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Animal behaviours are affected not only by inherited genes but also by
environmental experiences. For example, in both rats and humans, stressful
early-life events such as being reared by an inattentive mother can leave a
lasting trace and affect later stress response in adult life. This is owing to a
chemical trace left on the chromatin attributed to so-called epigenetic
mechanisms. Such an epigenetic trace often has consequences, sometimes
long-lasting, on the functioning of our genes, thereby allowing individuals
to rapidly adapt to a new environment. One gene under such epigenetic
control is FKBP5, the gene that encodes the protein FKPB51, a crucial
regulator of the stress axis and a significant driver of chronic pain states.
In this article, we will discuss the possibility that exposure to stress could
drive the susceptibly to chronic pain via epigenetic modifications of genes
within the stress axis such as FKBP5. The possibility that such modifications,
and therefore, the susceptibility to chronic pain, could be transmitted across
generations in mammals and whether such mechanisms may be evolutionarily
conserved across phyla will also be debated.

This article is part of the Theo Murphy meeting issue ‘Evolution of mechan-
isms and behaviour important for pain’.
1. Stress experiences can leave long-lasting traces onto our
chromatin via so-called epigenetic mechanisms

The chromatin is the association of DNA and proteins such as histones that can
be found in the nucleus of our cells. The compaction of the chromatin can be
modulated in a gene- and a time-dependent manner by epigenetic mechanisms,
resulting in the tight regulation of gene expression. This happens through the
addition and removal of chemical marks onto the chromatin, such as
post-translation modification of histones and methylation of the DNA. While
epigenetic marks were once believed to be subject to little alterations in
mature systems, it is now well accepted that epigenetic changes are highly
dynamic and allow rapid adaptation to the environment within one’s lifetime
[1–5]. To make a clear distinction between the epigenetic changes occurring
during organismal development and that occurring in mature systems, in
particular in non-dividing adult neurons, the term neuroepigenetic has been
proposed [4]. We now have strong evidence that neuroepigenetic changes can
lead to long-lasting modification in neural function implicated in a number
of cognitive behaviours [5].

Life experiences can indeed alter the epigenome, the summation of all
epigenetic marks on the chromatin, and have a lasting influence upon the way
some genes are expressed. Two of the most studied epigenetic modifications
are histone acetylation [6–8] and DNA methylation at CpG sites (regions of
DNA where a cytosine nucleotide is followed by a guanine nucleotide) [9–11].
Both histone acetylation and decrease in DNA methylation in the promoter of
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Figure 1. FKBP51 regulates the stress response by interacting with the steroid
receptor complex. Stress exposure leads to the release of corticotropin-releasing
factor (CRF) from the hypothalamus (1). CRF is transported to the anterior pitu-
itary gland where it stimulates the production of adrenocorticotropic hormone
(ACTH) (2). In turns, ACTH stimulates the adrenal glands to produce and release
stress hormones (cortisol) into the blood stream (3). When cortisol levels reach
a certain level, the binding of cortisol to the glucocorticoid receptor (GR) (4)
usually leads to the termination of the stress response (5). FKBP51 expression
is induced by GR activation by stress hormones (6) and FKBP51 interacts with
the steroid receptor complex and reduces the affinity of GR to stress
hormones (7), thereby prolonging the stress response.
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a gene can lead to the localized relaxation of the chromatin and
therefore are usually associated with the upregulation of gene
expression [12]. Alongside DNA methylation and histone
modifications, non-coding RNAs are also crucial modulators
of gene expression. Unlike messenger RNAs (mRNAs), non-
coding RNAs or regulatory RNAs, that were first thought to
possess no coding capacity, regulate gene expression by target-
ingmRNAs for degradation. They have also been shown to act
as guides for the epigenetic machinery to target specific DNA
sequence [13–15]. One should note that coding properties have
recently been observed from the so-called non-coding RNAs,
suggesting that their involvement in cell function regulation
is likely to be broader than currently understood [16,17].

So far, the epigenetic changes induced by life experiences
have been mostly studied in the context of stress exposure
and genes associated with the hypothalamic–pituitary–
adrenal (HPA) axis. The first pre-clinical study to elegantly
demonstrate the importance of epigenetic mechanisms in
the adaptation to our environment was that of Meaney and
co-workers [18]. They showed that highly licking and groom-
ing rat mothers were raising pups that became themselves
high licking and grooming mothers. This behaviour was
associated with an increase in the expression of the glucocor-
ticoid receptor (GR) gene in the hippocampus, and this
increased expression was secondary to the low methylation
landscape and increased acetylation of histones at the promo-
ter of the NR3C1 gene that encodes the GR protein. Both
rodents and humans with high level of GR are more resilient
to stress, and studies in human post-mortem brain tissue
taken from suicide victims have demonstrated that individ-
uals with a history of childhood trauma are likely to
present with increased methylation levels in the NR3C1
gene and therefore reduced GR expression [19–21]. While
most work so far has focused on the GR in the HPA axis,
more recent studies have also looked at the stress regulator
FK506-binding protein 51 (FKBP51).
2. FKBP51: a stress regulator under strong
epigenetic regulation

FKBP51, encoded by the gene FKBP5, interacts with a
number of molecular partners to impact upon various cellu-
lar processes. Most notably, FKBP51 binds to the heat-shock
protein 90 (Hsp90) and other co-chaperones of the steroid
receptor complex to regulate the stress response [22]. By
interacting with the steroid receptor complex, FKBP51
reduces the affinity of the GR to stress hormones, which is
particularly important for stress regulation (figure 1).
Glucocorticoids are released in response to stress, and
activation of the GR usually feeds back to reduce this
release, leading to the termination of the stress response
[23]. Consequently, changes in levels of FKBP51 perturb
the stress response system [22]. The expression of FKBP51
itself is induced by GR activation by stress hormones, pro-
ducing a direct feedback that regulates GR activity. The
result of this feedback is evident in humans expressing
FKBP5 variants associated with the heightened induction of
FKBP5 mRNA upon stress exposure (known as a risk allele).
These variants have been repeatedly associated with
anxiety-related disorders, including major depression and
post-traumatic stress disorder (PTSD) [22,24]. This is consistent
with the finding that inhibition or deletion of the protein
reduces anxiety-related behaviour in mice [25,26].

A reduction in FKBP5 DNA methylation in intronic
regions, which is likely to be associated with an increase in
FKBP51 expression, has often been reported following
exposure to stress and glucocorticoid stimulation, in both
humans and rodents [22,27–31]. Importantly, the reduction
in FKBP5 DNA methylation correlates with the trauma inten-
sity in humans [28] and with the degree of exposure to
glucocorticoids in rodents [29]. Interestingly, these changes
are measured in peripheral blood samples in humans, and in
rodents, changes in the brain correlate with those in the
blood [31], suggesting that FKBP5 DNA methylation levels
in the blood could be used as a biomarker of stress exposure.
A seminal study from Binder and co-workers demonstrated
that long-lasting, trauma-induced, decrease in intronic regions
in FKBP5 DNA methylation measured in human peripheral
blood could arise in childhood in individuals with the risk
allele. Importantly, this decrease in DNA methylation
increased the risk of developing stress-related psychiatric dis-
orders in adulthood [27,32]. More recently, Binder and co-
workers [33] have also identified a reduction in DNA methyl-
ation at selected enhancer-related FKBP5 sites synergistically
modulated by ageing and stress. Individual with stress-related
phenotypes show further decrease in ageing-induced DNA
demethylation at these specific CG bases and higher FKBP5
mRNA expression in blood samples.
3. FKBP51: a crucial driver of chronic pain
We have recently shown that genetic deletion and pharmaco-
logical blockade of FKBP51 alleviated chronic pain states in
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Figure 2. After peripheral noxious stimulation, FKBP51 is upregulated in the dorsal horn following chromatin relaxation. FKBP5 is rapidly epigenetically regulated in
the dorsal horn after peripheral noxious stimulation. After complete Freund’s adjuvant injection in the ankle joint, we observed an increase in phosphorylation of the
transcriptional regulator MeCP2 (1), a decrease in DNA methylation in the promoter sequence of the gene FKBP5 (2) and an increase in FKBP51 protein (3) [34,39].
MeCP2, methyl CpG binding protein 2; HDACs, histone deacetylases; P, phosphorylation. (Online version in colour.)
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mice. With these approaches, we were indeed able to reduce
the hypersensitivity seen in a number of animal models of
persistent pain across sexes: complete Freund’s adjuvant-
induced joint inflammation [34,35], monoiodoacetate-induced
knee inflammation (M. Maiarù, S. M. Géranton 2018, unpub-
lished data), peripheral nerve injury [34,35] and paclitaxel-
induced mechanical hypersensitivity [35]. Crucially, models
of acute pain, such as IL6- and PGE2-induced inflammation
of the hind paw, were insensitive to FKBP51 blockade.
Our study also demonstrated that spinal deletion and
pharmacological blockade of FKBP51 alleviated established
persistent pain as effectively as global deletion, suggest-
ing that FKBP51 could regulate pain independently from
its effect on mood, which is likely to be mediated in the
brain. While the molecular mechanisms of the regulation of
persistent pain by FKBP51 remain to be fully elucidated,
our early findings would suggest that this occurs in a
glucocorticoid-signalling-dependent mechanism [34,35].
Importantly, a significant body of work from McLean and
co-workers [36–38] suggest that genetic variants of FKBP5
alter pain sensitivity after trauma such as car crash and
sexual assault, supporting the idea that FKBP51 drives
persistent pain states in humans.

In our rodent pre-clinical studies, FKBP51 was upregu-
lated in the dorsal horn after peripheral injury and this
upregulation was accompanied at least by two epigenetic
changes: the phosphorylation of the methyl CpG binding
protein 2 (MeCP2) [39] and the decrease in DNA methylation
in the promoter sequence of the FKBP5 gene [34] (figure 2). In
these studies, the dorsal horn expression of phosphorylated-
MeCP2 and FKBP51 was observed nearly exclusively in neur-
ons [34,39]. However, the changes in DNA methylation were
analysed and detected from a mixture of cells, and therefore,
while unlikely, we cannot exclude the possibility of a change
in FKBP5 DNA methylation in cells other than neurons. All
together, these observations support the idea that epigenetic
mechanisms are crucial to the development of persistent
pain states by promoting the relaxation of the chromatin at
the gene FKBP5, leading to the upregulation of FKBP51. A
number of rodent studies have since demonstrated that
indeed, following injury, epigenetic alterations drive gene
expression changes of other contributors to persistent pain
states and are therefore crucial to the maintenance of
persistent pain. This has been reviewed elsewhere [12,40–
43] and will not be discussed further in this manuscript,
which focuses on the contribution of epigenetic mechanisms
to the susceptibility to chronic pain.

Early-life trauma in humans can lead to a decrease in
FKBP5 DNA methylation, an epigenetic change that primes
FKBP5 for hyper-responsiveness and increases the suscepti-
bility to PTSD in adulthood [27]. Could similar processes
underlie the vulnerability to chronic pain?
4. Could exposure to environmental stress drive
the susceptibly to chronic pain via epigenetic
modifications of FKBP5?

To investigate the susceptibility to chronic pain, a number of
hyperalgesic priming models have been developed in rodents
[44,45]. In these models, animals who have suffered a minor
injury remain in a long-lasting latent hyper-responsiveness to
an inflammatory or surgical insult. In other words, these
models produce a state of sensitization closely resembling
clinical situations with an increased risk of developing
chronic pain. Rodents that have suffered a minor injury
become hyper-responsive to further mild insult that would
normally not evoke persistent pain.

It is now known that pain in early life can enhance the
duration of the pain response to subsequent injury in
animal models, depending on both the nature and timing
of the neonatal trauma [46–49]. Various mechanisms have
previously been suggested [50], some supporting a role for
spinal microglia for the priming of the adult pain responses
[44,51]. Interestingly, glial cells have been shown to carry
long-term epigenetic changes following peripheral injury [52]
and neonatal handling [53] and therefore seem interesting
potential drivers of a primed state of hypersensitivity.

While FKBP51 expression in the central nervous system
has been mainly reported in neurons in rodents [35], the
possibility that FKBP5 could contribute to the susceptibility
to chronic pain in adulthood following early-life trauma
deserves serious consideration. Indeed, not only early-life
injury but also early-life stress exposure, such as sexual
assault, could lead to a long-lasting decrease in FKBP5
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DNA methylation. Such a reduction in DNA methylation
would prime FKBP5 for hyper-responsiveness to injury in
later life, enhancing the duration of the pain response and
potentially increasing the likelihood of developing chronic
pain. The extent, duration and location in the central nervous
system of the trauma-induced reduction in DNA methylation
remain central to the likelihood that such mechanisms could
contribute to the susceptibility to chronic pain. In this context,
it is important to note that because pain is a stressor in itself,
it is likely that, following injury, changes in FKBP51
expression and FKBP5 DNA methylation occur not only at
spinal cord level, as we have reported in mice and rats, but
also in brain areas involved with stress, such as the paraven-
tricular nucleus of the hypothalamus [54,55]. Reciprocally,
whether traumatic stress experience can lead to changes at
the spinal cord level remains a point of discussion.

Could similar mechanisms occur in adult life? A state of
latent hypersensitivity can also be induced in adulthood
using priming models in rodents [45,50,56] and this latent
state of hypersensitivity can last at least for five weeks [50].
Various mechanisms have been suggested including the
involvement of dopaminergic descending controls [50],
GABAergic signalling at dorsal horn level [57] as well as per-
ipheral mechanisms of nociceptor plasticity [58–60].
However, in the seminal human studies from Binder and
co-workers [27], it was reported that trauma in adult life
could not lead to long-lasting changes in FKBP5 DNA
methylation, as seen in childhood. Mechanisms of epigenetic
priming could differ across ages because epigenetic modifi-
cations might be differently engaged in the young and the
mature nervous system by trauma. Indeed, the epigenome,
the complete set of epigenetic modifications on the genetic
material of an individual, tends to change as we age; changes
in both histone modifications and DNA methylation, specifi-
cally gene-specific and global hypermethylation and
hypomethylation, have been reported with ageing in various
tissue, as well as in the central and peripheral nervous system
[61–65]. Some epigenetic actors are also expressed differently
in young animals versus adults: e.g. the expression of DNA
methyltransferase 1 (DNMT1) and 3a decreases considerably
between newborn and middle-age (23–50-year-old) humans
[66,67]. Nonetheless, using a gene-specific approach, we did
find in our pre-clinical studies that peripheral injury in
adult rats induced a reduction in FKBP5 DNA methylation,
at least in the superficial dorsal horn [34]. This reduction in
DNAmethylation lasted at least 7 days. It is, therefore, crucial
to characterize precisely the circumstances under which (e.g.
trauma intensity, life stages) changes in DNA methylation
can occur and can be persistent. This indeed would be necess-
ary for the long-lasting priming of the nociceptive system for
hyper-responsiveness to subsequent injury.

5. Epigenetic regulation of the stress axis and
the vulnerability to chronic pain: other
candidate genes

While this article focused on the gene FKBP5 purposely, other
genes from the stress axis are likely to be involved in the sus-
ceptibility to chronic pain. For example, the GR itself is
known to be involved in spinal mechanisms crucial to the
development of persistent pain states through modulation
of NMDA receptor expression [68,69]. Because the GR is
also under strong epigenetic regulation upon stress exposure
[18,20,21], one could assume that stress-induced epigenetic
regulation of this receptor could modulate the susceptibility
to chronic pain. An important role for the serum and gluco-
corticoid-regulated kinase 1 (SGK1) in the development of
persistent pain states has also been reported at spinal cord
level [39,70,71]. The gene that encodes this protein is also
known to be sensitive to epigenetic regulation and its
expression is modulated by stress in both humans and
rodents [72–74]. All together, these observations strongly sup-
port the hypothesis that stress exposure can leave long-lasting
epigenetic marks onto genes crucial to the development and
maintenance of persistent pain states. This suggests that such
genes could be primed by stress for injury-induced hyper-
responsiveness in later life and therefore could be key to
the susceptibility to chronic pain.

6. Epigenetic transgenerational inheritance
The possibility of inheritance of acquired characteristics was
first proposed by the French naturalist Jean-Baptiste Lamarck
at the end of the eighteenth century. Lamarck suggested that
the environment could make lasting and potentially heritable
alterations in gene function. This idea has remained contro-
versial and the possibility that acquired traits could be
passed on through generation remains an intense area of
investigation [75,76].

While meiotic epigenetic inheritance is strongly debated,
experience-dependent transgenerational transmission has
gathered significant support. Meaney and co-workers’ [18]
work was the first to clearly demonstrate in pre-clinical
models that a mothering style of grooming and nursing
could be passed on to the next generation through an epige-
netic mechanism. The female rats that were resilient to stress
brought up offspring that were also resilient to stress in adult-
hood and both mothers and progenies had a lower level of
DNA methylation and higher expression of the GR gene in
the hippocampus than stress-vulnerable controls [18]. More
recent human data also support the idea that the effects of
stress on the epigenome could be inherited through social
interactions. In particular, the intergenerational effects of
trauma have received a lot of attention and have been
widely observed clinically. Parental PTSD, for example, in
holocaust survivors, has been linked with an increased risk
for psychopathology in offspring which has been associated
with epigenetic programming of glucocorticoid functions
[77–79]. DNA methylation patterns of the gene NR3C1, in
particular, were shown to be related to parental PTSD, with
maternal and paternal PTSD having different effects [78].
Similar findings have been extended to less extreme forms
of stress [80]. For example, there was a positive association
between the methylation status of the NR3C1 promoter in
offspring of mothers stressed during pregnancy (reviewed
in [80]).

It is interesting to note that changes in DNA methylation
in the gene FKBP5 were reported in both holocaust survivors
and their offspring, but that parents and offspring exhibited
inverse methylation changes [28]. These results suggested
that, if the changes observed in the parents reflected exposure
to extreme stress, the opposite change in the offspring could
be a sign of resilience. This would suggest that epigenetic
transgenerational transmission could sometimes be not only
the transfer of the negative consequences of stress exposure



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20190283

5
but also a mechanism to enhance environmental adaptation
[80]. Whether similar mechanisms could apply to the trans-
mission of an increased vulnerability or resilience to chronic
pain remains to be demonstrated.

The transgenerational transfer of potentially acquired
traits through gametes remains much debated. While con-
siderable efforts have been made in identifying the
contribution of epigenetic modifications to the heritability
of complex and stress-related diseases, this has been extre-
mely difficult to elucidate owing to the lack of a clear
mechanism. This is because, during mammalian develop-
ment, the embryo goes through epigenetic reprogramming,
when epigenetic marks are erased and remodelled, making
it unlikely for a mark to be transferred from parents to
offspring. Nonetheless, a number of genes, including
imprinted genes, bypass epigenetic reprogramming and can
therefore carry epigenetic marks across generations [81].
Occurrences of such transmission have already been reported
including transmission across generations of exposure to pes-
ticides and experiences, such as metabolic deprivation,
increased fat intake and fear [82]. However, evidence for
this type of heritability in humans remains very limited [83].

Nevertheless, a study in mice was able to demonstrate that
odour fear conditioning could be transmitted to offspring via
changes in methylation in the germ line that were shown to
affect the expression of the relevant olfactory receptor gene
[84,85]. Importantly, up to two generations of offspring
showed increased fear of the smell that had been used to con-
dition the parents and strong evidence was provided to
demonstrate that the transmission occurred through the
germ line and not behaviourally. In another study, traumatic
stress in early life could influence the expression of small
non-coding RNAs which are also known to mediate the
effect of the environment on our genome [86,87]. The changes
in behaviour and small non-coding RNAs could be seen in the
serum and hippocampus of offspring for at least two gener-
ations and injection of sperm RNAs from traumatized males
into fertilized oocytes reproduced the same alterations in the
offspring, demonstrating a non-social transmission of the
traits [86]. In both studies reported here, the assimilation of
environmentally induced phenotypes could act as a driver of
evolutionary change and could even be seen as contributing
to the rapid transformation of a learned behaviour into an
instinct [88]. This would undeniably be extremely beneficial
to offspring to be able to react to a threat from birth. However,
one could also argue that, while adapting to one’s environ-
ment before birth should help with survival, these changes
could have serious consequences if the environment at birth
does not match the environment one was prepared for.
7. Epigenetic inheritance in other phyla
While our knowledge of epigenetic mechanisms in animals
studied in medical research is rapidly expanding, it is not
always the case for other species. Current understanding
suggests that, while the patterns of DNA methylation are
well preserved across species of vertebrates, there are large
differences in terms of the timing and nature of reprogramming
and genomic imprinting. For example, fishes and frogs do not
undergo global DNA methylation remodelling during embry-
ogenesis [89], while in zebrafish the maternal methylome is
reconfigured to match the paternal methylome pattern
[90,91]. In the case of invertebrates, some genomes have no
DNA methylation, while others could be as methylated as ver-
tebrates. Importantly, DNA methylation may have different
functions in invertebrates such as alternative splicing [89].
More relevant to the study of pain mechanisms are obser-
vations made in one of the most studied invertebrate, Aplysia,
used by Kandel and co-workers [92,93] in pioneering studies
in the field of learning and memory. While the DNA methyl-
transferase 1 (DNMT1) was only recently discovered in
Aplysia, Kandel and co-workers [94] demonstrated that DNA
methylation was necessary for 5HT-dependent long-term facili-
tation. These findings were supported by more recent studies
indicating that DNA methylation was a crucial mechanism
for both the consolidation and maintenance of long-term
memory in Aplysia [95]. Overall, these observations would
suggest that epigenetic mechanisms are likely to contribute to
the development of persistent sensitized states across phyla.
However, the possibility of inheritance of some kind of vulner-
able state through epigenetic mechanisms in invertebrates is
still unclear and has been discussed elsewhere [89].
8. Conclusion
Epigenetic mechanisms have been highlighted as key players
of the development and maintenance of persistent pain states
and are expected to contribute to the susceptibility to chronic
pain, at least partly through the modulation of the stress axis
and in particular the gene FKBP5. However, it is likely that
epigenetic regulation and genetic pre-dispositions are work-
ing together to drive vulnerability or resilience, as seen
with the gene FKBP5 in the context of mood disorders.
While epigenetic modifications can be transmitted across
generations, the transmission seems more likely to occur via
social interactions than biological inheritance. Indeed, consid-
ering the fast dynamics of epigenetic mechanisms that allow
the adaptation to the environment within a lifetime, one
could question the advantage of a biological transmission
of epigenetic traits (for humans at least).
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