Table 2:
Selection approach | Feature size | Cohort | *Sen | *Spe | *Acc | AUC | 95% CI |
p-value | |
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
SVM-RFE | 32 | Training | 84.00% | 80.00% | 82.00% | 0.8593 | 0.8425 | 0.8810 | << 0.01 |
Validation | 77.78% | 73.83% | 75.52% | 0.8216 | 0.8130 | 0.8301 | << 0.01 | ||
LASSO | 21 | Training | 73.74% | 71.08% | 72.41% | 0.7504 | 0.7364 | 07613 | < 0.05 |
Validation | 55.56% | 75.00% | 66.67% | 0.7222 | 0.7003 | 0.7328 | < 0.05 |
Sen, Spe and Acc indicate average sensitivity, specificity and accuracy obtained by using the selected radiomics features and a non-linear SVM classifier.