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Abstract

Fracture healing is a complex and integrated process that involves mesenchymal progenitor cell 

(MPC) recruitment, proliferation and differentiation that eventually results in bone regeneration. 

Prostaglandin E2 (PGE2) is an important regulator of bone metabolism and has an anabolic effect 

on fracture healing. Prior work from our laboratory showed EP1−/− mice have enhanced fracture 

healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone 

formation. We also showed that bone marrow MSCs from EP1−/− mice exhibit increased 

osteoblastic differentiation in vitro. In this study we investigate the changes in the periosteal 

derived mesenchymal progenitor cells (PDMPCs), which are crucial for fracture repair, upon EP1 

deletion. EP1−/− PDMPCs exhibit increased numbers of total (CFU-F) and osteoblastic colonies 

(CFU-O) as well as enhanced osteoblastic and chondrogenic differentiation. Moreover, we tested 

the possible therapeutic application of a specific EP1 receptor antagonist to accelerate fracture 

repair. Our findings showed that EP1 antagonist administration to wild type mice in the early 

stages of repair similarly resulted in enhanced CFU-F, CFUO, and osteoblast differentiation in 

PDMPCs and resulted in enhanced fracture callus formation at 10 days post fracture and increased 

bone volume and improved biomechanical healing of femur fractures at 21 days post fracture.
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Introduction

In the United States approximately eight million bone fractures occur annually51, 66. Ten to 

twenty percent of the fractures fail to heal resulting in delayed repair or non-union causing 

severe disabilities. Non unions often require surgical intervention and results in increased 

morbidity and health care costs. Currently, non-union treatment involves bone implants with 

decalcified grafts or autografts5, 20, 57. However, high failure rates with these approaches 

indicate the pressing need for the development of novel therapies that will increase bone 

formation, enhance fracture repair rates, and treat non-unions.

Fracture healing is a complex physiological process that includes several defined stages. 

Healing starts with hematoma formation and an inflammatory response. Additionally, this 

stage is characterized by activation and proliferation of the periosteal stromal cells also 

known as periosteal derived mesenchymal progenitor cells (PDMPCs), resulting in a 

thickened periosteum. PDMPCs further differentiate into osteoblasts and chondrocytes, 

which eventually form bone via both endochondral and intramembranous ossification. 

Finally the healing process results in restoration of normal bone architecture and strength 

through an on-going remodeling process18, 19.

Mesenchymal progenitor cells (MPCs) were first isolated from bone marrow and thought to 

be connective tissue supportive cells49. Later, these cells were shown to have the potential to 

differentiate into osteoblastic, chondrogenic and adipogenic lineages9. MPCs are 

characterized by their ability to form colonies and by expression of specific markers. They 

are negative for hematopoietic and endothelial markers, CD45 and CD31 respectively, and 

are positive for markers including CD105, Sca1, CD29, CD90, CD44, and CD73. MPCs 

from both the periosteum and bone marrow have been shown to participate in the repair 

process16, 26, 63 and are considered the source of cells responsible for the repair process. 

Thus, limitation in numbers and functions of MPCs results in impaired bone healing69. 

Given the importance of MPCs on bone regeneration7, 8, it is important to understand the 

mechanisms that regulate their cell fate.

The periosteum is a thin layer of osteogenic and fibroblastic cells that surrounds the outside 

of the bones2. The “cambium layer” of the periosteum is highly cellular and contains 

PDMPCs, osteoprogenitors, osteoblasts, and fibroblasts as well as micro vessels and 

sympathetic nerves. Periosteal cells have been shown to be the main cell population to 

participate in fracture healing, while removal of the periosteum significantly delays the 

healing process16, 69. Furthermore, lineage-tracing studies have identified periosteal cells as 

the main source of cells in the callus during healing44.

The inflammatory stage of the repair process is essential for the fracture healing cascade24. 

Cyclooxogenase 2 (COX2) and its main metabolite, Prostaglandin E2 (PGE2), are major 

inflammatory mediators required for the healing process to take place52, 53, 56. PGE2 has 

been shown to play an important role in bone biology; systemic PGE2 administration in 

mice and rats resulted in increased bone formation and bone resorption55, 64. PGE2 exerts its 

effect by binding to four receptors: EP1–415, 46, 60. EP2 and EP4 receptors have both bone 

anabolic and catabolic effects17, 39, 48, 61, 62. Little is known about the role of EP1 receptor 
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in bone biology. In bone cells, EP1 increases osteoblastic cell-line proliferation59. In 

addition, EP1 is expressed in proliferating chondrocytes, with increased expression during 

proliferation11. EP1 has been suggested to play a role in osteoclast maturation22. We have 

previously demonstrated that EP1 knock-out (EP1−/−) mice exhibit increased bone formation 

in vivo, resulting in stronger bones and reduced bone loss with aging67. Moreover, EP1−/− 

mice exhibit accelerated fracture healing resulting in faster bone formation and enhanced 

biomechanics68. These findings suggest that EP1 is a negative regulator of bone formation.

Recently we demonstrated that bone marrow mesenchymal progenitor cells (BM-MPCs) 

harvested from EP1−/− mice had enhanced osteogenic potential21. In light of the particular 

importance of PDMSDs in fracture healing and our observations regarding the enhanced 

repair in the EP1−/− mice, we decided to test whether EP1−/− mice exhibit differences in the 

functions of PDMPCs. Additionally, as a potential therapeutic target, we tested whether 

administration of EP1 antagonist following fracture will enhance the healing process by 

increasing the PDMPC differentiation potential. We found that periosteum of EP1−/− mice 

consist of more progenitors with increased osteoblastic potential. We also observed that 

treatment with an EP1 antagonist increases the number of osteoblastic progenitors in the 

periosteum, and improves the biomechanical properties during fracture healing.

Materials and Methods

Mouse strains:

C57BL/6J mice were purchased from Jackson Laboratory. EP1−/− mice were generously 

provided by Matthew Breyer27. All animal procedures were approved by the University 

Committee of Animal Resources (UCAR) at the University of Rochester Medical Center. 

The EP1−/− mice used in the experiments have global gene deletion of the EP1−/− receptor in 

all cells and tissues, including bone marrow progenitor cells68.

Bone grafting and periosteal cell isolation:

Periosteal cells were isolated using a protocol described by Zhang et al70. Briefly, wild type 

C57BL/6J or EP1−/− mice aged 10–14 weeks were anesthetized with Isofluorane and a 4mm 

femur autograft surgery performed. Briefly a 4mm segment of bone was removed from the 

femur, the bone marrow was flushed from 4mm autograft segment, and the graft was placed 

back into the femur and fixed in place with a pin. After five days of in vivo expansion of the 

periosteal cell population, the autografts are harvested and freed from all muscle 

attachments. The harvested autografts again have repeated flushing of the marrow cavity and 

marrow cells are discarded. The periosteal tissue attached to the bone surface is removed and 

digested with Collagenase D (3mg/ml) for 45 minutes with vigorous shaking at 37°C. The 

periosteal cells are then strained through a 70mm mesh and plated in 15mm culture dishes. 

Periosteal progenitor cells were allowed to adhere to the culture dish before media change 

and grown to 80% confluence. The periosteal progenitor cell isolation typically pools cells 

from 4–5 mice.
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Osteogenic differentiation:

First passage periosteal progenitor cells were plated at 10,000 cells per well of a 12-well 

plate and grown to confluence. The media then was replaced with alpha MEM with 10% 

FBS, 1% penicillin streptomycin and supplemented with 100mM beta glycerol-phosphate 

and 50 μg/ml ascorbic acid. The media was changed every two days and cells were harvested 

at indicated time points for alkaline phosphatase staining and gene expression analysis.

Adipogenic differentiation:

First passage periosteal progenitor cells were plated at 10,000 cells per well of a 12-well 

plate and grown to confluence. Adipogenic differentiation was induced with media 

containing 1μM Dexamethasone, 0.5mM IBMX, 10μg/ml Insulin and 10nM Rosiglitazone 

for two days. The media then was then replaced with maturation media containing 1μg/ml 

Insulin and 10nM Rosiglitazone for an additional 6 days. Differentiation was assessed by the 

appearance of lipid droplets as visualized by staining with Oil Red O and measurement of 

absorbance at 500nm of eluted Oil red O with 100% isopropanol, as well as adipogenic gene 

expression by qPCR.

Chondrogenic differentiation:

First passage periosteal progenitor cells were pellet at 2.5×105 cells per 15ml conical tube 

and supplemented with 0.5ml chondrogenic media (Lonza). The media was changed every 

two days for 28 days. The cell pellets were either fixed with 10% Neutral Buffer Formalin, 

embedded in paraffin, cut to 3μm sections, and stained with Alcian Blue, or underwent 

mRNA expression analysis by qPCR.

Flow cytometry:

Cells were suspended in PBS containing 3% FBS and stained with the following antibodies: 

CD45-PerCP, CD31-PE-Cy7, Sca1-APC, CD105-PE (BD Pharmingen). Compensation 

controls were performed using anti-mouse Compensation Standard beads. Gates were 

determined using Flow Minus One (FMOs) controls.

Colony forming assay:

In low-density cultures, single colonies of fibroblast-like cells are formed, each colony 

arising from a single precursor cell called a colony forming unit fibroblast (CFU-F)37. 

Freshly isolated periosteal progenitor cells were plated at 2000 cells per well in a six-well 

plate and cultured for 10 days. The cells were then fixed and stained with 0.5% Crystal 

violet in methanol for CFU-F and with ALP substrate NBT/BCIP reagent (Thermo Scientific 

Pierce) for CFU-O. A colony was considered a cluster of more than 50 cells36, 37.

Gene expression analysis>:

mRNA was extracted at indicated time points using RNA Easy extraction kit (Qiagen). 

Exactly 0.5 g of RNA was reverse transcribed into cDNA using iScript reagent (Biorad). 

Quantitative RT-PCR was performed using a RotorGene real-time PCR machine.
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Femur open osteotomy model:

12 week-old C57BL/6J mice (males and female) were anesthetized and a 7–8mm-long 

incision was made in the skin, and the midshaft of the femur was exposed by blunt 

dissection of the muscle without disturbing the periosteum. The mid-diaphysis of the femur 

was cut with a dremel saw with diamond blade. The bone was stabilized using 22 gauge 

metal pin placed through the intramedullary canal. Starting day 1 after surgery the mice 

were injected i.p. with either vehicle (DMSO) or 10mg/kg EP1 antagonist (SC51089, 

Cayman chemical) for 5 consecutive days. The 10mg/kg dose of SC51089 used in the 

experiments was based on prior studies showing that the in vivo effects of SC51089 on 

analgesia in rats have a Kd of approximately 6mg/kg2941. In a rat model, 10mg/kg dosing of 

SC51089 was shown to prevent seizure activity50.

Micro Computed Tomography:

Femurs were harvested at the indicated time points and scanned using VIVA microCT 

system at a voxel size of 10.5μm. From the 2D slice images generated, an appropriate 

threshold was chosen for the bone voxels by visually matching thresholds areas to grayscale 

images. The threshold and the volume of interest were kept constant throughout the analysis 

for each femur. To measure the new total callus volume and bone volume, contour lines were 

manually drawn on the key 2D slice images to exclude the cortical bone, with morphing 

interpolating contours between key slices performed semi-automatically and adjusted 

manually by the expert operator to ensure the fidelity of callus measurements and the 

exclusion of cortical bone.

Biomechanical testing:

Femurs were dissected 21 days after fracture from vehicle and EP1 antagonist treated mice. 

Torsion testing was performed in a Torsional Test Bench (Endura Tech) according to 

established protocols54. Briefly, muscle and soft tissue were completely removed from the 

femurs to be tested, and the pins were carefully removed without disrupting the callus. Both 

ends of the femur were cemented into 6.35mm2 aluminum tube holders using polymethyl-

methacrylate (PMMA) in a custom jig to insure axial alignment and to maintain a gage 

length of ~6.5mm, allowing at least 3mm to be potted to each end. Specimens were then 

mounted on the EnduraTec TestBench™ system (Bose Corporation, Minnetonka, MN) and 

tested in torsion at a rate of 10°/s until failure. Ultimate torque, torsional rigidity, ultimate 

rotation, and energy to failure were determined.

Results

EP1−/− mice periosteum have more osteoblastic progenitors

Based on our in vivo observation that EP1−/− mice exhibit accelerated repair, we undertook 

further analysis of the progenitor population in WT and EP1−/− periosteum. To determine 

whether there was a difference in the numbers of PDMPCs in EP1−/− mice we analyzed both 

the colony forming potential by CFU assay and flow cytometric analysis for cell surface 

markers. We observed that EP1−/− periosteal cells form three times more CFU-Fs than WT 

(WT: 13 3.5, EP1−/−: 36±4.8, p<0.001). Moreover, EP1−/− periosteal cells formed 7-fold 
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more CFU-Os (WT: 0.5±0.33, EP1−/−: 7±2.27 p<0.05) (Figure 1A–B). To determine if there 

were differences in periosteal cell proliferation we analyzed the BrdU incorporation rate in 

the periosteum. No change in BrdU incorporation were observed between WT and EP1−/− 

cells (WT: 38.8%±19.75, EP1−/− 43.64%±16, p=0.65) (Figure 1C).

EP1−/− Periosteal cells have increased osteoblastic differentiation

To determine whether EP1 plays a role in PDMPC differentiation, we performed in vitro 
differentiation assays in the osteoblastic, chondrogenic and adipogenic lineages. We 

observed that EP1−/− PDMPCs have increased alizarin red staining compared to WT cells 

(Figure 2A). Gene expression analysis revealed a 1.5 fold increase in Col1a1expression 

(p=0.019) and 3-fold increase in Sp7 (p=0.007) after 7 days of osteogenic differentiation 

(Figure 2B). No changes in chondrogenic differentiation were observed by Alcian blue 

staining between WT and EP1−/− cells (Figure 2C). However, Col2a1 expression was 

increased 2.5-fold in EP1−/− cells, along with a 1.5 -fold increase in Acan expression, 

relative to WT (Figure 2D). We observed a slight decrease in adipogenic differentiation 

potential in EP1−/− cells as indicated by an 8% decrease in Oil Red O staining (p=0.026) and 

a 35% decrease in Cebpα gene expression (p=0.025), relative to WT cells (Figure 2 E–F).

Based on the increased differentiation and increased number of osteoblastic colonies we 

analyzed the periosteal cells based on mesenchymal cell surface markers. Several previous 

studies suggested that reduced CD105 expression is associated an increase in osteoblastic 

differentiation potential3, 4, 6, 38. We sorted and removed CD45−CD31− cells (non-

hematopoietic, non-endothelial cells, respectively) and examined expression of the 

mesenchymal markers: Sca1 and CD105. We did not observe any significant change in the 

percentage of Sca1+CD105+ cells (WT 0.036%±0.02%, EP1−/− 0.05±0.02, p=0.25). 

However there was a significant increase in the percentage of the Sca1+CD105− cells in 

periosteal cells obtained from EP1−/− mice (WT: 0.39%±0.2, EP1−/−: 0.75%±0.26, p=0.04) 

(Figure 3 A–B). To confirm that these cells have different differentiation potential we sorted 

Sca1+CD105+ and Sca1+CD105− cells and induced osteoblastic, adipogenic or 

chondrogenic differentiation. Sorted CD105− cells from WT or EP1−/− mice exhibited 

increased mineralization relative to matched genotype CD105+ cells after five days of 

culture in osteogenic medium (Figure 3C). No differences were observed in the 

differentiation potential of either the CD105+ cells or CD105− from the WT and EP1−/− 

mice respectively.

EP1 antagonist treatment during fracture healing changes the periosteal mesenchymal 
population

Since EP1−/− mice exhibit accelerated fracture healing68 we tested whether systemic 

administration of an EP1 specific antagonist following fracture will be sufficient to enhance 

the repair process by inducing PDMPC differentiation.

First, we tested whether administration of EP1 antagonist induces changes to PDMPCs 

(Figure 4A). We observed that following EP1 antagonist treatment PDMSCs form more 

CFU-Fs (vehicle: 11±3.43, EP1 antagonist: 27±5.8, p=0.039) and CFU-Os (vehicle: 3 ±1.4, 

EP1 antagonist 12.92±4, p=0.04), resulting in a 2 fold increase in the ratio of CFUO/CFU-F 
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in EP1 antagonist treated PDMPCs (vehicle: 0.2±0.04, EP1 antagonist 0.43±0.05, p=0.0078, 

Figure 4B–D). Additionally, we observed that EP1 antagonist treatment increased the 

population of Sca1+CD105− cells (2% versus 6% after treatment, N=3, p<0.05), resulting in 

a higher proportion of Sca+CD105− than observed in EP1−/− PDMPCs (Figure 4E–F). The 

increase in the Sca1+CD105+ cells was not significant (0.05% versus 0.08% after treatment, 

p=0.95).

We then analyzed the fractured femurs at day 10 and 21 after fracture. μCT images showed 

that by day 10 after fracture, the EP1 antagonist treated group had an increase in callus 

volume (vehicle: 30.14±3.68mm3, EP1 antagonist: 55±9.15, p<0.01) (Figure 5A, 5D). No 

change in bone volume was observed at this time (vehicle: 5.56±0.96 mm3, EP1 antagonist 

4.4±1.27 mm3, p=0.88,). By day 21 the bone volume fraction (BV/TV) was significantly 

increased in EP1 antagonist treated fractures (vehicle: 0.22±0.007, EP1 antagonist: 

0.29±0.036, p= 0.017) (Figure 5B, 5D). Additionally, mineralization density of EP1 

antagonist treated fractured bone was higher compared to vehicle (vehicle-161.4±8.4 

mgHA/cc, EP1 antagonist-202.4±9.10.0 mgHA/cc) (Figure 5B–D).

To test the quality of the healed fractured bones torsion testing was conducted 21 days after 

fracture. A 3-fold increase in torsional rigidity was observed in EP1 antagonist treated 

fractures, relative to vehicle treated (p=0.04). In addition, EP1 antagonist treatment resulted 

in increased maximum torque (2-fold increase, p=0.03), energy to maximum (2- fold 

increase, p=0.04), and higher yield to torque (3- fold increase, p=0.03), relative to vehicle 

treated fractures (Figure 6).

Discussion

We have previously demonstrated that EP1−/− mice have increased bone formation and 

accelerated fracture repair in vivo, as well as increased osteogenic differentiation of bone 

marrow cells in vitro21, 68. In the present study we sought to determine the relationship 

between the EP1 receptor and periosteal stem cell population and to explore the possible 

therapeutic potential of an EP1 antagonist to enhance bone regeneration. PGE2 has been 

shown to induce both anabolic and catabolic effects with overall enhanced bone formation 

through the activation of the EP2 and EP4 receptors65. While the role of EP2 and EP4 are 

well described, very little is known about the role of EP1 in bone homeostasis. In the present 

study, the data shows that EP1 receptor down regulation induces PDMPC differentiation. 

Furthermore, systemic administration of an EP1 specific antagonist during fracture repair 

accelerates healing, likely by enhancing differentiation of PDMPCs toward the osteoblastic 

lineage. Thus, our findings identify EP1 antagonism as a novel therapeutic approach to 

improve bone regeneration by modulating periosteal progenitor cell function. Using a 

combination of cellular-based, biomechanical and molecular assays, we provide evidence 

that EP1 pharmacologic inhibition alters the periosteal derived progenitor cell differentiation 

potential towards osteogenic lineage.

By analyzing the colony forming ability, we observed a higher number of both CFU-Fs and 

CFU-Os of EP1−/− mice and a higher ratio of CFU-O/CFU-Fs in periosteal cells from 

EP1−/− mice compared to WT mice. Considering that the cultures were not stimulated with 
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osteogenic medium, the increased osteogenic differentiation of EP1−/− cells suggests that 

these cells were already committed to the osteogenic lineage at the time of isolation. We 

recently had similar findings in wild type and EP1−/− bone marrow progenitor cell 

populations, suggesting that progenitor cells in bone marrow and in the periosteum are both 

regulated by EP1 gene deletion21. We characterized the cells by analyzing the cell surface 

markers Sca1 and CD105 in the PDMPCs isolated from WT and EP1−/− mice. We observed 

that a higher percentage of cells from the EP1−/− mice are Sca1+/CD105 negative. 

Moreover, we showed that treatment of WT mice with an EP-1 antagonist similarly resulted 

in an increase in the percentage of Sca1+/CD105- cells. PDMPCs isolated from EP1 

antagonist treated mice also had enhanced in vitro osteoblast differentiation.

While markers specific for different stages of mesenchymal progenitor cell differentiation 

are not well defined10, 12, 40, there are multiple studies demonstrating that progenitor cells 

that lose the expression of CD105 (also known as Endoglin) represents a subpopulation of 

multipotent stromal cells with increased osteogenic and/or chondrogenic differentiation 

capacities. Differentiation of umbilical cord MSCs into osteogenic and chondrogenic lineage 

was accompanied by reduction in CD105 expression3, 6. In adipose tissue, two separate 

studies showed that CD105− cells have increased osteogenic potential. Moreover, down 

regulation of CD105 expression using shRNA against CD105 resulted in enhanced 

osteoblastic differentiation of adipose derived MSCs32, 38. A recent study showed that the 

loss of CD105 in tendon isolated stromal cells was associated with enhanced differentiation 

into the chondrogenic lineage4. Most importantly, CD105− cells had increased in vivo repair 

capacity as demonstrated using the calvarial critical size model38. These collective studies 

suggest that CD105− cells represent a subpopulation of progenitors with increased 

differentiation potential. In line with this, we observed that in in vitro assays periosteal 

CD105− cells exhibit increased potential to form mineralized nodules and increased 

expression of osteoblastic markers compared to CD105+ cells. Considering that we did not 

observe differences in the nodule potential formation between WT CD105+ and EP1−/− 

CD105+ cells or between WT CD105− cells and EP1−/− CD105− cells, we can speculate that 

the enhanced differentiation of EP1−/− periosteal cells is due to the higher number of the 

CD105− cells compared to WT periosteal cells.

Interestingly, when testing for the differentiation potential, we observed that EP1−/− 

PDMPCs had increased osteoblastic differentiation with slight but significant decrease in 

adipogenic differentiation potential. As the osteogenic and adipogenic differentiations have 

been shown to have reciprocal potential13, 33, it is possible that in EP1−/− mice the enhanced 

differentiation into the osteoblastic lineage results concomitantly in decrease in the 

adipogenic differentiation. This potentially can be an important research area as part of the 

age-related changes in bone is increased differentiation into adipocytes instead of into 

osteoblasts, resulting in bone loss30. More studies need to be done to test the role of EP1 

receptor in adipogenic differentiation.

Based on this observation that down regulation of EP1 increases the number of committed 

progenitors we tested whether blocking the EP1 receptor pharmacologically can be used as a 

drug target to enhance repair. The use of a specific EP1 antagonist in animal studies was 

previously described in other systems1, 23, 50. We used the established dosage in these 
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studies to treat wild type animals and analyze the repair process.29, 41, 50 To direct the effect 

of the antagonist to the inflammatory stage, we inhibited EP1 receptor activity by EP1 

specific antagonist on days 1–5 after fracture. This treatment strategy provides clues for 

understanding the role of EP1signaling during the early MSC proliferation and 

differentiation phases of fracture repair.

Our first observation was that following treatment with EP1 antagonist the PDMPCs change 

their phenotype, as indicated by an increase in the population of CD105− cells. We observed 

that after 5 days of treatment the percentage of the CD105− cells increased as well as the 

CFU-O numbers, suggesting that EP1 antagonist treatment promotes the number of 

committed progenitors at the periosteum, reaching similar percentage as in EP1−/− mice. It is 

worth noting that we did not observe any changes in flow cytometry analysis of EP1−/− mice 

following EP1 antagonist administration, suggesting that there was not an off-target effect. 

This increase in percentage of committed progenitors resulted in increased callus at day 10 

after fracture and resulted in bigger bone area at day 21after fracture. The bone volume and 

the mineralization of the callus was significantly higher at the EP1 antagonist treated group. 

This supports our in vitro data that EP1receptor down regulation specifically promotes 

PDMPC differentiation into the osteoblastic lineage. Remarkably, the biomechanical 

properties of EP1 antagonist treated fractures were significantly increased compared to the 

vehicle treated animals.

The significance of the findings is enhanced by the fact that EP1 antagonist treatments are in 

Phase II clinical trials and show limited side effects14, 35. Moreover, efficacy has been 

demonstrated in the treatment of esophageal pain hypersensitivity in patients with gastric 

reflux disease, indicating that an EP1 receptor inhibition approach can be translated to 

clinical trials to improve fracture healing.7,8 An added advantage of EP1 antagonist 

treatment is that inhibition of EP1 has been shown to reduce pain perception42, 43, 58. 

Currently, the anti-inflammatory drugs that are used as analgesics are COX2 inhibitors 

(NSAIDS), which block PGE2 production. However, since PGE2 has an bone anabolic 

effect mediated by the EP2 and EP4 receptors, NSAIDs used for analgesia can impair 

fracture healing25, 34, 47. Interestingly, studies suggest the reduction in pain following 

NSAID mediated by COX-2/PGE2 inhibition may in fact be secondary to decreased EP1 

receptor activation28, 31, 45. Thus, pharmacologic agents that selectively inhibit EP1 may 

have the dual effect to of directly relieving pain and stimulating fracture healing.

Taken together, the studies presented here suggest that treatment with an EP1 antagonist at 

the first stages of the healing cascade alter the periosteal progenitor population, possibly by 

increasing the population of more osteoblastic progenitors. These initial changes in the 

cellular population result in an accelerated healing response, consistent with the healing 

response in EP1−/− mice. Moreover, the increased mechanical properties in the EP1 

antagonist treated group suggest that the accelerated repair process results in functional 

bone, thus making the EP1 receptor a possible target to improve healing.

In summary, using a genetic model and a translational approach we demonstrated that EP1 is 

a negative regulator of bone formation, and therefore a novel therapeutic target for bone 

formation and regeneration. Future studies will determine if EP1 antagonism can stimulate 
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healing in animal models with compromised healing, such as aging and obesity. The 

ultimate goal is to establish an anabolic for EP1 antagonism in bone regeneration that can be 

translated to improve fracture healing in humans.
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Figure 1: EP1−/− periosteal cells form more osteoblastic colonies.
Periosteal cells were isolated from WT or EP1−/− mice and plated at clonal density. Colonies 

were stained with Crystal Violet for CFU-F and Alkaline Phosphatase for CFU-O (A-B). 

Mice were injected with BrdU 2 hours before sacrificing. BrdU positive cells were measured 

using flow cytometry (C).

N=6 replicates per group for each assay. Error bars represent standard error of the mean. 

Statistical analysis was performed using paired student t-test. (*)=p<0.05 (**)=p<0.01 vs. 

age-matched WT.
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Figure 2: EP1−/− periosteal cells exhibit enhanced osteoblastic differentiation.
Alizarin Red (A) staining and osteoblastic gene expression (B) following 10 days of 

induction of osteoblastic medium. Cell pellets sections and stained with Alcian Blue (C) and 

gene expression analysis for chondrogenic genes (D). Oil Red O staining (E) and adipogenic 

gene expression (F) following 6 days of induction with adipogenic medium.

N=5 replicates per group for each assay. Error bars represent standard error of the mean. 

Statistical analysis was performed using paired student t-test. (*)=p<0.05 (**)=p<0.01 vs. 

age-matched WT.
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Figure 3: EP1−/− periosteum contains more CD105− progenitors.
A-B, freshly isolated periosteal cells were stained with antibodies against: CD45-PrcP, 

CD31-PEcy7, CD105-PE, Sca1-APC (A-B). The cells were selected for CD45 and CD31 

negative cells and the percentage of Sca1 + and CD105+ cells were analyzed. (C), 

Sca1+CD105+ and Sca1+CD105− cells were sorted and cultured with osteogenic medium for 

10 days. In the paired culture wells shown in the figure, the well on the left is stained for 

alkaline phosphatase and the well on the right is stained with alizarin red to detect 

mineralization in the cultures.

N=5 replicates per group for each assay. Error bars represent standard error of the mean. 

Statistical analysis was performed using paired student t-test. (*)=p<0.05 (**)=p<0.01 vs. 

age-matched WT.
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Figure 4: EP1 antagonist administration increase the number of committed progenitors at the 
periosteum.
(A) Schematic describing experimental design. (B-D) CFU assays on primary isolated 

periosteal cells. Colonies were stained with Crystal Violet for CFU-F and Alkaline 

Phosphatase for CFU-O. (E-F) freshly isolated periosteal cells were stained with antibodies 

against: CD45-PrcP, CD31-PEcy7, CD105-PE, Sca1-APC. The cells were selected for CD45 

and CD31 negative cells and the percentage of Sca1 + and CD105+ cells were analyzed.

N=5–6 replicates per group for each assay. Error bars represent standard error of the mean. 

Statistical analysis was performed using paired student t-test. (*)=p<0.05 (**)=p<0.01 vs. 

age-matched vehicle treated animals.
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Figure 5: EP1 antagonist administration alters fractured femurs properties.
Micro-CT reconstructions of fractured femurs at day 10 (A and B) and day 21 (C and D). 

Representative images showing callus formation in vehicle treated mice and in EP1 

antagonist treated mice at day 10 (A) and day 21 (C). (B) Day 10 BV/TV and mineralized 

density as determined by Micro-CT (B). Total bone volume at day 21 after fracture as 

measured by Micro-CT (D).

Day 21 has N=5 per group and Day 10 has 9 mice per group. Error bars represent standard 

error of the mean. Statistical analysis was performed using paired student t-test. (*)=p<0.05 

vs. age-matched vehicle treated animals.
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Figure 6: Femur fractures in EP1 antagonist treated mice heal with increase mechanical 
strength:
Biomechanical testing on day 21 after fracture. Mice were with either Vehicle or EP1 

antagonist for 5 days, starting on post fracture day 1. The experiment is presented as fold 

differences between paired EP1 antagonist treated mice and Vehicle treated mice. Altogether 

an N=9 animals per group was examined in two separate experimental cohorts that were 

combined. Statistical analysis was performed using paired student t-test. (*)=p<0.05 vs. age-

matched vehicle treated animals. The mean values of the biomechanical measurements for 

the combined groups was Torsional rigidity (Vehicle = 125.3 ± 52.92 [N.mm/(rad/mm)]; 

EP1 antagonist = 261.1 ± 63.7 [N.mm/(rad/mm)]); Maximum torque (Vehicle = 6.46 ± 1.98 

(N.mm); EP1 antagonist = 10.62 ± 1.16 (N.mm)); Yield to torque (Vehicle = 5.17 ± 1.67 

(N.mm); EP1 antagonist = 8.2 ± 0.8 (N.mm)); and Energy to maximum (Vehicle = 0.35 

± 0.068 (N.mm*(rad/mm) vehicle; EP1 Antagonist = 0.8 ± 0.19 [N.mm*(rad/mm)]).
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