is pointless to continue the calculation [Keogh et al. 2009].

RAKTHANMANON et al. Page 35

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
(left) At the top we see a completed LB_Keogh calculation, and below it we are about to 

begin a full DTW calculation. (right) We can imagine the orange/dashed line moving from 

left to right. If we sum the LB_Keogh contribution from the right of the dashed line (top) and 

the partial (incrementally calculated) DTW contribution from the left side of the dashed line 

(bottom), this is will be a lower bound to DTW(Q, C).
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Fig. 9. 
(left) ED early abandoning. We have a best-so-far value of b. After incrementally summing 

the first nine individual contributions to the ED, we have exceeded b; thus, we abandon the 

calculation. (right) A different ordering allows us to abandon after just five calculations.
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Fig. 10. 
(left) Normally the LB_Keogh envelope is built around the query (see also Figure 6(right), 

and the distance between C and the closer of {U, L}acts as a lower bound (right). However, 

we can reverse the roles such that the envelope is built around C and the distance between Q 
and the closer of {U, L} is the lower bound.
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Fig. 11. 
The mean tightness of selected lower bounds from the literature plotted against the time 

taken to compute them.
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Fig. 12. 
The time taken to search random walks of length 20 million with increasingly long queries, 

for three variants of DTW. In addition, we include just length 4096 with SOTA-ED for 

reference.
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Fig. 13. 
Query Q shown with a match from the 0.3 trillion EEG dataset.
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Fig. 14. 
A subsequence of DNA from Human chromosome 2, of length 72,500 and beginning at 

5,709,500, is clustered using single linkage with its Euclidean distance nearest neighbors 

from five other primates.
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Fig. 15. 
Typical numbers of point-to-point distance calculations from SOTA-ED and UCR-ED. In 

this query of length 128, our UCR suite calculates only 3.34 times per datapoint on average. 

Note that this number is reduced when the data is longer.
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Fig. 16. 
The number of point-to-point calculations in a nearest neighbor search with different query 

lengths. (right) The number of calculations per single datapoint. (left) The number of 

calculations shown as a fraction of the query length. Unintuitively, this ratio is typically 

reduced when the query length is longer. At query length 4,096, the UCR suite computes 

only 14.1 calculations per datapoint, or just 0.3% of the query length.
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Fig. 17. 
A clustering of synthetic time series using (left) Euclidean distance, (middle) DTW with a 

band size of 20%, (right) uniform scaling with a maximum scaling factor of 20%. Only 

uniform scaling finds the correct clustering.
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Fig. 18. 
(left) The subsequence Q is scaled down from the original scale to a smaller scale. (top-

right) The distance, called Euclidean distance, between subsequence Q and C in the original 

scale. (bottom-right) The distance, called uniform scaling distance, can be much smaller 

than the normal Euclidean distance. In this example, Q is scaled to length 77. Note that both 

Q and C are the same as the example in Section 3 but are in the reverse order.
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Fig. 19. 
(top-left) All scaling subsequences created from the query Q scaled to different lengths from 

80 to 100. (top-right) The upper envelope U and lower envelope L created by the maximum 

and minimum values of all scaling subsequences in (left). The lower bound distance is 

computed from the candidate C to the closer envelope, as shown in vertical lines. (bottom) 

The query is scaled from 60 to 100, or has a scaling factor of 40%. Note that although the 

scaling factor may be large, in most cases, the lower bound is still large and can prune 

candidates efficiently.
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Fig. 20. 
The running time of uniform scaling nearest neighbor when the query is varied from length 

32 to 2048.
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Fig. 21. 
The running time of uniform scaling nearest neighbor when the scaling factor is varied from 

0% to 50%. Note that, when the scaling factor is 0%, it is simply ED nearest neighbor and 

when the scaling/shrinking factor is 50% it means that the answer match can be twice as 

short as the query length.
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Fig. 22. 
(top) Time series created by MFCC conversion of the audio of the poem The Raven, by 

Edgar Allan Poe. The query, the nearest neighbor using DTW, Euclidean distance, and 

uniform scaling are presented in red, blue, green, and magenta, respectively. (bottom) The 

same subsequences in the top and their corresponding text in the poem. Note that the scaling 

factor for uniform scaling and warping windows for DTW are set to 10%.
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Table I.

Subsequence Search with Online Z-Normalization

Algorithm  Similarity Search

Procedure  [nn] = SimilaritySearch(T,Q)

1  best-so-far ← ∞, count ← 0

2  Q ← Z-normalize(Q)

3  while !next(T)

4   i ← mod(count,m)

5   X[i] ← next(T)

6   ex ← ex + X[i], ex2 ← ex2 + X[i]2

7   if count ≥ m − 1

8    μ ← ex/m, σ ← sqrt(ex2/m − μ2)

9    j ← 0, dist ← 0

10    while j < m and dist < best-so-far

11     dist ← dist + (Q[j] − (X[mod(i + 1 + j, m)] − μ)/σ)2

12     j ← j + 1

13    if dist < best-so-far

14     best-so-far ← dist, nn ← count

15    ex ← ex − X[mod(i + 1,m)]

16    ex2 ← ex2 − X[mod(i + 1,m)]2

17   count ← count + 1
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Table II.

Time Taken to Search a Random Walk Dataset With |Q|= 128

Million (Seconds) Billion (Minutes) Trillion (Hours)

UCR-ED 0.034 0.22 3.16

SOTA-ED 0.243 2.40 39.80

UCR-DTW 0.159 1.83 34.09

SOTA-DTW 2.447 38.14 472.80
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Table III.

Time to Search 303,523,721,928 EEG Datapoints, |Q|= 7000

Note that only ED is considered here because DTW may produce false positives caused by eye blinks
UCR-ED SOTA-ED

EEG 3.4 hours 494.3 hours
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Table IV.

An Algorithm to Convert DNA to Time Series

T1 = 0,

for i = 1 to |DNAstring|

  if DNAstringi = A, then Ti+1 = Ti + 2

  if DNAstringi = G, then Ti+1 = Ti + 1

  if DNAstringi = C, then Ti+1 = Ti − 1

  if DNAstringi = T, then Ti+1 = Ti − 2
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Table V.

Time Taken to Search One Year of ECG Data with |Q|= 421

UCR-ED SOTA-ED UCR-DTW SOTA-DTW

ECG 4.1 minutes 66.6 minutes 18.0 minutes 49.2 hours

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAKTHANMANON et al. Page 56

Table VI.

UCR Suite: Uniform Scaling Search

Algorithm  UCR Suite: UniformScaling

Procedure  [nn] = UniformScalingSearch(T,Q,scaling_factor)

1  best-so-far ← ∞

2  max_len ← length(Q)

3  while !next(T)

4   C ← current candidate from T of length n

5   max_len ← max_len*(1-scaling_factor)

6   [U, L] ← CreateEnvelope(Q, min_len, max_len)

7   lb ← LB_Keogh(U,L,C)

8   if lb < best-so-far

9    for len ← min_len to max_len

10     Qs ← ScalingSubsequence(Q,len)

11     dist ← UCR_ED(Qs,C)

12     if dist < best-so-far

13      best-so-far ← dist

14      nn.sequence ← C

15      nn.best_len ← len

16     end if

17    end for

18   end if

19  end while
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