
Addressing Big Data Time Series: Mining Trillions of Time Series
Subsequences Under Dynamic Time Warping

THANAWIN RAKTHANMANON
University of California Riverside and Kasetsart University

BILSON CAMPANA, ABDULLAH MUEEN
University of California Riverside

GUSTAVO BATISTA,
University of São Paulo

BRANDON WESTOVER
Brigham and Women’s Hospital

QIANG ZHU, JESIN ZAKARIA, EAMONN KEOGH
University of California Riverside

Abstract

Most time series data mining algorithms use similarity search as a core subroutine, and thus the

time taken for similarity search is the bottleneck for virtually all time series data mining

algorithms, including classification, clustering, motif discovery, anomaly detection, and so on. The

difficulty of scaling a search to large datasets explains to a great extent why most academic work

on time series data mining has plateaued at considering a few millions of time series objects, while

much of industry and science sits on billions of time series objects waiting to be explored. In this

work we show that by using a combination of four novel ideas we can search and mine massive

time series for the first time. We demonstrate the following unintuitive fact: in large datasets we

can exactly search under Dynamic Time Warping (DTW) much more quickly than the current

state-of-the-art Euclidean distance search algorithms. We demonstrate our work on the largest set

of time series experiments ever attempted. In particular, the largest dataset we consider is larger

than the combined size of all of the time series datasets considered in all data mining papers ever

published. We explain how our ideas allow us to solve higher-level time series data mining

problems such as motif discovery and clustering at scales that would otherwise be untenable.

Moreover, we show how our ideas allow us to efficiently support the uniform scaling distance

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen
of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax 1 (212) 869-0481, or
permissions@acm.org.

thanawin.r@ku.ac.th;.
Rakthanmanon has a dual affiliation: University of California Riverside and Kasetsart University.
Authors’ addresses: T. Rakthanmanon, Department of Computer Engineering, Kasetsart University, Thailand; B. Campana, A. Mueen,
Q. Zhu, J. Zakaria, and E. Keogh, Department of Computer Science and Engineering, University of California Riverside; G. Batista,
Instituto de Ciências Matemáticas e de Computaçã, University of São Paulo; B. Westover, Brigham and Women’s Hospital.

HHS Public Access
Author manuscript
ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

Published in final edited form as:
ACM Trans Knowl Discov Data. 2013 September ; 7(3): .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

measure, a measure whose utility seems to be underappreciated, but which we demonstrate here.

In addition to mining massive datasets with up to one trillion datapoints, we will show that our

ideas also have implications for real-time monitoring of data streams, allowing us to handle much

faster arrival rates and/or use cheaper and lower powered devices than are currently possible.

General Terms:

Algorithms; Experimentation

Additional Key Words and Phrases:

Time series; similarity search; lower bounds

1. INTRODUCTION

Time series data is pervasive across almost all human endeavors, including medicine,

finance, science, and entertainment. As such, it is hardly surprising that time series data

mining has attracted significant attention and research effort. Most time series data mining

algorithms require similarity comparisons as a subroutine, and in spite of the consideration

of dozens of alternatives, there is increasing evidence that the classic Dynamic Time

Warping (DTW) measure is the best measure in most domains [Ding et al. 2008].

It is difficult to overstate the ubiquity of DTW. It has been used in robotics, medicine

[Chadwick et al. 2011], biometrics, music/speech processing [Adams et al. 2005; Muller

2009; Zhang and Glass 2011], climatology, aviation, gesture recognition [Alon et al. 2009;

Wobbrock et al. 2007], user interfaces [Hsiao et al. 2005; Laerhoven et al. 2009; Pressly

2008; Wobbrock et al. 2007], industrial processing, cryptanalysis [Dupasquier and Burschka

2011], mining of historical manuscripts [Huber-Märk et al. 2011], geology, astronomy

[Keogh et al. 2009; Rebbapragada et al. 2009], space exploration, wildlife monitoring, and

so on.

As ubiquitous as DTW is, we believe that there are thousands of research efforts that would

like to use DTW, but find it too computationally expensive. For example, consider the

following: “Ideally, dynamic time warping would be used to achieve this, but due to time

constraints… ” [Chadwick et al. 2011]. Likewise, [Alon et al. 2009] bemoans DTW is “still

too slow for gesture recognition systems,” and [Adams et al. 2005] notes, even “a 30 fold

speed increase may not be sufficient for scaling DTW methods to truly massive databases.”

As we shall show, our subsequence search suite of four novel ideas (called the UCR suite)

removes all of these objections. We can reproduce all of the experiments in all of these

papers in well under a second. We make an additional claim for our UCR suite that is almost

certainly true, but very hard to prove, given the variability in how search results are

presented in the literature. We believe our exact DTW sequential search is much faster than

any current approximate search or exact indexed search. In a handful of papers the authors

are explicit enough with their experiments to see this is true. Consider Papapetrou et al.

[2011], in which the authors introduce a technique that can answer queries of length 1000

under DTW with 95% accuracy, in a random walk dataset of one million objects in 5.65

RAKTHANMANON et al. Page 2

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

seconds. We can exactly search this dataset in 3.8 seconds (on a very similar machine).

Likewise, a recent paper that introduced a novel inner product-based DTW lower bound

greatly speeds up exact subsequence search for a wordspotting task in speech. The authors

state: “the new DTW-KNN method takes approximately 2 minutes” [Zhang and Glass

2011]; however, we can reproduce their results in less than a second. An influential paper on

gesture recognition on multitouch screens laments that “DTW took 128.26 minutes to run

the 14,400 tests for a given subject’s 160 gestures” [Wobbrock et al. 2007]. However, we can

reproduce these results in less than three seconds.

Our goal in this work is not just to demonstrate that we can search massive time series

datasets more quickly than the current state-of-the-art approach. We also hope to enable the

community to do higher level analysis of massive datasets by freely providing all of our

code and data. Moreover, at least some of the four novel ideas we introduce here may have

implications for problems beyond similarity search and beyond time series. For example,

other distance measures may benefit from optimizing the order of evaluation in conjunction

with admissible early termination, an idea we introduce as reordering early abandoning (cf.

Section 4.2.2). Likewise the idea of cascading lower bounds (cf. Section 4.2.4) may be

useful for other distance measures that are computationally expensive and have many

proposed lower bounds of different time complexities/tightnesses. Both the Earth Mover’s

Distance and the String Edit Distance are tentative examples.

1.1. Millions, Billions, and Trillions, A Discussion of a Scale

Since we search a trillion objects in this work and to our knowledge, such a large dataset has

never been considered in a data mining/database paper before, we will take the time to

explicitly discuss this number. By a trillion, we mean the short scale version of the word

[Guitel 1975], one million million, or 1012, or 1,000,000,000,000.

If we have a single time series T of length one trillion, and we assume it takes eight bytes to

store each value, it will require 7.2 terabytes to store. If we sample an electrocardiogram at

256Hz, a trillion datapoints would allow us to record 123 years of data, or every single

heartbeat of the longest lived human [Whitney 1997].

As large as a trillion is, there are thousands of research labs and commercial enterprises that

have this much data. For example, many research hospitals have trillions of datapoints of

EEG data, NASA Ames has tens of trillions of datapoints of telemetry of domestic flights,

the Tennessee Valley Authority (a power company) records a trillion datapoints every four

months, and so on.

1.2. Explicit Statement of Our Assumptions

Our work is predicated on several assumptions that we will now enumerate and justify.

1.2.1. Time Series Subsequences Must Be Normalized.—In order to make

meaningful comparisons between two time series, both must be normalized. We define

normalization more formally later, but for now it is sufficient to consider it as the process of

making two time series commensurate by transforming them to some canonical scale. While

there are several such transformations possible, the vast majority of the literature uses Z-

RAKTHANMANON et al. Page 3

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

normalization. Z-normalization shifts and scales the time series such that the mean is zero

and the standard deviation is one. In Matlab, this can be achieved by the single line:

T = (T − mean(T))/std(T)

It is critical to avoid a common misunderstanding. We must normalize each subsequence

before making a comparison; it is not sufficient to normalize the entire dataset, because then

when individual subsequences are extracted, they will not be normalized.

While the need for normalization may seem intuitive, and was empirically demonstrated a

decade ago in a widely cited paper [Keogh and Kasetty 2003], many research efforts do not

seem to realize this. This is critical because some speedup techniques only work on the

unnormalized data; thus the contributions of these research efforts may be largely nullified

[Chen et al. 2009; Papapetrou et al. 2011]. To demonstrate the necessity of normalization we

will begin with an intuitive and visual example, before considering some objective

experiments.

In Figure 1(left) we show two examples of snippets of electrocardiograms (ECG) of

individuals. Note that the mean of the trace labeled chf11 drifts up and down, a commonly

observed phenomenon known as wandering baseline. This wandering baseline may be

caused by patient movement, dirty lead wires/electrodes, loose electrodes, and so on. Note,

however, that it does not have any medical significance; it is considered to be an artifact (in

electrocardiography, an artifact is used to indicate something that is not “heart-made”). In

Figure 1(right) we show what the individual heartbeats look like when we extract them

without any attempt to normalize them.

Note that the two individuals’ beats in Figure 1(right) would be trivially easy to classify or

cluster by eye. How would Euclidean distance do? To test this, in Figure 2 we performed a

single-linkage hierarchical clustering of some randomly chosen exemplars from both

individuals. We consider both the normalized and the nonnormalized versions of the data.

The results are very clear. The similarity measurements of unnormalized data, when used for

clustering, give the wrong results, on a problem that could not be simpler. In contrast,

working with the normalized data gives the correct results. Note that this experiment is not

contrived in any way. Using DTW does not help, a different random subset of heartbeats

does not help, and choosing other individuals’ ECG traces will not help, as virtually all ECG

traces have wandering baselines. In fact, the two examples shown were chosen because they

have relatively little wander, and are thus easer to plot. In the domain of ECG, we must

normalize the data.

To show more quantitatively the effect of not normalizing data, let us consider the classic

Gun/NoGun classification problem which has been in the public domain for nearly a decade.

The data, which as shown in Figure 3(center) is extracted from a video sequence, was Z-

normalized. The problem has a 50/150 train/test split and a DTW one-nearest-neighbor

classifier achieves an error rate of 0.087.

RAKTHANMANON et al. Page 4

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Suppose the data had not been normalized. As shown in Figure 3(left) and Figure 3(right),

we can simulate this by adding a tiny amount of scaling/offset to the original video. In the

first case we randomly change the offset of each time series by ±10%, and in the second case

we randomly change the scale (amplitude) by ±10%. The new one-nearest-neighbor

classifier error rates, averaged over 1000 runs, are 0.326 and 0.193, respectively,

significantly worse than the normalized case.

It is important to recognize that these tiny changes we made are completely dwarfed by

changes we might expect to see in a real-world deployment. The apparent scale can be

changed by the camera zooming, by the actor standing a little closer to the camera, or by an

actor of a different height. The apparent offset can be changed by this much by the camera

tilt angle, or even by the actor wearing different shoes.

While we did this experiment on a visually intuitive example, all forty-five datasets in the

UCR archive increase their error rate by at least 50% if we vary the offset and scale by just

± 5%.

1.2.2. Dynamic Time Warping Is the Best Measure.—It has been suggested many

times in the literature that the problem of time series data mining scalability is only due to

DTW’s oft-touted lethargy, and that we could solve this problem by using some other

distance measure. As we shall later show, this is not the case. In fact, as we shall

demonstrate, our optimized DTW search is much faster than all current Euclidean distance

searches. Nevertheless, the question remains, is DTW the right measure to speed up? Dozens

of alternative measures have been suggested. However, recent empirical evidence strongly

suggests that none of these alternatives routinely beats DTW. When put to the test on a

collection of forty datasets, the very best of these measures are sometimes a little better than

DTW and sometimes a little worse [Ding et al. 2008]. In general, the results are consistent

with these measures being minor variants, or flavors, of DTW (although they are not

typically presented this way). In summary, after an exhaustive literature search of more than

800 papers [Ding et al. 2008], we are not aware of any distance measure that has been shown

to outperform DTW by a statistically significant amount on reproducible experiments [Ding

et al. 2008; Keogh and Kasetty 2003]. Thus, DTW is the measure to optimize (recall that

DTW subsumes Euclidean distance as a special case).

1.2.3. Arbitrary Query Lengths Cannot Be Indexed.—If we know the length of

queries ahead of time we can mitigate at least some of the intractability of search by

indexing the data [Assent et al. 2008; Fu et al. 2008; Shieh and Keogh 2008]. Although to

our knowledge noone has built an index for a trillion real-valued objects (Google only

indexed a trillion Web pages as recently as 2008), perhaps this could be done.

However, what if we do not know the length of the queries in advance? At least two groups

have suggested techniques to index arbitrary length queries [Kahveci and Singh 2004; Lim

et al. 2007]. Both methods essentially build multiple indexes of various lengths, and at query

time search the shorter and longer indexes, interpolating the results to produce the nearest

neighbor produced by a virtual index of the correct length. This is an interesting idea, but it

is hard to imagine it is the answer to our problem. Suppose we want to support queries in the

RAKTHANMANON et al. Page 5

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

range of, say, 16 to 4096. We must build indexes that are not too different in size, say,

MULTINDEX-LENGTHS ={16, 32,64, …, 1024, 2048, 4096}.1 However, for time series

data, the index is typically about one-tenth the size of the data [Ding et al. 2008; Kahveci

and Singh 2004]. Thus, we have doubled the amount of disk space we need. Moreover, if we

are interested in tackling a trillion data objects, we clearly cannot fit any index in the main

memory, much less all of them, or any two of them.

There is an underappreciated reason why this problem is so hard; it is an implication of the

need for normalization. Suppose we have a query Q of length 65, and an index that supports

queries of length 64. We search the index for Q[1:64] and find that the best match for it has a

distance of, say, 5.17. What can we say about the best match for the full Q? The answer is

surprisingly little: 5.17 is neither an upper bound nor a lower bound to the best match for Q.

This is because we must renormalize the subsequence when moving from Q[1:64] to the full

Q. If we do not normalize any data, the results are meaningless (Section 1.2.1), and the idea

might be faster than sequential search. However, if we normalize the data we get so little

information from indexes of the wrong length that we are no better off than sequential

search.

In summary, there are no known techniques to support similarity search of arbitrary lengths

once we have datasets in the billions.

1.2.4. There Exist Data Mining Problems That We Are Willing to Wait Some
Hours to Answer.—This point is almost self-evident. If a team of entomologists has spent

three years gathering 0.2 trillion datapoints [Shieh and Keogh 2008], or astronomers have

spent billions of dollars to launch a satellite to collect one trillion datapoints of star-light

curve data per day [Keogh et al. 2009], or a hospital charges $34,000 for a daylong EEG

session to collect 0.3 trillion datapoints (Section 5.2) [Mueen et al. 2011], then it is not

unreasonable to expect that these groups would be willing to spend hours of CPU time to

glean knowledge from their data.

2. RELATED WORK

Our review of related work on time series indexing is necessarily superficial, given the vast

amount of work on the topic and our page limits. Instead, we refer the interested reader to

two recent papers [Ding et al. 2008; Papapetrou et al. 2011], which have comprehensive

reviews of existing work. It has now become common (although not yet routine) to see

papers indexing/mining datasets with millions of objects. For example, Jegou et al. [2010]

have demonstrated very fast approximate main memory search of 10 million images.

However, this work and much of the current work that addresses multimillion object datasets

focus on approximate search, whereas we are only considering exact search here. Moreover,

we are interested in datasets that are five to six orders of magnitude larger than anything else

considered in the literature [Ding et al. 2008]. Thus, comparisons to related work are very

difficult to do meaningfully.

1This collection of sizes is very optimistic. The step size should be at most 100, creating two orders of magnitude space overhead.

RAKTHANMANON et al. Page 6

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Most techniques for speeding up similarity search exploit the triangular inequality. The idea

is to precompute the distances between objects in the database and then later at query time

exploit the fact that if the distance between the query Q and an object Oi in the database is

calculated, then any object Oj can be pruned from further consideration if |d(Q,Oi) –

d(Oi,Oj)| is not less than best-so-far. Precomputing and storing all of the distances between

objects in the database is impractical for large datasets; however, most spatial access

methods can approximate doing this by grouping the similar objects (typically in Minimum

Bounding Rectangles (MBRS)) and precomputing only the distances between MBRs.

Unfortunately, these ideas do not help for DTW, which is not a metric and therefore does not

obey the triangular inequality. Moreover, it does not help for Euclidean distance unless we

know the length of the query ahead of time, an assumption we are explicitly avoiding. Thus,

the vast majority of work on speeding up similarity search for time series (see Ding et al.

[2008] and the references therein) do not help us.

Finally, we note that DTW is at least superficially similar to string edit distance [Chen and

Ng 2004; Masek and Paterson 1980]. The reader may wonder if any speedup techniques for

the latter can help us here. We believe the answer is no. Moving from the discrete to the real-

valued creates unique problems. For example, as we will show, similarity search under DTW

spends more time Z-normalizing the data than computing the actual DTW; however, there is

no analogue of Z-normalizing for strings. Moreover, when working with strings one can use

suffix trees, hashing, equality tests, and a host of other techniques that simply are not

defined for real-valued data.

3. BACKGROUND AND NOTATION

3.1. Definitions and Notations

We begin by defining the data type of interest: time series.

Definition 1. A Time Series T is an ordered list of real-valued numbers: T= t1,t2,…,tm.

While the source data is one long time series with m datapoints, we ultimately wish to

compare it to shorter regions called subsequences.

Definition 2. A subsequence Ti,k of a time series T is a shorter time series of length k, which

starts from position i. Formally, Ti,k = ti, ti+1,.., ti+k−1, 1≤ i ≤ m − k + 1.

Where there is no ambiguity, we may refer to subsequence Ti,k as C, as in a candidate match

to a query Q. We denote |Q| as n. Moreover, a subsequence normalized to have a mean of

zero and a standard derivation of one is called a Z-normalized subsequence.

Definition 3. The Euclidean distance (ED) between two Z-normalized subsequences Q and

C, where |Q|=|C|, is defined as:

ED(Q, C) ∑i = 1
n qi − ci

2 .

We illustrate these definitions in Figure 4.

RAKTHANMANON et al. Page 7

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The Euclidean distance, which is a one-to-one mapping of the two sequences, can be seen as

a special case of DTW, which allows a one-to-many alignment, as illustrated in Figure 5.

To align two sequences using DTW, an n-by-n matrix is constructed, with the (ith,jth)
element of the matrix being the Euclidean distance d(qi, cj) between the points qi and cj.

A warping path P is a contiguous set of matrix elements that defines a mapping between Q
and C. The tth element of P is defined as pt = (i, j)t, so we have:

P = p1, p2, …, pt, …, pT n ≤ T ≤ 2n − 1.

The warping path that defines the alignment between the two time series is subject to several

constraints. For example, the warping path must start and finish in diagonally opposite

corner cells of the matrix, the steps in the warping path are restricted to adjacent cells, and

the points in the warping path must be monotonically spaced in time. In addition, virtually

all practitioners using DTW also constrain the warping path in a global sense by limiting

how far it may stray from the diagonal [Ding et al. 2008; Papapetrou et al. 2011]. A typical

constraint is the Sakoe-Chiba Band, which states that the warping path cannot deviate more

than R cells from the diagonal [Ding et al. 2008; Papapetrou et al. 2011; Sakurai et al. 2007].

We are finally in a position to define the problem we wish to solve. For searching one

nearest neighbor under DTW, given a long time series T, and a user-supplied query Q, where

m =|T| >> |Q|= n. We wish to find the subsequence Ti:i+n−1, such that DTW(Q, Ti:i+n−1) is

minimized. In other words:

∃i ∀kDTW Q, Ti: i + n − 1 ≤ DTW Q, Tk:k + n − 1 , 1 ≤ i, k ≤ m − n + 1.

The one nearest neighbor ED search requires just the substitution of ED for DTW. The

generalizations of one nearest neighbor to both K nearest neighbor and range search are

trivial, and are omitted for clarity.

4. ALGORITHMS

4.1. Known Optimizations

We begin by discussing previously known optimizations of sequential search under ED

and/or DTW.

4.1.1. Using the Squared Distance.—Both DTW and ED have a square root

calculation. However, if we omit this step, it does not change the relative rankings of nearest

neighbors, since both functions are monotonic and concave. Moreover, the absence of the

square root function will make later optimizations possible and easier to explain. Note that

this is only an internal change in the code; the user can still issue range queries with the

original units, as the code simply internally squares the desired value, does the search, and

after finding the qualifying objects, takes the square root of the distances for the qualifying

objects and presents the answers to the user.

RAKTHANMANON et al. Page 8

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Where there is no ambiguity, we will still use “DTW” and “ED”; however, the reader may

assume we mean the squared versions of them.

4.1.2. Lower Bounding.—A classic trick to speed up sequential search with an

expensive distance measure such as DTW is to use a cheap-to-compute lower bound to

prune off unpromising candidates [Ding et al. 2008; Keogh et al. 2009]. Figure 6 shows two

such lower bounds, one of which we have modified.

The original definition of LB_Kim also uses the distances between the maximum values from

both time series and the minimum values between both time series in the lower bound,

making it O(n). However, for normalized time series, these two extra values tend to be tiny

so it does not pay to compute them, and ignoring them allows the bound to be O(1), a fact

we will exploit in the following. The LB_Keogh bound is well-documented elsewhere; for

brevity we ask the unfamiliar reader to refer to Ding et al. [2008], Fu et al. [2008], and

Keogh et al. [2009] for a review. However, for completeness we present a brief review. The

upper envelope U and the lower envelope L of subsequence Q are defined in Keogh and

Ratanamahatana [2005] as:

Ui = max Qi − r, Qi − r + 1, …, Qi + r
Li = min Qi − r, Qi − r + 1, …, Qi + r ,

where r is the size of the warping window, and the LB_Keogh lower bound is simply the

distance from the closer of the two envelopes to another subsequence, C.

LBkeogh = ∑
i = 1

n
Ci − Ui

2 if Ci > Ui

Ci − Li
2 if Ci > Li

0 otherwise

.

Since its introduction a decade ago, the LB_Keogh lower bound has been the cornerstone of

most efforts to scale DTW similarity search [Ding et al. 2008; Fu et al. 2008;Keogh et al.

2009].

4.1.3. Early Abandoning of ED and LB_Keogh.—During the computation of the

Euclidean distance or the LB_Keogh lower bound, if we note that the current sum of the

squared differences between each pair of corresponding datapoints exceeds the best-so-far,
then we can stop the calculation, secure in the knowledge that the exact distance or lower

bound, had we calculated it, would have exceeded the best-so-far, as in Figure 7.

This simple idea that one can abandon an unpromising calculation the moment one can be

sure it could not produce a result better than the best-so-far result has a long tradition in

machine learning, artificial intelligence and image processing [Bei and Gray 1985; Cheng et

al. 1984; McNames 2000].

RAKTHANMANON et al. Page 9

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.1.4. Early Abandoning of DTW.—If we have computed a full LB_Keogh lower

bound, but we find that we must calculate the full DTW, there is still one trick left up our

sleeves. We can incrementally compute the DTW from left to right, and as we incrementally

calculate from 1 to K, we can sum the partial DTW accumulation with the LB_Keogh

contribution from K + 1 to n. Figure 8 illustrates this idea.

This sum of minj(DTW(Q1:K, C1:K+j)) + LB_Keogh(QK+r+1:n, CK+r+1:n) is a lower bound to

the true DTW distance (DTW(Q1:n, C1:n)), where r is the size of the warping windows.

Moreover, with careful implementation, the overhead costs are negligible. If at any time this

lower bound exceeds the best-so-far distance we can admissibly stop the calculation and

prune this C.

4.1.5. Exploiting Multicores.—It is important to note that while we can get essentially

linear speedup using multicores, the software improvements we will present in the next

section completely dwarf the improvements gained by multicores. As a concrete example, a

recent paper shows that a search of a time series of length 421,322 under DTW takes “3

hours and 2 minutes on a single core. The (8-core version) was able to complete the

computation in 23 minutes” [Srikanthan et al. 2011]. However, using our ideas, we can

search a dataset of this size in just under one second on a single core. Nevertheless, as it is

simple to port to the now ubiquitous multicores, we consider them in the following.

4.2. Novel Optimizations: The UCR Suite

We are finally in a position to introduce our four original optimizations of search under ED

and/or DTW.

4.2.1. Early Abandoning Z-Normalization.—To the best of our knowledge, noone

has ever considered optimizing the normalization step. This is surprising, since it takes only

slightly longer than computing the Euclidean distance itself.

Our insight here is that we can interleave the early abandoning calculations of Euclidean

distance (or LB_Keogh) with the online Z-normalization. In other words, as we are

incrementally computing the Z-normalization, we can also incrementally compute the

Euclidean distance (or LB_Keogh) of the same datapoint. Thus, if we can early abandon, we

are pruning not just distance calculation steps as in Section 4.1.3, but also normalization

steps.

The fact that the mean and standard deviation of a stream of numbers can be incrementally

calculated and maintained has long been exploited in computer science [Chan et al. 1983;

Ling 1974]. Such algorithms are sometimes called “one pass” algorithms. However, to our

knowledge, this is the first work to show that we can interleave early abandoning

calculations with the incremental mean and standard deviation calculations.

Recall that the mean and standard deviation of a sample can be computed from the sums of

the values and their squares. Therefore, it takes only one scan through the sample to

compute the mean and standard deviation, using the following equations.

RAKTHANMANON et al. Page 10

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

μ = 1
m ∑ xi σ2 = 1

m ∑ xi
2 − μ2 .

In similarity search, every subsequence needs to be normalized before it is compared to the

query (Section 1.2.1). The mean of the subsequence can be obtained by keeping two running

sums of the long time series, which have a lag of exactly m values. The sum of squares of

the subsequence can be similarly computed. The formulas are given here for clarity.

μ = 1
m ∑

i = 1

k
xi − ∑

i = 1

k − m
xi σ2 = 1

m ∑
i = 1

k
xi
2 − ∑

i = 1

k − m
xi
2 − μ2

The high-level outline of the algorithm is presented in Table I.

Note the online normalization in line 11 of the algorithm, which allows the early abandoning

of the distance computation in addition to the normalization. In the algorithm, we use a

circular buffer (X) to store the current subsequence being compared with the query Q.

One potential problem of this method of maintaining the statistics is the accumulation of the

floating-point error [Goldberg 1991]. The effect of such error accumulation is more

profound if all of the numbers are positive, as in our case with the sum of squares. With the

“mere” millions of datapoints, which the rest of the community has dealt with, this effect is

negligible; however, when dealing with billions of datapoints it will affect the answer. Our

simple solution is that once every one million subsequences, we force a complete Z-

normalization to flush out any accumulated error.

4.2.2. Reordering Early Abandoning.—In the previous section, we saw that the idea

of early abandoning discussed in Section 4.1.3 can be generalized to the Z-normalization

step. In both cases, we assumed that we incrementally compute the distance/normalization

from left to right. Is there a better ordering?

Consider Figure 9(left), which shows the normal left-to-right ordering in which the early

abandoning calculation proceeds. In this case nine of the thirty-two calculations were

performed before the accumulated distance exceeded b and we could abandon. In contrast,

Figure 9(right) uses a different ordering and was able to abandon earlier, with just five of the

thirty-two calculations.

This example shows what is obvious: on a query-by-query basis, different orderings produce

different speedups. However, we want to know if there is a universal optimal ordering that

we can compute in advance. This seems like a difficult question because there are n!

possible orderings to consider.

We conjecture that the universal optimal ordering is to sort the indices based on the absolute

values of the Z-normalized Q. The intuition behind this idea is that the value at Qi will be

compared to many Ci’s during a search. However, for subsequence search, with Z-

normalized candidates, the distribution of many Ci’s will be Gaussian, with a mean of zero.

RAKTHANMANON et al. Page 11

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thus, the sections of the query that are farthest from the mean will on average have the

largest contributions to the distance measure.

To see if our conjecture is true we took the heartbeat discussed in Section 5.4 and computed

its full Euclidean distance to a million other randomly chosen ECG sequences. With the

conceit of hindsight we computed what the best ordering would have been. For this we

simply take each Ci and sort them, largest first, by the sum of their contributions to the

Euclidean distance. We compared this empirically optimal ordering with our predicted

ordering (sorting the indices on the absolute values of Q) and found the rank correlation is

0.999. Note that we can use this trick for both ED and LB_Keogh, and we can use it in

conjunction with the early abandoning Z-normalization technique (Section 4.2.1). The proof

of the optimal ordering for ED is provided in Section 5.6.

4.2.3. Reversing the Query/Data Role in LB_Keogh.—Normally the LB_Keogh lower

bound discussed in Section 4.1.2 builds the envelope around the query, a situation we denote

LB_KeoghEQ for concreteness, and illustrate in Figure 10(left). This only needs to be done

once, and thus saves the time and space overhead that we would need if we built the

envelope around each candidate instead, a situation we denote LB_KeoghEC.

However, as we show in the next section, we can selectively calculate LB_KeoghEC in a just-

in-time fashion, only if all other lower bounds fail to prune. This removes space overhead,

and as we will see, the time overhead pays for itself by pruning more full DTW calculations.

Note that in general, LB_KeoghEQ ≠ LB_KeoghEC, and that on average each one is larger

about half the time.

4.2.4. Cascading Lower Bounds.—One of the most useful ways to speed up time

series similarity search is to use lower bounds to admissibly prune off unpromising

candidates [Ding et al. 2008; Fu et al. 2008]. This has led to a flurry of research on lower

bounds, with at least eighteen proposed for DTW [Adams et al. 2005; Ding et al. 2008;

Keogh et al. 2009; Kim et al. 2001; Sakurai et al. 2005; Yi et al. 1998; Zhang and Glass

2011; Zinke and Mayer 2006]. In general, it is difficult to state definitively which is the best

bound to use, since there is a tradeoff between the tightness of the lower bound and how fast

it is to compute. Moreover, different datasets and even different queries can produce slightly

different results. However, as a starting point, we implemented all published lower bounds

and tested them on fifty different datasets from the UCR archive, plotting the (slightly

idealized for visual clarity) results in Figure 11. Following the literature [Keogh et al. 2009],

we measured the tightness of each lower bound as LB(A, B)/DTW(A, B) over 100,000

randomly sampled subsequences A and B of length 256.

The reader will appreciate that a necessary condition for a lower bound to be useful is for it

to appear on the “skyline” shown with a dashed line; otherwise there exists a faster-to-

compute bound that is at least as tight, and we should use that instead. Note that the early

abandoning DTW discussed in Section 4.1.4 is a special case in that it produces a spectrum

of bounds, as at every stage of computation it is incrementally computing the DTW until the

last computation gives the final true DTW distance.

RAKTHANMANON et al. Page 12

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Which of the lower bounds on the skyline should we use? Our insight is that we should use

all of them in a cascade. We first use the O(1) LB_KimFL, which while a very weak lower

bound prunes many objects. If a candidate is not pruned at this stage we compute the

LB_KeoghEQ. Note that as discussed in Sections 4.1.3, 4.2.1, and 4.2.2, we can incrementally

compute this; thus, we may be able to abandon anywhere between O(1) and O(n) time. If we

complete this lower bound without exceeding the best-so-far, we reverse the query/data role

and compute LB_KeoghEC (Section 4.2.3). If this bound does not allow us to prune, we then

start the early abandoning calculation of DTW (Section 4.1.4).

Space limits preclude detailed analysis of which lower bounds prune how many candidates.

Moreover, the ratios depend on the query, data, and size of the dataset. However, we note the

following. Detailed analysis is available at Supporting Website2; lesion studies tell us that all

bounds do contribute to speedup; removing any lower bound makes the search at least twice

as slow; and finally, using this technique we can prune more than 99.9999% of DTW

calculations for a large-scale search.

5. EXPERIMENTAL RESULTS

We begin by noting that we have taken extraordinary measures to ensure our experiments are

reproducible. In particular, all data and code will be available in perpetuity, archived at

Supporting Website2. Moreover, the site contains several videos that visualize some of the

experiments in real time. We consider the following methods.

• Naïıve. Each subsequence is Z-normalized from scratch. The full Euclidean

distance or the DTW is used at each step. Approximately 2/3 of the papers in the

literature do (some minor variant of) this.

• State-of-the-art (SOTA). Each sequence is Z-normalized from scratch, early

abandoning is used, and the LB_Keogh lower bound is used for DTW.

Approximately 1/3 of the papers in the literature do (some minor variant of) this.

• UCR Suite. We use all of our applicable speedup techniques.

DTW uses R = 5% unless otherwise noted. For experiments where Naïve or

SOTA takes more than 24 hours to finish, we terminate the experiments and

present the linearly extrapolated values, shown in gray. Where appropriate, we

also compare to an oracle algorithm.

• GOd’s ALgorithm (GOAL) is an algorithm that only maintains the mean and

standard deviation using the online O(1) incremental calculations.

It is easy to see that, short of an algorithm that precomputes and stores a massive amount of

data (quadratic in m), GOAL is a lower bound on the fastest possible algorithm for either ED

or DTW subsequence search with unconstrained and unknown length queries. The acronym

reminds us that we would like to be as close to this goal value as possible.

2www.cs.ucr.edu/~eamonn/UCRsuite.html

RAKTHANMANON et al. Page 13

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.ucr.edu/~eamonn/UCRsuite.html

It is critical to note that our implementations of Naïve, SOTA, and GOAL are efficient and

tightly optimized, and they are not crippled in any way. For example, had we wanted to

claim spurious speedup, we could implement SOTA recursively rather than iteratively, and

that would make SOTA at least an order of magnitude slower. In particular, the code for

Naïve, SOTA, and GOAL is exactly the same code as the UCR suite, except the relevant

speedup techniques have been commented out.

While very detailed spreadsheets of all of our results are archived in perpetuity at Supporting

Website2, we present subsets of our results in the following. We consider wall clock time on

a 2 Intel Xeon Quad-Core E5620 2.40GHz with 12GB 1333MHz DDR3 ECC Unbuffered

RAM (using just one core unless otherwise explicitly stated).

5.1. Baseline Tests on Random Walk

We begin with experiments on random walk data. Random walks model financial data very

well and are often used to test similarity search schemes. More importantly for us, they

allow us to do reproducible experiments on massive datasets without the need to ship large

hard drives to interested parties. We have simply archived the random number generator and

the seeds used. We have made sure to use a very high-quality random number generator that

has a period longer than the longest dataset we consider. In Table II, we show the length of

time it takes to search increasingly large datasets with queries of length 128. The numbers

are averaged over 1000, 100, and 10 queries, respectively.

These results show a significant difference between SOTA and the UCR suite. However, this

is for a very short query; what happens if we consider longer queries? As we show in Figure

12, the ratio of SOTA-DTW over UCR-DTW improves for longer queries.

To reduce visual clutter we have only placed one Euclidean distance value on the figure, for

queries of length 4096. Remarkably, UCR-DTW is even faster than SOTA Euclidean
distance. As we shall see in our EEG and DNA examples, even though 4096 is longer than

any published query lengths in the literature, there is a need for even longer queries.

It is also interesting to consider the results of the 128-length DTW queries as a ratio over

GOAL. Recall that the cost for GOAL is independent of query length, and this experiment is

just 23.57 seconds. The ratios for Naïve, SOTA, and the UCR suite are 5.27, 2.74, and 1.41,

respectively. This suggests that we are asymptomatically closing in on the fastest possible

subsequence search algorithm for DTW. Another interesting ratio to consider is the time for

UCR-DTW over UCR-ED, which is just 1.18. Thus, the time for DTW is not significantly

different than that for ED, an idea that contradicts an assumption made by almost all papers

on time series in the last decade (including papers by the current authors).

5.2. Supporting Long Queries: EEG

The previous section shows that we gain the greatest speedup for long queries, and here we

show that such long queries are really needed. The first user of the UCR suite was Dr.

Sydney Cash, who, together with author Bilson Campana, wants to search massive archives

of EEG data for examples of epileptic spikes, as shown in Figure 13.

RAKTHANMANON et al. Page 14

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

From a single patient, Cash gathered 0.3 trillion datapoints and asked us to search for a

prototypical epileptic spike Q he created by averaging spikes from other patients. The query

length was 7000 points (0.23 seconds). Table III shows the results.

This data took multiple sessions over seven days to collect, at a cost of approximately

$34,000 Supporting Website2, so the few hours of CPU time we required to search the data

are dwarfed in comparison. We refer the interested reader to Chaovalitwongse et al. [2005]

and the references therein for a detailed discussion of the utility of similarity search in EEG

data.

5.3. Supporting Very Long Queries: DNA

Most work on time series similarity search (and all work on time series indexing) has

focused on relatively short queries, less than or equal to 1024 datapoints in length. Here we

show that we can efficiently support queries that are two orders of magnitude longer.

We consider experiments with DNA that has been converted to time series. However, it is

important to note that we are not claiming any particular bioinformatics utility for our work;

it is simply the case that DNA data is massive, and the ground truth can be obtained through

other means. As in Shieh and Keogh [2008], we use the algorithm in Table IV to convert

DNA to time series.3

We chose a section of Human chromosome 2 (H2) to experiment with. We took a

subsequence beginning at 5,709,500 and found its nearest neighbor in the genomes of five

other primates, clustering the six sequences with single linkage to produce the dendrogram

shown in Figure 14.

Pleasingly, the clustering is the correct grouping for these primates [Locke et al. 2011].

Moreover, because Human chromosome 2 is widely accepted to be a result of an end-to-end

fusion of two progenitor ancestral chromosomes 2 and 3 [Locke et al. 2011], we should

expect that the nearest neighbors for the nonhuman apes come from one of these two

chromosomes, and that is exactly what we found.

Our query is of length 72,500, and the genome chimp is 2,900,629,179 base pairs in length.

The single-core nearest neighbor search in the entire chimp genome took 38.7 days using

Naïve, 34.6 days using SOTA, but only 14.6 hours using the UCR suite. As impressive as

this is, as we shall show in the next section, we can do even better.

5.3.1. Can We Do Better Than the UCR Suite?—We claim that for the problem of

exact similarity search with arbitrary length queries, our UCR suite is close to optimal.

However, it is instructive to consider an apparent counterexample and its simple patch.

Consider the search for a query of length 64 as considered in Section 5.1. Using GOAL took

9.18 seconds, but the UCR suite took only a little longer, just 10.64 seconds. Assume that

the original query was:

3To preserve the reversible one-to-one mapping between time series and DNA we normalize the offset by subtracting round(mean)
and we do not divide by the STD.

RAKTHANMANON et al. Page 15

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Q = [2.34, 2.01, 1.99, …] .

But we make it three times longer by padding it like this:

QP = [2.34, 2.34, 2.34, 2.01, 2.01, 2.01, 1.99, 1.99, 1.99, …] .

Further assume that we do the same to database T, to get TP, which is three times longer.

What can we now say about the time taken for the algorithms? GOAL will take exactly three

times longer, and Naïve takes exactly nine times longer, because each ED calculation takes

three times longer and there are three times as many calculations to do. Our UCR suite does

not take nine times longer, as it can partly exploit the smoothness of the data; however, its

overhead is greater than three. Clearly, if we had known that the data was contrived in this

manner, we could have simply made a one-in-three downsampled version of the data and

query, done the search on this data, and reported the location and distance back in the TP
space by multiplying each by three.

Of course, this type of pathologically contrived data does not occur in nature. However,

some datasets are richly oversampled, and this has a very similar effect. For example, a

decade ago, most ECGs were sampled at 256 Hz, and that seemed to be adequate for

virtually all data analysis applications [Bragge et al. 2004]. However, current machines

typically sample at 2048 Hz which, given this reasoning, would take up to sixty-four times

longer to search ((2048/256)2) with almost certainly identical results.

We believe that oversampled data can be searched more quickly by exploiting a provisional

search in a downsampled version of the data that can quickly provide a low best-so-far,
which, when projected back into the original space, can be used to prime the search by

setting a low best-so-far at the beginning of the search, thus allowing the early abandoning

techniques to be more efficient.

To test this idea, we repeated the experiment in the previous section, with a onein-ten

downsampled version of the chimp genome/human query. The search took just 475 seconds.

We denoted the best matching subsequence distance rD. We reran the full resolution search

after initializing the best-so-far to rD*10. This time the search fell from 14.64 hours to 4.17

hours, and we found the same answer, as we logically must.

Similar ideas have been proposed under the name of Iterative Deepening DTW [Adams et al.

2005] or Multi Scale DTW [Muller 2009; Zinke and Mayer 2006]; thus, we will not further

develop this idea here. We simply caution the reader that oversampled (smooth) data may

allow more speedup than a direct application of the UCR suite may initially suggest.

5.4. Realtime Medical and Gesture Data

The proliferation of inexpensive low-powered sensors has produced an explosion of interest

in monitoring real time streams of medical telemetry and/or Body Area Network (BAN) data

[Laerhoven et al. 2009].

RAKTHANMANON et al. Page 16

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

There are dozens of research efforts in this domain that explicitly state that while monitoring

under DTW is desirable, it is impossible [Wobbrock et al. 2007]. Thus, approximations of,

or alternatives to DTW are used. Dozens of suggested workarounds have been suggested.

For example, [Hsiao et al. 2005] resorts to only “dealing with shorter test and class

templates, as this is more efficient,” many research efforts including Stiefmeier et al. [2007]

resort to a low cardinality version of DTW using integers, or DTW approximations that

operate on piecewise linear approximations of the signals [Keogh et al. 2009; Pressly 2008],

or drastically downsampled versions of the data [Gillian et al. 2011; Raghavendra et al.

2011]. In spite of some progress from existing ideas such as lower bounding, Alon et al.

[2009] bemoans DTW is “still too slow for gesture recognition systems,” Pressly [2008]

laments that the “problem of searching with DTW (is) intractable,” Gillian et al. [2011] says

“Clearly (DTW) is unusable for real-time recognition purposes” and Srikanthan et al. [2011]

notes “Processing of one hour of speech using DTW takes a few hours.”

We believe that the UCR suite makes all of these objections moot. DTW can be used to spot

gestures/brainwaves/musical patterns/anomalous heartbeats in real time, even on low-

powered devices, even with multiple channels of data, and even with multiple simultaneous

queries.

To see this, we created a dataset of one year of electrocardiograms (ECGs) sampled at

256Hz. We created this data by concatenating the ECGs of more than two hundred people,

and thus we have a highly diverse dataset, with 8,518,554,188 datapoints. We created a

query by asking USC cardiologist Dr. Helga Van Herle to produce a query she searches for

on a regular basis, she created an idealized Premature Ventricular Contraction (PVC). The

results are shown in Table V. While this was on our multi-core desktop machine, the fact that

our results are 29,219 times faster than real-time (256 Hz) suggests that real-time DTW is

tenable even on low-power devices.

5.5. Speeding Up Existing Mining Algorithms

In this section, we demonstrate that we can speed up much of the code in the time series data

mining literature with minimal effort, simply by replacing their distance calculation

subroutines with the UCR suite. In many cases, the difference is small, because the

algorithms in question already typically try to prune as many distance calculations as

possible. As an aside, in at least some cases we believe that the authors could benefit from

redesigning the code in light of the drastically reduced cost for similarity search that the

UCR suite offers. Nevertheless, even though the speedups are relatively small (1.5X to 16X),

they are free, requiring just minutes of cut-and-paste code editing.

• Time Series Shapelets have garnered significant interest since their introduction

in 2009 [Ye and Keogh 2009]. We obtained the original code and tested it on the

Face (four) dataset, finding it took 18.9 minutes to finish. After replacing the

similarity search routine with the UCR suite, it took 12.5 minutes to finish.

• Online Time Series Motifs generalize the idea of mining repeated patterns in a

batch time series to the streaming case [Mueen and Keogh 2010]. We obtained

the original code and tested it on the EEG dataset used in the original paper. The

RAKTHANMANON et al. Page 17

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

fastest running time for the code, assuming linear space, is 436 seconds. After

replacing the distance function with the UCR suite, it took just 156 seconds.

• Classification of Historical Musical Scores [Fornés et al. 2007]. This dataset has

4027 images of musical notes converted to time series. We used the UCR suite to

compute the rotation-invariant DTW leave-one-out classification. It took 720.6

minutes. SOTA takes 142.4 hours. Thus, we have a speedup factor of 11.8.

• Classification of Ancient Coins [Huber-Mörk et al. 2011]. 2400 irregularly

shaped coins are converted to time series of length 256, and rotation-invariant

DTW is used to search the database, taking 12.8 seconds per query. Using the

UCR suite, this takes 0.8 seconds per query.

• Clustering of Star Light Curves is an important problem in astronomy [Keogh et

al. 2009], as it can be a preprocessing step in outlier detection [Rebbapragada et

al. 2009]. We consider a dataset with 1000 (purportedly) phase-aligned light

curves of length 1024, whose class has been determined by an expert

[Rebbapragada et al. 2009]. Doing spectral clustering on this data with DTW (R
=5%) takes about 23 minutes for all algorithms, and averaged over 100 runs we

find the Rand-Index is 0.62. While this time may seem slow, recall that we must

do 499,500 DTW calculations with relatively long sequences. As we do not trust

the original claim of phase alignment, we further do rotation-invariant DTW that

dramatically increases the Rand-Index to 0.76. Using SOTA, this takes 16.57

days, but if we use the UCR suite, this time falls by an order of magnitude, to

just 1.47 days on a single core.

5.6. Optimal Ordering in Early Abandoning of Euclidean Distance

In this section we revisit the idea of early abandoning discussed in Section 4.2.2. We will

show that if we order the distance calculations for a given time series query according to the

absolute values of the Z-normalized values, then on average the cumulative square distance

will be maximized. In other words, it is the best ordering in general, or in the average case.

THEOREM 1. Given a time series, the position that gives the maximum average point-to-point
distance is the position that has the highest absolute Z-normalized value.

PROOF. After Z-normalization, the mean and standard derivation of a time series are 0 and 1,

respectively.

For any fixed point a, the expected distance between this point and other points is

E (X − a)2 = E X2 − 2Xa + a2 = E X2 − 2aE[X] + a2E[1] = E (X − μ)2 − 2aμ + a2 = Var(X) − 2aμ + a2

= 1 + a2 .

Hence, the expected point-to-point distance from a fixed point a to other points is 1+a2

Therefore, the point that has the maximum absolute Z-normalized value will maximize the

expected point-to-point distance. □

RAKTHANMANON et al. Page 18

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LEMMA 1. The optimal ordering for early abandoning of Euclidean distance is ordering by
the absolute Z-normalized value.

PROOF. The Euclidean distance is a summation of all point-to-point distances and it is a

monotonically nondecreasing function. From Theorem 1, if we order the points in the query

by their absolute of Z-normalized values of each point, the expected contribution to the

summation will be increased as much as possible. Hence, the number of points used for

early abandoning is minimized, and this is the optimal ordering. □

According to Lemma 1, we can obtain the optimal ordering in early abandoning simply by

ordering by absolute Z-normalized value. Next, we will empirically consider the number of

point-to-point calculations needed in the early abandoning process. The UCR suite computes

a smaller number of calculations in finding the nearest neighbor compared to SOTA, Figure

15 shows the typical behavior of the number of point-to-point calculations in the early

abandoning process from SOTA and the UCR suite when finding the nearest neighbor of a

query of size 128 in a random walk time series of size 100 million.

As we expect, the average number of point-to-point calculations is greatly reduced when a

very good candidate (a small best-so-far) has been found. Using the traditional Naïve

approach, exactly 128 calculations per datapoint are required if one does not apply the early

abandon technique. With the ordering, the UCR suite can reduce the average number of

calculations to 3.34, or just 2.6% of the query length. When the query is ten times longer, of

length 1280, the average number of calculated point-to-point distances from our UCR suite

is only 11.49, or less than 1% of the length of the query.

When the query is longer, the number of point-to-point calculations is obviously higher;

however, if we consider the ratio between the number of calculations and the query length,

surprisingly, this ratio typically decreases for longer queries. Figure 16 shows the

relationship between the average number of point-to-point calculations and the length of the

query on a 100-million random walk time series (see also Figure 15).

According to Lemma 1, it is possible to order by the values of either the query or the

incoming data. The advantage in ordering the query is that we can see the query ahead of

time and we can do the ordering just once and use that ordering for the entire search process.

In summary, in this section we have explained how to order the individual elements of the

distance calculations in order to maximize the utility of early abandoning in Euclidean

distance, and we show that a simple solution of ordering according to its Z-normalized

values is optimal. However, generalizing this solution to early abandoning with LB_Keogh is

not easy because the contribution of each point is dependent upon the shape of the envelope.

Empirically, however, it does seem that the solution used for Euclidean distance also works

very well for LB_Keogh, although a proof is elusive.

6. SUPPORTING THE UNIFORM SCALING DISTANCE

In this section we show that most of the ideas we have introduced to speed up ED and DTW

also work for the uniform scaling (US) distance. While DTW is a generalization of ED to

RAKTHANMANON et al. Page 19

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

allow invariance to local warping or changes of scale, US is a generalization of ED to allow

global invariance to scale. While the need for scaling invariance shows up in many domains,

it is easiest to understand if we consider examples in speech or music. For ease of exposition

we consider the analogue examples in ASCII text; later we will show visual examples

directly in the time series space.

Consider the opening phrase of Shakespeare’s most famous soliloquy, with spaces indicating

the length of pauses:

To be or not to be

If a naive speaker reads this, he may pronounce it as:

To be or not to be

The hamming distance (the discrete analogue of ED) would find these utterances very

different, since they disagree in all of the underlined locations. However, the string edit

distance (the discrete analogue of DTW) would find them essentially identical,4 since they

only differ locally.

Let us imagine now that the speaker pronounces the line very slowly, for overly dramatic

effect:

TToo bbee oorr nnoott ttoo bbee

Here, even the string edit distance would report a huge difference between this utterance and

the original, as they disagree in all the underlined locations. This is in spite of the fact that a

listener (or reader) would easily recognize the intended sentence. The solution is to rescale

this drawn-out version, by uniformly scaling it (downsampling) by a factor of two.

This is what the uniform scaling distance does in the real-valued domain. The task is more

difficult in the real-valued domain, as the scaling factor does not have to be an integer (we

can rescale the ASCII text bbee by a factor of two to get be but we cannot scale it by a factor

of three or two point seven).

In the next section, we show that we can use some of the ideas introduced in this work to

support uniform scaling. Please note that US and DTW are not mutually exclusive; they can

be used in conjunction [Fu et al. 2008]. However, for clarity of presentation, we consider

them separately in this work.

6.1. Why Uniform Scaling?

Although nearest neighbor search with the Euclidean distance is efficient, the quality/

correctness of the neighbors may be dubious for some real-world problems. As empirical

studies [Keogh et al. 2004; Vlachos et al. 2003] suggest, both ED and DTW may not be

4In some flavors of string edit distance, the cost of inserting/deleting white space is zero.

RAKTHANMANON et al. Page 20

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

suitable (or at least, fully sufficient) for certain problems. Figure 17 demonstrates a synthetic

example where uniform scaling distance can outperform both ED and DTW. While we

formally define uniform scaling in the following, it suffices to say here that uniform scaling

refers to the global linear stretching/shrinking of patterns (in contrast to warping, which

refers to local and nonlinear stretching/shrinking). In our toy example, we generated a

simple set of time series and then created a single-linkage clustering of them. Neither ED

nor DTW can correctly cluster these simple shapes, in spite of the fact that they are easily

clustered by humans. Here, uniform scaling can discover the correct clustering as shown in

Figure 17(right). Note that DTW and uniform scaling each have a single parameter to set;

the size of warping windows for DTW and the maximum scaling factor for uniform scaling;

however, we manually set the best parameter for both approaches.

Although the shapes of the time series are simple, the number of peaks in the time series is

different. The local alignment ability of DTW can align the different positions of peaks but it

is not robust to different numbers of peaks, as the example in Figure 17 shows. In contrast,

uniform scaling has been shown to be useful in many situations [Keogh et al. 2004; Vlachos

et al. 2003] because it can rescale one subsequence to match another in the correct scale,

truncating off spurious data in one sequence if necessary. While this synthetic example is

somewhat contrived for visual clarity, existing work has shown that uniform scaling

invariance can be very useful for real datasets [Keogh et al. 2004]. Moreover, in Section 6.5

we will show an example of a real-world problem in speech processing, where only uniform

scaling can produce correct answers. In the next section, we will explain how to compute the

uniform scaling distance.

6.2. How to Compute Uniform Scaling

As noted in the previous section, uniform scaling is a technique to relax an assumption about

the correct length of the answer subsequence; this technique can be used to either remove a

parameter, fixed length, or limit the range or expected length of the answer. A subsequence

can be rescaled into another length called a scaling subsequence.

Definition 4. A scaling subsequence of length s from subsequence Q of length n is a

subsequence of length s (s ≤ n) mapped linearly from Q. Precisely, given a subsequence =

q1, q2,…, qn, a scaling subsequence Qs of length s is defined as Qs = q1, q2, …, qs, where an

element Qi
s or qi = q i * n/s , 1≤ i ≤ s. A set of all scaling subsequences is defined as

Q = {Qs | 1 ≤ s ≤ n}.

Note that every scaling subsequence Qs is a Euclidean Z-normalized subsequence. The

distance between two subsequences has been defined in Definition 3 (Section 3.1). We can

define the distance between two subsequences of different lengths.

Definition 5. The Euclidean distance (ED) between a scaling subsequence Qs and C is

defined as:

RAKTHANMANON et al. Page 21

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ED Qs, C = ∑i = 1
s qi − ci

2 .

The minimum distance among all scaling subsequences and a candidate subsequence is

called the uniform scaling distance.

Definition 6. The uniform scaling Euclidean distance(or just uniform scaling distance)

between a set of scaling subsequences Q and another subsequence C is defined as:

Uniform_scaling_Dist(Q, C)=minsED Qs, C .

An example of a scaling subsequence is shown in Figure 18(left). The original subsequence

Q of length 100 is shown on the top, and after rescaling by Definition 4, the subsequence Q

of length 77, or Q77, is shown as the bottom subsequence. The value in the scaling

subsequence is linearly mapped from the value of the original subsequence.

The distance between the scaling subsequence and a candidate is shown in Figure 18(right).

The top figure shows the distance between Q100, or the original subsequence, and the

candidate C. The bottom figure shows ED(Q77, C) as the summation of the square of the

hatch lines. In this example, after the correct scaling, much the distance becomes smaller

than the original Euclidean distance.

To compute the uniform scaling distance, the simple goal is to find the candidate whose

uniform scaling distance is minimized. One possible approach is using the fastest known

algorithm (the UCR suite) to search the nearest neighbor of every possible length and pick

the smallest distance among all scales. However, even though the UCR suite is very fast,

running it, say, 50 times to find the best match to a query of length 100 to any candidate

match in the range 75 to 125 would clearly introduce a massive overhead. Fortunately, as we

show in the next section, the UCR suite can exactly handle uniform scaling with very little

overhead.

6.3. UCR Suite: Uniform Scaling

To handle uniform scaling directly with the UCR suite, we use the idea of grouping all

scaling subsequences together as proposed by Keogh et al. [2004]. The idea is simple but

very effective. We begin by grouping all scaling subsequences together and create

representatives called upper envelope and lower envelope.

Definition 7. The upper envelope U and lower envelope L of a set of scaling subsequences Q
is defined as:

U = u1, u2, …, us where ui = max Qi
1, Qi

2, …, Qi
n

L = l1, l2, …, ls where li = min Qi
1, Qi

2, …, Qi
n ,

RAKTHANMANON et al. Page 22

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where s is the user-defined minimum length of scaling subsequence (s≤ n). We also define a

scaling factor by 1 − s/n. If the scaling factor is 0%, the uniform scaling search degenerates

to a Euclidean distance search.

Recall that the set of all scaling subsequences Q contains scaling subsequence Qk of any

length k(s ≤ k ≤ n), and Qi
k is the ith value of the scaling subsequence Qk. Hence, the upper/

lower envelope is a sequence of all maximum/minimum values of all scaling subsequences.

To demonstrate this, a visual example of the upper/lower envelopes is shown in Figure 19.

Figure 19(left) shows all scaling subsequences of different lengths created from the

subsequence Q. The envelopes are created from all values inside those scaling subsequences;

the upper envelope U is composed of all maximum values and the lower envelope L is

composed of all minimum values from those subsequences. The length of the envelopes is

equal to the length of the shortest scaling subsequence.

After the envelopes are created, we can use LB_Keogh to speed up the nearest neighbor

search, in this case uniform scaling search. Figure 19(top-right) and (bottom) shows

examples of the upper and lower envelopes when the length is set to 80 and 60, respectively.

LB_Keogh can be visualized as the summation of the hatch lines in Figure 19(right).

Although the envelopes are not as long as the query, LB_Keogh can still provide a lower

bound and can be used to prune candidates efficiently. Note that the early abandoning

technique and other techniques from the UCR suite (Sections 4.1 and 4.2) can also be

applied here.

An overview of the uniform scaling search algorithm is shown in Table IV. Note that all

techniques in the UCR suite, e.g., online Z-normalization, early abandoning, and so on, can

be applied here, however for the sake of clarity, these techniques are omitted.

To perform uniform scaling search, one parameter is required from a user: the maximum

scaling factor. Without loss of generality, we use the scaling factor to scale down the size of

the query. Please note that this parameter can be used to control the range of the final answer

and it is not that hard to set this parameter if the query length is known; however, it is also

possible to hide this parameter from end-users by allowing hardcoded scaling factors of, say,

up to 200% /down to 50%.

The algorithm starts by setting the best-so-far value to the maximum possible value (line 1).

Next, the algorithm reads the data once with the online Z-normalization technique (Table I);

the current candidate from the data is stored in C (line 4). Then, in line 6, the envelopes are

generated, whose size depends on the value of the scaling factor. Classic LB_Keogh is

calculated according to the envelopes (line 7) and if the lower bound distance is smaller than

the current best-so-far, the distances from all scaling subsequences to the current candidate

will be computed (lines 9–11). Hence, the best answer will be selected as the nearest

neighbor in the end.

RAKTHANMANON et al. Page 23

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6.4. Experimental Results: Scalability

We compare our uniform scaling search algorithm, UCR-US, in Table III with the Naïve

approach, which is to search a nearest neighbor using the best known algorithm, the UCR

suite, many times, and select the best neighbor among different lengths.

Figure 20 shows that, while producing the exact same result, the proposed approach, UCR-

US, is faster than the Naïve approach by an order of magnitude. Again, we emphasize that

the Naïve approach uses UCR-ED as the search algorithm, and thus all of the speedup is

directly attributable to the uniform scaling lower bound. When the query is longer, our

approach is much faster. The running time in this experiment is an averaged running time

from ten random walk queries of various lengths (32 to 2048) on a random walk time series

of length 100 million datapoints using a single core machine with a scaling factor of 10%.

When the scaling factor is increased, the speedup gained by using our algorithm is also

significantly increased. Figure 21 shows experiments on searching uniform scaling nearest

neighbor on random walk data of size 100 million, with the query length fixed at 128. The

number of candidate pairs grows dramatically if the range of possible lengths is increased.

However, using our approach, grouping all scaling subsequences to envelopes can reduce the

number of needed calculations by two orders of magnitude.

THEOREM 2. LB_Keogh is a lower bound of all of the uniform scaling Euclidean distances.

PROOF. Refer to Keogh et al. [2004]. □

6.5. On the Utility of Uniform Scaling Search: The Raven

In this section, we will demonstrate the utility of uniform scaling search. In particular, we

show that it can produce superior results compared to ED/DTW search, especially if the

query is long. We consider the audio of an actor reading a well-known poem, The Raven, by

Edgar Allan Poe. We convert the audio into a single time series using Mel Frequency

Cepstral Coefficients (MFCC).

We did a search for a long phrase that appears once in the poem. That phrase is “tapping,

tapping at my chamber door.” The results of three nearest neighbor search algorithms are

shown in Figure 22. Figure 22(top) shows the time series created from the audio file with the

position of the query and the results. Each algorithm finds the nearest neighbor in the time

series space and projects the results back to the audio file; we can visualize the

corresponding text in Figure 22(bottom). Although the phrase “tapping, tapping at my

chamber door” appears only once in the poem, the uniform scaling search objectively

outperforms other search algorithms (as measured by, say, string edit distance in the ASCII

space).

7. DISCUSSION AND CONCLUSIONS

While our work has focused on fast sequential search, we believe that for both DTW and

US, our work is faster than all known indexing efforts. Consider Assent et al. [2008], which

indexes a random walk time series of length 250,000 to support queries of length 256. They

RAKTHANMANON et al. Page 24

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

built various indexes to support DTW queries, noting that the fastest of the four carefully-

tuned approaches requires access to approximately 15,000 pages to answer a query. These

disk accesses are necessarily random accesses. While they did not give wall clock time, if

we assume an HDD spindle speed of 7200 rpm (average rotational latency = 4.17ms), then

just the disk I/O time to answer this query must be at least 62.55 seconds. However, as we

have shown, we can load all of the data into the main memory with more efficient sequential

disk accesses and answer these queries in 0.4 seconds, including disk I/O time, on a single

core machine.

Note that all experiments in this article include the time taken to read the data from disk.

However, for more than a few million objects this time is inconsequential; thus, we did not

report it separately. We have made a strong and unintuitive claim in the abstract. We said that

our UCR-DTW is faster than all current Euclidean distance searches. In Table V, for

example, we show that DTW can be three times faster than state-of-the-art ED searching.

How is this possible? Recall that all Euclidean searches in the literature require an O(n) data

normalizing step to be performed for each subsequence. Thus, no matter how effective the

pruning/search strategy used, the amortized time for a single sequence must be at least O(n).
In contrast, using the ideas developed in this work, the vast majority of potential DTW

calculations are pruned with O(1) work, while some require up to O(n) work, and only a

vanishingly small fraction require O(nR) work. The weighted average of these possibilities

is less than O(n).

To put our results in perspective, we compare them with a very recent state-ofthe art

embedding-based DTW search technique, called EBSM (including the variant called BSE)

[Papapetrou et al. 2011]. This is an excellent paper to use as a benchmark, as it exhaustively

compares to almost all other methods in the literature, and it tests its contributions over

different datasets, query lengths, warping widths, and so on. The contrast between EBSM

and our method are summarized as follows.

• Our method is exact; EBSM is approximate.

• EBSM requires setting some parameters (number of reference sequences,

dimensionality, number of split points, and so on). Our method requires zero

parameters.

• EBSM requires offline preprocessing that takes over 3 hours for just 1 million

objects. We have zero preprocessing time.

• The EBSM method does not, and cannot, Z-normalize. As noted in Section 1.2.1,

we believe that Z-normalizing is critical, and we have shown that failure to do it

hurts on 45 out of 45 of the UCR time series classification datasets.

• EBSM can support queries in a limited range, which must be predetermined and

limited for efficiency. In contrast, we have no minimum/maximum query length.

• We can handle exact queries under uniform scaling [Fu et al. 2008], whereas

EBSM cannot do this.

• Finally, we are simply much faster! (Section 1).

RAKTHANMANON et al. Page 25

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note, however, that there can be great utility in fast approximate search. There exist data

mining algorithms that can use a combination of (hopefully few) exact distance measures

and (hopefully much faster) approximate searches to produce overall exact results [Shieh

and Keogh 2008]. However, an approximate search method being faster than our approach is

a very high threshold to meet.

We have shown that our suite of ideas is 2 to 164 times faster than the true state-of-the-art,

depending on the query/data. However, based on the quotes from papers that we have

sprinkled throughout this work, we are sometimes more than 100,000 times faster than

recent papers; how is this possible? The answer seems to be that it is possible to produce

very Naïve implementations of DTW. For example, the recursive version of DTW can be

one to three orders of magnitude slower than the iterative version, depending on the

computer language and query length. Thus, the contributions of this article are twofold.

First, we have shown that much of the recent pessimism about using DTW for real-time

problems was simply unwarranted [Ding et al. 2008]. If carefully implemented, existing

techniques, especially lower bounding, can make DTW tractable for many problems. Our

second contribution is the introduction of the UCR suite of techniques that make DTW and

Euclidean distance subsequence search significantly faster than current state-of-the-art

techniques.

We have avoided presenting full pseudo-code to enhance the readability of the text; however,

full pseudo-code (and highly useable source-code) is readily available at Supporting

Website2. In future work we plan to revisit algorithms for time series motif discovery

[Mueen and Keogh 2010; Mueen et al. 2011], anomaly detection [Rebbapragada et al. 2009;

Shieh and Keogh 2008], time series summarization, shapelet extraction [Ye and Keogh

2009], clustering, and classification [Ding et al. 2008], in light of the results presented in this

work.

ACKNOWLEDGMENTS

We thank all the donors of code and data. We thank the reviewers for their useful comments. Papapetrou et al.
[2011] omits the length of the test data we mention in Section 1. T. Rakthanmanon was kind enough to give us the 1
million figures.

This work is supported by the National Science Foundation grants 0803410 and 0808770, FAPESP award
2009/06349–0, and the Royal Thai Government scholarship.

REFERENCES

Adams N, Marquez D, and Wakefield G 2005 Iterative deepening for melody alignment and retrieval.
In Proceedings of ISMIR. 199–206.

Alon J, Athitsos V, Yuan Q, and Sclaroff S 2009 A unified framework for gesture recognition and
spatiotemporal gesture segmentation. IEEE Trans. Pattern Anal. Mach. Intell 31, 9, 1685–1699.
[PubMed: 19574627]

Assent I, Krieger R, Afschari F, and Seidl T 2008 The TS-Tree: Efficient time series search and
retrieval. In Proceedings of EDBT. 252–63.

Bei CD and Gray RM 1985 An improvement of the minimum distortion encoding algorithm for vector
quantization. IEEE Trans. Commun 33, 10, 1132–1133.

Bragge T, Tarvainen MP, and Karjalainen PA 2004 High-Resolution QRS Detection Algorithm for
Sparsely Sampled ECG Recordings. Department of Applied Physics Report, University of Kuopio.

RAKTHANMANON et al. Page 26

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chadwick NA, McMeekin DA, and Tan T 2011 Classifying eye and head movement artifacts in EEG
Signals. In Proceedings of IEEE DEST. 285–291.

Chan TF, Golub GH, and Leveque RJ 1983 Algorithms for computing the sample variance: Analysis
and recommendations. Amer. Statist 37, 242–247.

Chaovalitwongse WA, Sachdeo RC, Pardalos PM, Iasemidis LD, and Sackellares JC 2005 Automated
brain activity classifier. Epilepsia 46, 313.

Chen L and Ng R 2004 On the marriage of LP-norms and edit distance. In Proceedings of VLDB.
792–803.

Chen Y, Chen G, Chen K, and Ooi BC 2009 Efficient processing of warping time series join of motion
capture data. In Proceedings of ICDE. 1048–1059.

Cheng DY, Gersho A, Ramamurthi B, and Shoham Y 1984 Fast search algorithms for vector
quantization and pattern matching. In Proceedings of ICASSP. 372–375.

Ding H, Trajcevski G, Scheuermann P, Wang X, and Keogh EJ 2008 Querying and mining of time
series data: Experimental comparison of representations and distance measures. J. VLDB 1, 2,
1542–1552.

Dupasquier B and Burschka S 2011 Data mining for hackers–Encrypted traffic mining. In Proceedings
of the 28th Chaos Comm’ Congress.

Fornés A, Lladós J, and Sanchez G 2007 Old handwritten musical symbol classification by a dynamic
time warping based method. Graph. Recogn 5046, 51–60.

Fu A, Keogh EJ, Lau L, Ratanamahatana C, and Wong R 2008 Scaling and time warping in time series
querying. VLDB J. 17, 4, 899–921.

Gillian N, Knapp R, and O’Modhrain S 2011 Recognition of multivariate temporal musical gestures
using n-dimensional dynamic time warping. In Proceedings of the 11th International Conference
on New Interfaces for Musical Expression.

Goldberg D 1991 What every computer scientist should know about floating-point arithmetic. ACM
Comput. Surv 23, 1.

Guitel G 1975 Histoire Comparée des Numérations Écrites. Flammarion, Paris 566–574.

Hsiao M, West K, and Vedatesh G 2005 Online context recognition in multisensor system using
dynamic time warping. In Proceedings of ISSNIP. 283–288.

Huber-Mörk R, Zambanini S, Zaharieva M, and Kampel M 2011 Identification of ancient coins based
on fusion of shape and local features. Mach. Vis. Appl 22, 6, 983–994.

Jegou H, Douze M, Schmid C, and Perez P 2010 Aggregating local descriptors into a compact image
representation. In Proceedings of IEEE CVPR. 3304–3311.

Kahveci T and Singh AK 2004 Optimizing similarity search for arbitrary length time series queries.
IEEE Trans. Knowl. Data Eng 16, 4, 418–433.

Keogh E and Ratanamahatana CA 2005 Exact indexing of dynamic time warping. Knowl. Inform. Syst
7, 3, 358–386.

Keogh EJ and Kasetty S 2003 On the need for time series data mining benchmarks: A survey and
empirical demonstration. Data Mining Knowl. Discov 7, 4, 349–371.

Keogh EJ, Palpanas T, Zordan VB, Gunopulos D, and Cardle M 2004 Indexing large human-motion
databases. In Proceedings of VLDB. 780–791.

Keogh EJ, Wei L, Xi X, Vlachos M, Lee SH, and Protopapas P 2009 Supporting exact indexing of
arbitrarily rotated shapes and periodic time series under Euclidean and warping distance measures.
VLDB J. 18, 3, 611–630.

Kim S, Park S, and Chu W 2001 An index-based approach for similarity search supporting time
warping in large sequence databases. In Proceedings of ICDE. 607–614.

Laerhoven K, Berlin E, and Schiele B 2009 Enabling efficient time series analysis for wearable activity
data. In Proceedings of ICMLA. 392–397.

Lim SH, Park H, and Kim SW 2007 Using multiple indexes for efficient subsequence matching in
time-series databases. Inf. Sci 177, 24, 5691–5706.

Ling RF 1974 Comparison of several algorithms for computing sample means and variances. J. Amer.
Statist. Assoc 69, 348, 859–866.

RAKTHANMANON et al. Page 27

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Locke DP, Hillier LW, Warren WC, et al. 2011 Comparative and demographic analysis of orangutan
genomes. Nature 469, 529–533. [PubMed: 21270892]

Masek WJ and Paterson MS 1980 A faster algorithm computing string edit distances. J. Comput. Syst.
Sci 20, 1, 18–31.

McNames J 2000 Rotated partial distance search for faster vector quantization encoding. IEEE Signal
Proc. Lett 7, 9, 244–246.

Mueen A and Keogh EJ 2010 Online discovery and maintenance of time series motifs. In Proceedings
of KDD. 1089–1098.

Mueen A, Keogh EJ, Zhu Q, Cash S, Westover MB, and Shamlo N 2011 A disk-aware algorithm for
time series motif discovery. Data Min. Knowl. Discov 22, 1–2, 73–105.

Muller M 2009 Analysis and retrieval techniques for motion and music data. EUROGRAPHICS
tutorial.

Papapetrou P, Athitsos V, Potamias M, Kollios G, and Gunopulos D 2011 Embedding-based
subsequence matching in time-series databases. ACM Trans. Datab. Syst 36, 3, 174.

Pressly W 2008 TSPad: A Tablet-PC based application for annotation and collaboration on time series
data. In Proceedings of ACM Southeast Regional Conference. 527–552.

Raghavendra B, Bera D, Bopardikar A, and Narayanan R 2011 Cardiac arrhythmia detection using
dynamic time warping of ECG beats in e-healthcare systems. In Proceedings of WOWMOM. 1–6.

Rebbapragada U, Protopapas P, Brodley C, and Alcock C 2009 Finding anomalous periodic time
series. Mach. Learn 74, 3, 281–313.

Sakurai Y, Yoshikawa M, and Faloutsos C 2005 FTW: Fast similarity search under the time warping
distance. In Proceedings of PODS. 326–337.

Sakurai Y, Faloutsos C, and Yamamuro M 2007 Stream monitoring under the time warping distance. In
Proceedings of ICDE. 1046–1055.

Shieh J and Keogh EJ 2008 iSAX: Indexing and mining terabyte sized time series. In Proceedings of
KDD. 623–631.

Srikanthan S, Kumar A, and Gupta R 2011 Implementing the dynamic time warping algorithm in
multithreaded environments for real time and unsupervised pattern discovery. In Proceedings of
IEEE ICCCT. 394–398.

Stiefmeier T, Roggen D, and Tröster G 2007 Gestures are strings: Efficient online gesture spotting and
classification using string matching. In Proceedings of the ICST 2nd International Conference on
Body Area Networks.

Vlachos M, Hadjieleftheriou M, Gunopulos D, and Keogh EJ 2003 Indexing multi-dimensional time-
series with support for multiple distance measures. In Proceedings of KDD. 216–225.

Whitney CR 1997 Jeanne Calment, World’s elder, dies at 122. New York Times (8/5/97).

Wobbrock JO, Wilson AD, and Li Y 2007 Gestures without libraries, toolkits or training: A $1
recognizer for user interface prototypes. In Proceedings of ACM UIST. 159–168.

Ye L and Keogh EJ 2009 Time series shapelets: A new primitive for data mining. In Proceedings of
KDD. 947–956.

Yi B, Jagadish H, and Faloutsos C 1998 Efficient retrieval of similar time sequences under time
warping. In Proceedings of ICDE. 201–208.

RAKTHANMANON et al. Page 28

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
(left) Examples of approximately eleven seconds of ECG data from a 22-year-old male

(chf10) and a 54-year-old female (chf11), both with severe congestive heart failure. Note

that both traces, but especially chf11, exhibit wandering baseline. (right) Without any

normalization for offset or amplitude, we extracted 21 and 20 full heartbeats, respectively.

RAKTHANMANON et al. Page 29

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
(left) A single-linkage hierarchical clustering of ten beats randomly chosen from those

extracted in Figure 1, using the unnormalized Euclidean distance. (right) A single-linkage

hierarchical clustering of the same ten beats using normalized Euclidean distance. Only

about one quarter of the data was clustered for clarity; other sized subsets have similar

outcomes. The randomly extracted heartbeats are: 1, 2, 8, 12, 14 and 2, 4, 9, 17, 19.

RAKTHANMANON et al. Page 30

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Screen captures from the original video from which the Gun/NoGun data was culled. The

center frame is the original size; the left and right frames have been scaled by 110% and

90%, respectively. While these changes are barely perceptible, they double the error rate if

normalization is not used. (Video courtesy of Dr. Ratanamahatana).

RAKTHANMANON et al. Page 31

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
A long time series T can have a subsequence Ti,k extracted and compared to a query Q under

the Euclidean distance, which is simply the square root of the sum of the squared hatch line

lengths.

RAKTHANMANON et al. Page 32

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
(left) Two time series that are similar but out of phase. (right) To align the sequences we

construct a warping matrix, and search for the optimal warping path (red/solid squares).

Note that Sakoe-Chiba Band that has width R is used to constrain the warping path.

RAKTHANMANON et al. Page 33

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
(left) The LB_KimFL lower bound is O(1) and uses the distances between the First (Last)

pair of points from C and Q as a lower bound. It is a simplification of the original LB_Kim

[Kim et al. 2001]. (right) The LB_Keogh lower bound is O(n) and uses the Euclidean distance

between the candidate sequence C and the closer of {U, L} as a lower bound.

RAKTHANMANON et al. Page 34

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
An illustration of ED early abandoning. We have a best-so-far value of b. After

incrementally summing the first nine (of thirty-two) individual contributions to the ED we

have exceeded b, thus it is pointless to continue the calculation [Keogh et al. 2009].

RAKTHANMANON et al. Page 35

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
(left) At the top we see a completed LB_Keogh calculation, and below it we are about to

begin a full DTW calculation. (right) We can imagine the orange/dashed line moving from

left to right. If we sum the LB_Keogh contribution from the right of the dashed line (top) and

the partial (incrementally calculated) DTW contribution from the left side of the dashed line

(bottom), this is will be a lower bound to DTW(Q, C).

RAKTHANMANON et al. Page 36

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
(left) ED early abandoning. We have a best-so-far value of b. After incrementally summing

the first nine individual contributions to the ED, we have exceeded b; thus, we abandon the

calculation. (right) A different ordering allows us to abandon after just five calculations.

RAKTHANMANON et al. Page 37

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
(left) Normally the LB_Keogh envelope is built around the query (see also Figure 6(right),

and the distance between C and the closer of {U, L}acts as a lower bound (right). However,

we can reverse the roles such that the envelope is built around C and the distance between Q
and the closer of {U, L} is the lower bound.

RAKTHANMANON et al. Page 38

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
The mean tightness of selected lower bounds from the literature plotted against the time

taken to compute them.

RAKTHANMANON et al. Page 39

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
The time taken to search random walks of length 20 million with increasingly long queries,

for three variants of DTW. In addition, we include just length 4096 with SOTA-ED for

reference.

RAKTHANMANON et al. Page 40

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 13.
Query Q shown with a match from the 0.3 trillion EEG dataset.

RAKTHANMANON et al. Page 41

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 14.
A subsequence of DNA from Human chromosome 2, of length 72,500 and beginning at

5,709,500, is clustered using single linkage with its Euclidean distance nearest neighbors

from five other primates.

RAKTHANMANON et al. Page 42

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 15.
Typical numbers of point-to-point distance calculations from SOTA-ED and UCR-ED. In

this query of length 128, our UCR suite calculates only 3.34 times per datapoint on average.

Note that this number is reduced when the data is longer.

RAKTHANMANON et al. Page 43

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 16.
The number of point-to-point calculations in a nearest neighbor search with different query

lengths. (right) The number of calculations per single datapoint. (left) The number of

calculations shown as a fraction of the query length. Unintuitively, this ratio is typically

reduced when the query length is longer. At query length 4,096, the UCR suite computes

only 14.1 calculations per datapoint, or just 0.3% of the query length.

RAKTHANMANON et al. Page 44

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 17.
A clustering of synthetic time series using (left) Euclidean distance, (middle) DTW with a

band size of 20%, (right) uniform scaling with a maximum scaling factor of 20%. Only

uniform scaling finds the correct clustering.

RAKTHANMANON et al. Page 45

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 18.
(left) The subsequence Q is scaled down from the original scale to a smaller scale. (top-

right) The distance, called Euclidean distance, between subsequence Q and C in the original

scale. (bottom-right) The distance, called uniform scaling distance, can be much smaller

than the normal Euclidean distance. In this example, Q is scaled to length 77. Note that both

Q and C are the same as the example in Section 3 but are in the reverse order.

RAKTHANMANON et al. Page 46

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 19.
(top-left) All scaling subsequences created from the query Q scaled to different lengths from

80 to 100. (top-right) The upper envelope U and lower envelope L created by the maximum

and minimum values of all scaling subsequences in (left). The lower bound distance is

computed from the candidate C to the closer envelope, as shown in vertical lines. (bottom)

The query is scaled from 60 to 100, or has a scaling factor of 40%. Note that although the

scaling factor may be large, in most cases, the lower bound is still large and can prune

candidates efficiently.

RAKTHANMANON et al. Page 47

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 20.
The running time of uniform scaling nearest neighbor when the query is varied from length

32 to 2048.

RAKTHANMANON et al. Page 48

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 21.
The running time of uniform scaling nearest neighbor when the scaling factor is varied from

0% to 50%. Note that, when the scaling factor is 0%, it is simply ED nearest neighbor and

when the scaling/shrinking factor is 50% it means that the answer match can be twice as

short as the query length.

RAKTHANMANON et al. Page 49

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 22.
(top) Time series created by MFCC conversion of the audio of the poem The Raven, by

Edgar Allan Poe. The query, the nearest neighbor using DTW, Euclidean distance, and

uniform scaling are presented in red, blue, green, and magenta, respectively. (bottom) The

same subsequences in the top and their corresponding text in the poem. Note that the scaling

factor for uniform scaling and warping windows for DTW are set to 10%.

RAKTHANMANON et al. Page 50

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAKTHANMANON et al. Page 51

Table I.

Subsequence Search with Online Z-Normalization

Algorithm Similarity Search

Procedure [nn] = SimilaritySearch(T,Q)

1 best-so-far ← ∞, count ← 0

2 Q ← Z-normalize(Q)

3 while !next(T)

4 i ← mod(count,m)

5 X[i] ← next(T)

6 ex ← ex + X[i], ex2 ← ex2 + X[i]2

7 if count ≥ m − 1

8 μ ← ex/m, σ ← sqrt(ex2/m − μ2)

9 j ← 0, dist ← 0

10 while j < m and dist < best-so-far

11 dist ← dist + (Q[j] − (X[mod(i + 1 + j, m)] − μ)/σ)2

12 j ← j + 1

13 if dist < best-so-far

14 best-so-far ← dist, nn ← count

15 ex ← ex − X[mod(i + 1,m)]

16 ex2 ← ex2 − X[mod(i + 1,m)]2

17 count ← count + 1

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAKTHANMANON et al. Page 52

Table II.

Time Taken to Search a Random Walk Dataset With |Q|= 128

Million (Seconds) Billion (Minutes) Trillion (Hours)

UCR-ED 0.034 0.22 3.16

SOTA-ED 0.243 2.40 39.80

UCR-DTW 0.159 1.83 34.09

SOTA-DTW 2.447 38.14 472.80

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAKTHANMANON et al. Page 53

Table III.

Time to Search 303,523,721,928 EEG Datapoints, |Q|= 7000

Note that only ED is considered here because DTW may produce false positives caused by eye blinks
UCR-ED SOTA-ED

EEG 3.4 hours 494.3 hours

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAKTHANMANON et al. Page 54

Table IV.

An Algorithm to Convert DNA to Time Series

T1 = 0,

for i = 1 to |DNAstring|

 if DNAstringi = A, then Ti+1 = Ti + 2

 if DNAstringi = G, then Ti+1 = Ti + 1

 if DNAstringi = C, then Ti+1 = Ti − 1

 if DNAstringi = T, then Ti+1 = Ti − 2

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAKTHANMANON et al. Page 55

Table V.

Time Taken to Search One Year of ECG Data with |Q|= 421

UCR-ED SOTA-ED UCR-DTW SOTA-DTW

ECG 4.1 minutes 66.6 minutes 18.0 minutes 49.2 hours

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAKTHANMANON et al. Page 56

Table VI.

UCR Suite: Uniform Scaling Search

Algorithm UCR Suite: UniformScaling

Procedure [nn] = UniformScalingSearch(T,Q,scaling_factor)

1 best-so-far ← ∞

2 max_len ← length(Q)

3 while !next(T)

4 C ← current candidate from T of length n

5 max_len ← max_len*(1-scaling_factor)

6 [U, L] ← CreateEnvelope(Q, min_len, max_len)

7 lb ← LB_Keogh(U,L,C)

8 if lb < best-so-far

9 for len ← min_len to max_len

10 Qs ← ScalingSubsequence(Q,len)

11 dist ← UCR_ED(Qs,C)

12 if dist < best-so-far

13 best-so-far ← dist

14 nn.sequence ← C

15 nn.best_len ← len

16 end if

17 end for

18 end if

19 end while

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2019 October 12.

	Abstract
	INTRODUCTION
	Millions, Billions, and Trillions, A Discussion of a Scale
	Explicit Statement of Our Assumptions
	Time Series Subsequences Must Be Normalized.
	Dynamic Time Warping Is the Best Measure.
	Arbitrary Query Lengths Cannot Be Indexed.
	There Exist Data Mining Problems That We Are Willing to Wait Some Hours to Answer.

	RELATED WORK
	BACKGROUND AND NOTATION
	Definitions and Notations

	ALGORITHMS
	Known Optimizations
	Using the Squared Distance.
	Lower Bounding.
	Early Abandoning of ED and LB_Keogh.
	Early Abandoning of DTW.
	Exploiting Multicores.

	Novel Optimizations: The UCR Suite
	Early Abandoning Z-Normalization.
	Reordering Early Abandoning.
	Reversing the Query/Data Role in LB_Keogh.
	Cascading Lower Bounds.

	EXPERIMENTAL RESULTS
	Baseline Tests on Random Walk
	Supporting Long Queries: EEG
	Supporting Very Long Queries: DNA
	Can We Do Better Than the UCR Suite?

	Realtime Medical and Gesture Data
	Speeding Up Existing Mining Algorithms
	Optimal Ordering in Early Abandoning of Euclidean Distance

	SUPPORTING THE UNIFORM SCALING DISTANCE
	Why Uniform Scaling?
	How to Compute Uniform Scaling
	UCR Suite: Uniform Scaling
	Experimental Results: Scalability
	On the Utility of Uniform Scaling Search: The Raven

	DISCUSSION AND CONCLUSIONS
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	Fig. 14.
	Fig. 15.
	Fig. 16.
	Fig. 17.
	Fig. 18.
	Fig. 19.
	Fig. 20.
	Fig. 21.
	Fig. 22.
	Table I.
	Table II.
	Table III.
	Table IV.
	Table V.
	Table VI.

