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Abstract

The field of Parkinson's disease research has been impeded by the absence of animal models that clearly phenocopy
the features of this neurodegenerative condition. Mutations in FBXO7/PARK15 are associated with both sporadic
Parkinson's disease and a severe form of autosomal recessive early-onset Parkinsonism. Here we report that
conditional deletion of Fbxo7 in the midbrain dopamine neurons results in an early reduction in striatal dopamine
levels, together with a slow, progressive loss of midbrain dopamine neurons and onset of locomotor defects.
Unexpectedly, a later compensatory response led to a near-full restoration of dopaminergic fibre innervation in
the striatum, but nigral cell loss was irreversible. Mechanistically, there was increased expression in the dopamine
neurons of FBXO7-interacting protein, RPL23, which is a sensor of ribosomal stress that inhibits MDM2, the
negative regulator of p53. A corresponding activated p53 transcriptional signature biased towards pro-apoptotic
genes was also observed. These data suggest that the neuroprotective role of FBXO7 involves its suppression of
the RPL23-MDM2 -p53 axis that promotes cell death in dopaminergic midbrain neurons.
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Introduction

Parkinson’s disease (PD) is characterised by the aggre-
gation of alpha-synuclein and loss of specific neurons
in the brain, which is accompanied by a defined set
of clinical features, including bradykinesia, akinesia,
and a resting tremor [1]. Numerous genetic variations
have been associated with PD [2], but few of the trans-
genic mice that have been generated incorporating these
mutations have resulted in a phenocopy of the condi-
tion [3]. FBXO7 (also known as PARK15) belongs to
the F-box protein family which recruits substrates to
SCF-type E3 ubiquitin ligases. Because F-box proteins
act at the penultimate step in ubiquitin transference, they
are regarded as hubs in ubiquitin signalling. FBXO7 also
has ubiquitin-independent functions, including binding
other PD-associated proteins, PARKIN and PINKI, to
regulate mitophagy, and binding the G1 kinase, CDKG®,
and cell cycle inhibitor p27 to regulate the cell cycle [4].

In 2008, a point mutation in FBXO7 was linked to
a familial form of PD [5], presenting an early-onset
Parkinsonism with pyramidal signs. Subsequently
additional mutations have been found in early-onset
cases and in patients with sporadic PD [6-12]. PARK15
PD patients are levodopa-responsive, but rapidly
develop side effects, such as dyskinesia [11,12]. To
date, a neuropathological analysis of the brain of an
individual with FBXO7-associated PD has not been
reported. However, brain imaging (DaTSCAN-SPECT)
suggests that there is a significant reduction in the
dopaminergic fibre innervation of the putamen [12].
Whether there is any loss of dopamine (DA) neurons in
the substantia nigra is not known.

FBXO7 acts in a PARKIN-mediated pathway to regu-
late mitophagy. The disease-associated T22M mutation
in FBXO7 compromises PARKIN binding, supporting
the idea that loss of their interaction is pathological in
humans [13]. However, evidence from a Drosophila
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model of neurodegeneration caused by Parkin loss
indicates that FBXO7’s canonical ubiquitin ligase
activity is also critical for neuronal health. Expression
of FBXO7 rescues motor deficits of parkin™~ flies,
arguing that FBXO7 can substitute for Parkin-mediated
ubiquitination of mitochondrial substrates. Moreover,
the expression of pathological alleles of FBXO7 that
compromise its ubiquitin-ligase activity or substrate
recruitment was unable to rescue parkin™~ defects.
These findings argue that FBXO7 recruitment of
PARKIN and its ubiquitination of substrates mediate its
neuro-protective properties.

As FBXO7 is a multifunctional protein with distinct
cellular activities, investigating its activity in neurons
is necessary to determine its functions and how it con-
tributes to PD. To test the requirements of Fbxo7 in
dopaminergic neurons, we utilised mouse models of
Fbxo7 loss: a complete null (Fbxo7~~) and a con-
ditional loss of Fbxo7 in DA neurons expressing the
dopamine transporter (Dat). Our results indicate the
loss of Fbxo7 in midbrain dopaminergic cells leads
to a reduction of synaptic DA release in the striatum
and to locomotor defects. Within the midbrain, we also
found a slow loss of DA cells and activation of the
stress-responsive RPL23—-MDM?2-p53 pathway.

Materials and methods

Mice

All experiments in mice were performed in accor-
dance with the UK Animals (Scientific Procedures)
Act 1986 and ARRIVE guidelines. Animal licences
were approved by the Home Office and the University
of Cambridge’s Animal Welfare & Ethical Review
Body Standing Committee. Experiments were per-
formed under Home Office licences PPL 80/2474,
70/9001, 80/2366, and 70/8411. All mice were bred
as heterozygous crosses, and both male and female
mice were used in experiments. Fbxo7““ mice
(Fbxo7™!a(EUCOMM)Hmgu on 3 C57BL/6J background)
were crossed to ActB:FLPe animals [14], then to
either ZP3¢™ [15] or Dat“"* ROSA26-stop-YFP animals
[16], to generate complete or conditional null mice,
respectively.

Behavioural testing

Mice were tested using rotarod and open field locomo-
tion assessments. Details are available in supplementary
material, Supplementary materials and methods.

Tissue processing

For HPLC and immunohistochemistry analysis, brains
were snap-frozen and dissected from cryostat-cut
30-pm-thick coronal sections. Details are available in
supplementary material, Supplementary materials and
methods. For other experiments, mice were euthanized
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with a 0.5 ml intraperitoneal injection of Euthatal (pen-
tobarbitone sodium, 200 mg/ml; Merial Animal Health
Ltd, Boehringer Ingelheim Animal Health, Bracknell,
Berkshire, UK) and perfused transcardially with 0.9%
saline followed by ice-cold 4% paraformaldehyde
(0.1 M phosphate buffer, pH 7.4). Brains were removed
and post-fixed in 4% PFA overnight, and then placed in
30% sucrose.

Stereological analysis

Randomised estimations of the total number of TH*
cells in the ventral midbrain of the mice were performed
using a standard stereological method (Olympus CAST
Grid System). Details are available in supplementary
material, Supplementary materials and methods.

Optical density analysis and cell body size
measurements

To determine the fibre density, the mean optical inten-
sity was measured from the TH* stained sections. The
area of the soma of SNpc TH* neurons was measured
(n =13 per genotype; minimum 200 cells per brain) from
fluorescent images of TH* neurons. Details are available
in supplementary material, Supplementary materials and
methods.

Neurotransmitter measurements

DA and norepinephrine were measured using
reversed-phase high performance liquid chromatog-
raphy (HPLC) and electrochemical detection. Details
are available in supplementary material, Supplementary
materials and methods.

Tissue and cell lysis, immunoprecipitation,
and immunoblotting

Frozen brain regions were lysed in RIPA buffer
(10 pl/mg tissue) containing protease and phosphatase
inhibitors, and samples homogenised using a Dounce
homogeniser. For transfected HEK293T and SHSY-5Y
experiments, cells were lysed in RIPA or NETN buffer,
and 50 pg of the lysate was analysed by immunoblot-
ting or subjected to immunoprecipitation. Details are
available in supplementary material, Supplementary
materials and methods.

Isolation of RNA and RT-qPCR

Ventral  midbrain  regions  (~10mg)  were
micro-dissected. Total RNA was isolated using an
RNeasy Plus kit (Qiagen, Manchester, UK), and
converted to cDNA using Quantitect Reverse Tran-
scriptase (Qiagen) and then diluted 1:10 for subsequent
gPCR analysis using SYBR Green JumpStart Taq
(Sigma Aldrich, Gillingham, UK) on a CFX Con-
nect Real-Time PCR machine (Bio-Rad, Watford,
UK). Details are available in supplementary material,
Supplementary materials and methods.
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Results

Fbxo7 mRNA is widely expressed in the adult
mouse brain

We analysed Fbxo7 mRNA expression in the adult
mouse brain using in situ hybridisation. Widespread,
low-level expression of Fbxo7 transcripts were seen
throughout the brain, with higher levels in the mitral cell
layer of the olfactory bulb (OB) (arrows; Figure 1A).
Fbxo7 transcripts were absent from the subependy-
mal zone (SEZ) in the OB and throughout the fore-
brain (arrowheads; Figure 1D), although cells imme-
diately adjacent to the SEZ in the anterior olfactory
nucleus were positive (Figure 1B,C). In the striatum,
Fbxo7 expression was present in the corpus callosum
(CC), possibly in oligodendrocytes (arrows; Figure 1D).
There was very limited expression in the striatum (Str)
(Figure 1D), compared with a ‘salt and pepper’ pat-
tern in overlying cortex (Figure 1E). The lower expres-
sion of Fbxo7 in the striatum was particularly appar-
ent when comparing the Str with the adjacent globus
pallidus (GP) (Figure 1E,G). At this same level, there
were many labelled transcripts in the CC and fornix
(Fx) (arrows and arrowheads respectively; Figure 1H).
Expression in the hippocampus was limited to scattered
sparse labelling in the CA3 region of the hippocam-
pus (Figure 1I). More caudally, the majority of nuclei
in the midbrain region were positive for Fbxo7 mRNA,
including the dopamine (DA) neurons of the substan-
tia nigra pars compacta (SNpc) and ventral tegmen-
tal area (VTA; Figure 1J). Ubiquitous Fbxo7 mRNA
expression in the midbrain was evident also in the hind-
brain, where it was present in most regions except for
the SEZ (data not shown). In the cerebellum, Fbxo7
expression was strongest in the arbor vitae (arb; arrow),
with little labelling in the granular or Purkinje cell layers
(Figure 1K). Overall, the expression of Fbxo7 mRNA in
the adult mouse brain was less than that of control genes
(e.g. Cd24 [17]), but appeared to be strongest in the
white matter regions and the evolutionarily older struc-
tures, such as the midbrain and brain stem.

In our analyses of FBXO7 protein in mouse brain,
none of the antibodies that we tested gave a reliable
and specific signal with IHC compared with Fbxo7 null
animals; therefore, we dissected out regions of the brain
and performed immunoblotting on protein lysates to
verify FBXO7 expression. We detected expression in
all regions of the brain analysed, with the highest levels
being found in the OB (data not shown). FBXO7 isoform
1 was expressed, but murine isoform 2, which migrates
at ~55kDa, was not detected. These data demonstrate
widespread FBXO7 expression throughout the brain of
adult mice.

Fbxo7 null mice fail to thrive

To determine functional roles in vivo, we created Fbxo7
null mice, first by crossing Fbxo7-%? mice [18,19]
with ActB:FLPe animals [14], to generate a ‘floxed’
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(Fbxo7") allele, with LoxP sites flanking either side of
exon 4 (Figure 2A), and subsequent breeding to Zp3¢™®
mice [15], for germline excision (Fbxo7~). Fbxo7~'*
offspring were backcrossed with WT C57/BL6J mice
and bred to homozygosity. Fbxo7 null mice (Fbxo7 ")
appeared normal at birth, but by postnatal day 10 (P10)
showed a significant growth defect (see supplemen-
tary material, Figure S1A), despite evidence of feeding.
By P18, Fbxo7~'~ mice were, on average, 45% of the
body mass of WT and Fbxo7~'* littermates (Figure 2B;
n=7), with a runty, hunched appearance. Mice failed
to survive post-weaning. No evidence of infection was
detected, either histologically or serologically (data not
shown). Histological analyses of major organs were
unremarkable, and analyses of brain regions showed
normal cellularity and no gross anatomical defects (data
not shown). Dopaminergic fibre density in the stria-
tum was indistinguishable from WT mice [based on
optical density: the Fhxo7~'~ striatum was 99.3 +2.3%
of WT; n=4 in both groups (Mann—Whitney U-test
(M-W U)=0.0, p=0.82), and the Fbxo7~'~ nucleus
accumbens was 100.7+2.4% of WT, n=4 in both
groups M-W U=0.0, p=0.73; Figure 2C)] and a nor-
mal population of tyrosine hydroxylase (TH) positive
neurons was present in the substantia nigra (Figure 2D
and Table 1). These data demonstrate that the expression
of FBXO7 is required for post-weaning survival.

Conditional Fbxo7 knockout in dopaminergic
neurons leads to a reduction in dopamine release
in the striatum

To generate a mouse in which Fbxo7 was lost specifi-
cally in dopaminergic neurons, Fhxo7" mice were bred
with Dar¢re ROSA26-stop-YFP animals, which express
Cre from the dopamine transporter (Dat) promoter
[16]. Since our previous studies detected no pheno-
types in mice heterozygous for Fbxo7 [18,19], we anal-
ysed Dat®" Fbxo7~"" animals, which were systemically
heterozygous for Fbxo7 expression, in addition to the
loss of Fbxo7 expression in dopaminergic cells. Dar™*
Fbxo7~* and Dat“"¢ Fbxo7~'* mice were used as
controls.

In Dat“" mice, Cre-mediated recombination in DA
neurons initiates around E13 [20]. TH™ fibre innervation
of the striatum begins at approximately E16 and con-
tinues until 8—9 weeks, when striatal DA levels plateau
[21]. At birth (PO), Dat“" Fbxo7~"% mice had a normal
distribution of DA neurons in the ventral midbrain (VM)
and axonal fibres in the lateral ventral portion of the
developing striatum (Figure 2E). TH* striosomes, as
determined by double labelling with p-opioid staining
(data not shown), were clearly visible. We also con-
firmed that TH* neurons in the VM of Dat™ Fbxo7~'1
animals expressed Cre (see supplementary material,
Figure S1B). At 6 weeks, control Dat“"® Fbxo7~'*
mice showed robust TH expression uniformly present
across the whole of the striatal region (Figure 3A),
with magnified striatum (Figure 3B) and olfactory
tubercle (Figure 3C). In contrast, Dat" Fbxo7~/1
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Figure 1. In situ hybridisation for Fbxo7 in the adult mouse brain. Fbxo7 transcripts were labelled using branched DNA amplification in
situ hybridisation. The regions shown include (A) olfactory bulb, (B, C) the subependymal zone (SEZ) of the rostral forebrain, (D) the corpus
callosum (CC), (E) the overlying cortex, (F, G) the striatum (Str) and globus pallidus (GP), (H) the fornix (Fx), (I) the dentate gyrus (DG) and
CA3 region of the hippocampus, (J) the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) of the ventral midbrain,
and (K) the arbor vitae (arb) of the cerebellum. The scale bar in K represents 300 um for A, D, H, I, J; 200 um for C, E; 2 mm for B, F; 250
um for G; and 600 pm for K.

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2019; 249: 241-254
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com



Death of dopaminergic cells due to Fbxo7 loss

245

A FRT loxP FRT loxP loxP B 12 4
> >-B- 0] 1]
l Fbxo7 52 @ 8 - J.
Flp n *kk
8 67
FRTIoxP  loxP FRT loxP =,
l ) [ l [ I Cre I ) [ I
H 2 -
;\f*\,\//*""‘ \‘\\ S/ \\\\/,// 04
(floxed) (exon deleted) s ' .- ' -
Fbxo7 ™ Fbxo7~

- “":&f/i’ i =
DATCre Fpxo7 -/l

B

Control

Figure 2. Fbxo7 null mice fail to thrive. (A) Schematic diagram of the transgene used to generate various mice. (B) Body weight
measurements of WT, heterozygous Fbxo7-!*, and Fbxo7~!~ mice at P18. (C) Representative TH-immunostained sections from WT and
Fbxo7~"~ mice at the level of the striatum. (D) Representative TH-immunostained sections from WT and Fbxo7~1~ mice at the level of the
SNpc. (E) TH staining of the developing striatum at birth, at the level of the anterior commissure (AC), in the DatCe Fbxo7-!* (control) and
DatC Fbxo7~/" mice, demonstrating the presence of striosomes (arrows). Scale bar in D represents 2 mm for C, 500 um for D, and 1 mm

for E.

mice exhibited significantly less TH expression in the
striatum (69.64 + 1.9% of control; n=3; M-W U =0.0,
p=0.024; Figure 3A-D). Dense clustering of TH*
fibres was apparent close to the ventricular space and
around striosomes but was reduced elsewhere. This
reduced TH' fibre density in the striatum was sup-
ported by neurotransmitter measurements showing a
50.2 +4.5% reduction in striatal DA levels in Dat‘"®
Fbxo7™™ mice, alongside a 428.5+51.5% increase
in noradrenaline levels (Figure 3E). We assayed later
time points to determine whether this phenotype pro-
gressed or was corrected. At 12 weeks, by which
time striatal TH* fibre density and DA levels should
have plateaued, Dat“® Fbxo7~" mice presented a
444+17% (n=3; M-W U=0.0, p=0.023) and a
4094+29% (M-W U=0.0, p=0.024) decrease in
the density of TH™ fibres in the striatum and nucleus
accumbens, respectively, compared with controls
(Figure 3A—D). Remarkably, by 20 weeks there was an
increase in TH* fibre density in the striatum of Dar‘"®
Fbxo7™" mice compared with that seen at 12 weeks,
but not in the nucleus accumbens [28.7 + 6.2% decrease
in TH* fibres in the striatum (n=4; M-W U=0.0,

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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p=0.003) versus a 47.5 + 2.0% reduction in the nucleus
accumbens (M-W U=0.0, p=0.002); Figure 3A-D].
This trend continued to 46 weeks of age when the
striatum exhibited a near-complete restoration of TH*
fibre density levels, while the nucleus accumbens dis-
played no change [13.0 = 3.8% reduction in the striatum
(n=6; M-W U=5, p=0.013) versus a 42.7+2.0%
reduction in the nucleus accumbens (M-W U=0,
p=0.0007); Figure 3A-D]. At both the 20- and the
46-week time points, there was also increased TH*
staining in the globus pallidus (arrows in Figure 3A).
Collectively, these data indicate that loss of Fbxo7
in DA neurons results in an abnormal presentation
of the midbrain dopamine system at the level of the
striatum.

Ectopic expression of TH in the striatum of the
conditional Fbxo7 knockout mouse

Closer examination of the re-establishment of TH™ fibre
density in the striatum between 12 and 46 weeks of age
in the Dat“ Fbxo7~" mice revealed the presence of
large TH* cell bodies (arrowheads in Figure 4A,B).

J Pathol 2019; 249: 241-254
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Table 1. Stereological estimations of TH* cells in the midbrain of the mice used in this study, in the substantia nigra (SN), ventral

tegmental area (VTA), and the striatum

Age Genotype N
SN stereological estimations
3 weeks Foxo7~/= 4
Foxo7—/+ 5
Foxo7t/+ 2
18 months Fbxo7Lecz/lacz 3
Foxo7tacZ/+ 5
Foxo7++ 4
6 weeks DatCre; Foxo7-/M 3
Controls 9
12 weeks DatCe; Foxo7~/M 5
Controls 6
20 weeks DatCre; Foxo7~/f 4
Controls 6
46 weeks DatCe; Foxo7~/M 6
Controls 8
VTA stereological estimations
46 weeks DatCe; Foxo7~/M 6
Controls 8
Striatal stereological estimations
6 weeks DatCre; Foxo7~/f 3
12 weeks DatCe; Foxo7~/M 5
20 weeks DatCe; Foxo7~/M 4
46 weeks DatCre; Foxo7~/f 6
46 weeks DatCe; Foxo7~/M 3

Average number TH* cells (+ SEM) Significance
9601.3+316.8
9849.1 + 406.4
10517.1+63.3 F(2,9)=2.101, p=0.18

10 081.5+339.5
9468.5 +207.8
9790.5 +280.4
8116.9 +452.9
BYSZESEEPIN)
7968.4 +236.2

F(2,10)=0.087, p=0.91

M-W U =4, p=0.091

8825.6 +69.1 M-WU=7, p=0.106
7739.3+214.4
9201.1+265.8 M-WU=5, p=0.016
8557.3 +304.1
9390.9 +310.9 M-WU=0, p=0.016

9462.2 + 351.6

10797.8+125.7 M-WU=5, p=0.013
10937.5+1701.3
20937.5+2610.7
23531.3+3402.8
29390.63 + 1297.1

1039416.67 + 123 668.1 (NeuN™ cells)

F(2,11) = 8.329, p=0.0006

The number of NeuN* cells was also calculated to determine the neuronal population of the region. ANOVA and Mann-Whitney (M-W) statistical results are presented.

Quantification of these TH™ cell bodies in the striatum
indicated an increasing trend across all of the time
points examined, representing almost 3% of the NeuN™*
neurons in the striatum by 46 weeks (Figure 4C).
There was no corresponding increase in Cre expres-
sion in these cells, suggesting that no ectopic allelic
recombination was occurring (Figure 4D). In addition,
the TH* cell bodies in the striatum did not express
DAT (Figure 4E,F). Instead, the majority of these
ectopically expressing TH* cell bodies in the striatum
were identified as medium spiny projection neurons
due to co-expression of DARPP-32 (arrowheads in
Figure 4H,1). This finding explains the increase in TH*
fibre staining observed in the globus pallidus (arrows
in Figure 3A) and SNpr of the 46-week-old Dat‘"
Fbxo7~'" mice, as the striatopallidal and striatonigral
pathways of these mice were now ectopically expressing
TH (arrows in Figure S5E,F). These data also suggest
that a proportion of the re-innervation of the striatum
can be attributed to ectopic expression of TH in the
Dat“" Fbxo7~" mice, which may be a compensatory
mechanism, similar to those noted in previous mouse,
rat, and primate models of DA loss [21-23].

Delayed loss of dopamine neurons in the
conditional Fbxo7 knockout

Despite the significant reduction in striatal TH* fibres,
there was no significant difference in the number of DA
neurons in the SNpc between Dat“" Fbxo7 '™ mice and
control littermates at 6 and 12 weeks (Figure SA-D,I
and Table 1). Consistent with this, there was no dif-
ference in neurotransmitter levels in the VM of Dat“"®

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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Fbxo7~" mice (Figure 5K). However, we observed a
significant difference in the diameter of TH* cell bod-
ies in the SNpc at 12 weeks of age (88.9 +3.1%; M-W
U=13, p=0.012; Figure 5G,H,J) but not in the VTA
(97.4+£1.2%; M-W U =63, p=0.79; Figure 5J). There
was also a noticeable reduction in the density of neurites
from each SNpc TH* cell at 12 weeks (Figure 5G,H).
This shrinkage and reduction in neurites of the TH*
SNpc cells at 12 weeks preceded a significant reduction
in the number of TH* cells in Dat" Fbxo7~'" mice
at 20weeks (81.3+1.0%; M-W U=0.0, p=0.016;
Figure 51 and Tal), and was also present at 46 weeks of
age (87.3+3.3%; M-W U=6, p=0.02; Figure SE,FI
and Table 1). A similar decrease was observed in TH*
cells of the VTA in Dat“"® Fbxo7~'™" mice at 46 weeks
(88.84 +3.14%; M-W U =5, p=0.013; Table 1). These
results demonstrate a slow loss of TH* cells in the VM
of the Dat“" Fbxo7~'" mice.

Coordination, but not locomotion, is affected
in conditional Fbxo7 knockout mice

To determine if reduction in TH* fibre density or loss of
DA neurons had behavioural effects, we assessed Dar"
Fbxo7~" mice using rotarod and open-field locomo-
tion tests at 12, 20, and 30 weeks of age. At 12 weeks,
there was no significant difference between the animals;
however, by 20 weeks, we found a significant reduc-
tion in latency to fall on the rotarod, which was also
evident at 30 weeks (Figure SL). In open field tests,
we assessed the distance travelled over 10 min, at 20,
30, and 40 weeks of age, and found no significant dif-
ferences at any age (data not shown). These results

J Pathol 2019; 249: 241-254
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Figure 3. Decreased TH* staining in mice with a conditional loss of Fbxo7 expression in dopaminergic cells. (A) TH-immunostained sections
of the striatum at +1.1 mm (top panels) and —0.5 mm (bottom panels) relative to the bregma from control mice (Dat“ Fbxo7-/*) at 6 weeks,
and conditional KO mice (Dat®® Fbxo7-) at 6, 12, 20, and 46 weeks of age. Arrows show increased TH staining in the globus pallidus over
time. (B, C) Magnified regions highlighted in A, showing TH* fibres in the striatum (B) and olfactory tubercle (C). (D) Quantification of
TH* fibre density in Dat% Fbxo7~'" mice at different time points, as a percentage of control at each time point, in the striatum and
nucleus accumbens (Nuc. Acc.). (E) Quantification of neurotransmitter levels in the striatum of 5-week-old Dat® Fbxo7~'+ and Dat‘re
Fbxo7%*+ mice (control) and Dat®e Fbxo7~ mice (—/fl) using HPLC analysis. DA, dopamine; NA, noradrenaline; 5HT, serotonin. **p < 0.01;
**p<0.001. NS, not significant. The scale bar in C represents 800 pm for A and 300 um for B, C.
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Figure 4. Ectopic expression of TH in the striatum of mutant mice. (A, B) Magnified image of TH-immunostained striatum from Dat®
Fbxo7~/" mice at (A) 12 weeks and (B) 46 weeks, showing TH* cell bodies (red arrowheads). (C) Quantification of TH* cell bodies in the
striatum. ANOVA *p < 0.05; **p < 0.001. (D) Immunofluorescence staining for Cre and TH in the striatum from Dat® Fbxo7/f mice,
demonstrating no ectopic Cre expression. (E, F) Immunofluorescence staining for TH (E) and DAT (F) in the striatum of 46-week-old Dat
Fbxo7~/" mice. TH* cell bodies in the striatum are negative for DAT expression. (G-1) Immunofluorescence staining for (H) TH and (I)
DARPP-32 with (G) merged image in the striatum of 46-week-old Date Fbxo7~/" mice. TH* cell bodies in the striatum are positive for
DARPP-32 expression (red arrowheads), suggesting medium spiny neuron origin. The scale bar in | represents 300 um for A, B, E, F; 1 mm
for D; and 100 pm for G-1.
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Figure 5. Smaller cell size and decreased cell number in the substantia nigra of mutant mice. (A-F) TH immunostaining of the VTA and
substantia nigra from (A, B) control and (C-F) mutant mice at 12 (A-D) and 46 weeks (E, F) at —2.8 mm (A, C, E) and —=3.3 mm (B, D, F)
relative to the bregma. Arrows in E and F highlight regions of increased TH* expression in the very fine fibres of the striatonigral pathway
in the SNpr (originating from TH* cells in the striatum). (G, H) Magnification of the SNpc regions highlighted in B and D, of control (G)
and mutant (H) mice, showing smaller TH* cell bodies and fewer neurites in mutant mice. (I) Stereological estimations of TH* cell bodies
in the SNpc of Dat®® Fbxo7~* and Dat® Fbxo7* mice (control), and experimental Dat® Fbxo7~/" mice at 6, 12, 20, and 46 weeks. ()
Quantification of the diameter of TH* cell bodies in the SNpc and VTA of control and Dat®"® Fbxo7-!" mice at 12 weeks. (K) Quantification
of neurotransmitter levels in the ventral midbrain of 5-week-old Dat® Fbxo7~'+ and Dat® Fbxo7* mice (control) and Dat% Fbxo7~/f
mice using HPLC analysis. (L) Rotarod behavioural analysis of control and Dat® Fbxo7~" mice at 12, 20, and 30 weeks of age, showing
latency to fall. *p < 0.05; **p < 0.005. FR, fasciculus retroflexus; ML, medial lemniscus; DA, dopamine; NA, noradrenaline; 5HT, serotonin.
The scale bar in F represents 300 pm for A-F and 80 um in G, H.
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show that Dat" Fbxo7~"" mice develop a defect in
fine motor coordination, but not general locomotion,
over time.

Conditional Fbxo7 knockout mice have increased
levels of RPL23 and upregulate p53-dependent
apoptotic genes

To investigate why FBXO7 loss may cause a reduction
in the number of DA neurons in the SNpc and VTA,
we investigated pathways highlighted from published
screens for FBXO7 substrates [24,25]. Components of
the ribosome and proteasome are significantly enriched
classes of proteins interacting with SCFF*°7 ligase
[24]; moreover, ribosomal proteins were significantly
enriched in a ubiquitination protein array by SCFF*°7
[24]. We noted that two ribosomal proteins, RPL11 and
RPL23, which act as sensors of cellular stresses, includ-
ing ribosomal stress, protein misfolding, and nutrient
depletion [26,27], are highly expressed in dopaminer-
gic neurons (Allen Institute for Brain Science, Allen
Mouse Brain Atlas; available from: http://mouse.brain-
map.org/experiment/show/74819237; last accessed
December 2015). To survey RPL expression, VMs
were dissected out from Dat“" Fbxo7~* and Dat‘"
Fbxo7~" mice at 5 weeks of age; whole tissue lysates
were separated by SDS-PAGE, and gel lane slices were
subjected to in-gel digestion (IGD). Peptide fragments
were analysed by LC-MS/MS and examined using
label free quantitation (Scaffold Proteome software),
which identified 2168 unique proteins. Data are avail-
able via ProteomeXchange with identifier PXD011666.
Within this dataset, only RPL23 was elevated in the
Dat° Fbxo7~® VM, whereas 22 other ribosomal
proteins were not substantially changed. To verify this,
we assayed directly for RPL23 by IHC and found
that its expression increased in DA neurons in Dat‘"®
Fbxo7~"" mice (Figure 6A,B). We first tested whether
these proteins interacted in HEK293T and SHSY-5Y
cells by co-immunoprecipitation assays which were
transfected with empty vector or an N-terminally
FLAG-tagged human FBXO7 expression construct.
Endogenous RPL23 was detected in FLAG-FBXO7,
but not in control, immunoprecipitates, indicating that
the two proteins interact in human cells (see supple-
mentary material, Figure S1C). This finding raised
the possibility that FBXO7 promoted ubiquitination
of RPL23. To test this, a HA-tagged ubiquitin con-
struct was co-transfected with RPL23 and FBXO7
constructs. In the presence of overexpressed WT,
but not the ligase-dead AF-box mutant, a ladder of
poly-ubiquitinated RPL23 was detected (Figure 6C),
demonstrating that FBXO7 promotes the ubiquitination
of RPL23. Additionally, we found that expression of
WT, but not mutant, FBXO7 led to statistically signifi-
cant decreased levels of RPL23, and that also treatment
with MG132 prevented the reduction in endogenous
RPL23 levels seen upon FBXO7 overexpression (see
supplementary material, Figure SID,E). These data
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indicate that FBXO7 ubiquitinates RPL23, which
promotes its degradation by the proteasome.

It is well established that under stress conditions,
excess levels of certain free ribosomal subunits directly
bind and inhibit MDM2/HDM2, the ubiquitin lig-
ase which promotes p53 degradation, leading to its
stabilisation and transactivation of its transcriptional
network [26-28]. We tested whether Fbxo7 might also
regulate the Rpl23—Mdm2—p53 pathway in neuronal
cells. To examine this, we engineered SHSY-5Y cells
with stable expression of an shRNA targeting Fbxo7
causing a constitutive reduction in its expression.
Whole cell lysates were immunoblotted for the levels
of Rpl23—Mdm2-p53. As seen in Figure 6D, levels of
Mdm?2 were decreased, while p53 levels were increased
in Fbxo7 KD cells. Moreover, downstream targets of
pS3 activation, such as p21 and PUMA, were also
elevated. Although the steady-state levels of Rpl23
were unchanged in these cells, immunoprecipitations
from cell lysates revealed the interaction between
endogenous Rpl23 and Mdm?2, which increased upon
treatment with actinomycin D to induce ribosomal stress
(Figure 6E). Rpl23 also co-immunoprecipitated with
endogenous Fbxo7 in SHSY-5Y cells when they were
treated with actinomycin D and MG132 (Figure 6F).
These data indicate that Fbxo7 interacts with Rpl23
to regulate the Rpl23—Mdm2-p53 stress response in
neuronal cells.

Since RPL23 was elevated in the substantia nigra of
the mutant mice, we tested whether the p53 pathway
was activated in these cells. We analysed 7rp53 mRNA
expression in the 5-week-old mouse brains using in
situ hybridisation. Samples were also assessed for
Th mRNA expression. We found low level of Trp53
expression through the brain sections, and quantified
the amount of Trp53 signal in TH* cells in control and
mutant mice. We found a 38% increase in 7rp53 mRNA
in Th* cells from Dat™ Fbxo7~'" mice compared with
the control animals (11 +4.5 pixels per cell mutant;
8 + 5 pixels per cell control; Student’s ¢-test, p =0.024)
(Figure 6G). Immunoblotting for pS3 from whole tissue
lysates of dissected VM from 5-week-old mice also
showed a two-fold increase in p53 protein expression
in Dat" Fbxo7~" mice (see supplementary material,
Figure S1F). We also assayed for downstream targets of
p53 transcriptional activity by performing RT-qPCR for
p53-responsive genes on RNA isolated from dissected
VM from Dat®" Fbxo7~'" mice, compared with Dat“"
Fbxo7~"* and Dat®" Fbxo7*'* mice. Interestingly,
in these post-mitotic neurons, only p53-responsive
genes regulating apoptosis were significantly upreg-
ulated in Dat“" Fbxo7™™ mice [Asppl, Bakl, Bax,
Puma (Bbc3); Figure 6H]. Genes associated with cell
cycle arrest [p21 (Cdknl), 14-3-3c (Sfn), GADD45a
(Gadd45a); Figure 6I] were unchanged or reduced.
These samples were harvested at 5 weeks when there
was no obvious cell loss in the VM. Therefore, we pre-
dicted that an anti-apoptotic pathway must be activated
to counteract the pro-apoptotic programme. To test this,
RT-qPCR was performed for Bcl-2 (Bcl2) and Bcel-xL
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Figure 6. Mutant mice show increased RPL23 and elevated expression of Trp53 mRNA and p53-regulated pro-apoptotic genes. (A, B)
Immunofluorescence for RPL23 (arrows) in the SNpc of control (A) and Dat® Fbxo7~/" (B) mice at bregma stage —2.8. FR, fasciculus
retroflexus (n=3). The scale bar in B represents 200 um for A, B. (C) In vivo ubiquitination assay of RPL23 using HEK293T cells
transfected with plasmids expressing FLAG-RPL23, HA-tagged ubiquitin, and either untagged WT (+) or AF-box (A) FBXO7 constructs.
Immunoblots of total lysate prior to anti-FLAG immunoprecipitation are also shown. (D) Immunoblotting for the expression of various
proteins as indicated from cell lysates of SHSY-5Y cells either constitutively expressing an shRNA targeting Fbxo7 expression or a
control. (E) Co-immunoprecipitation assays from SHSY-5Y cells treated for 8.5 h with 5 nm actinomycin D or vehicle (DMSO0). Lysates
were immunoprecipitated with antibodies to RPL23 and immunoblotted for MDM2. (F) Co-immunoprecipitation assays from SHSY-5Y cells
with endogenous (Ctrl) or reduced expression of FBXO7. Cells were treated for 4 h with 5 nm actinomycin D and then for a further 5 h with
MG132 prior to harvesting. Cell lysates were immunoprecipitated with RPL23 antibodies and immunoblotted with antibodies to Fbxo7.
(G) Th (green) and Trp53 (red) transcripts were labelled using branched DNA amplification in situ hybridisation. (H, 1) RT-qPCR analysis of
p53-requlated genes isolated from dissected midbrains isolated from Dat®® Foxo7+* (+/4), Dat®® Fbxo7~-1* (—/+), and Dat®* Foxo7-f
(—/fl) mice. Expression was normalised to three reference genes (Actb, Ppia, Gapdh) and expressed relative to WT levels. *p < 0.05, **p < 0.01,
**p < 0.001.

(Bcl2ll) genes. Both transcripts were significantly  p53 transcriptional signature in the midbrains of
increased in expression in the mutant samples but not ~ Mutant mice.

Collectively, these data support a model whereby the
: loss of FBXO7 expression in dopaminergic neurons
These data suggest that loss of Fbxo7 expression caused  affects a number of pathways which lead to cell loss

an increase in Rpl23 levels, resulting in a pro-apoptotic ~ in the SNpc, and a locomotor defect — two hallmark

in controls (see supplementary material, Figure S1G).
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features of Parkinson’s disease — from 20 weeks of
age. Two phenotypes which precede the loss of TH'
cells were increased RPL23 expression and decreased
cell size and fibre density. Additionally, we observed
a robust compensatory mechanism involving the
increased expression of TH in the striatum; however,
this was not able to rescue the locomotor defects or TH*
cell loss in the SNpc and the VTA.

Discussion

In this study, we investigated the roles that FBXO7 may
have in DA neurons. Mice with complete loss of Fbxo7
in Dat“"-expressing cells developed phenotypes which
included some cellular and motor features associated
with PD. These phenotypes included reduced TH* fibre
density in the striatum, with reduced DA and increased
noradrenaline at 6 weeks, followed by TH* cell loss in
the SNpc and motor coordination defects by 20 weeks.
Innervation of the striatum by fibres originating from the
SNpc DA neurons progresses from E16 until approx-
imately 8—9 weeks of age [21]. Striosome formation
was normal in Dat“"® Fbxo7~'" mice at PO, suggest-
ing that SNpc DA axon guidance was functional. We
observed no obvious deviation of TH fibres from along
the medial forebrain bundle. It is possible that neurite
outgrowth and/or synaptic signalling are defective in the
Dat“ Fbxo7~" mice. While our study does not dis-
tinguish among these possibilities, the conditional loss
of Fbxo7 post-innervation might address this and is an
area for future research. However, the sustained reduc-
tion in DA levels could contribute to the later cellular
phenotypes, including reduced TH™ cell size in the SNpc
and subsequent cell loss. A similar study using Th" to
conditionally delete Fbxo7 in midbrain DA neurons has
been published [25]. The authors observed a 50% reduc-
tion in DA in the striatum at 2 and 12 months, but no
differences in TH* fibre staining or cell loss in Th¢"
Fbxo7"™ mice [25]. We speculate that the later onset
of Dat expression in midbrain DA neurons compared
with Th, which has an earlier and wider expression pat-
tern, may account for the differences in these models.
Experiments using temporally separated Cre lines will
be required to address this.

The ectopic presence of TH' cells in the striatum of
the Dat Fbxo7~'M" mice, though remarkable, is not
unique to this study [23,29]. TH™ cells occur naturally in
the striatum [29], increasing in number following loss of
nigrostriatal input in surgically lesioned animals and in
transgenic mice with mutations in DA-associated genes
[30-34]. They have also been observed in healthy and
Parkinsonian post-mortem human brains [35,36]. The
increased number of TH* cells following denervation
of the striatum and administration of L-dopa has led to
speculation that these TH* cells form a compensatory
mechanism [22]. Previous reports indicated the TH*
striatal cells are a type of GABAergic interneuron that
expresses TH but not additional enzymes or transporters
of dopaminergic neurons, and thus do not release DA
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[37]. It will be interesting to assess whether this is repli-
cated in FBXO7/PARK 5 patients, although no histolog-
ical reports currently exist.

Our data indicate that FBXO7 negatively regulates
the ribosomal sensor RPL23. Many factors can alter
ribosome subunit stoichiometry, including fluctuations
in cellular metabolism, disruption of rRNA expres-
sion, or an imbalance in ribosomal protein production
[27]. When this occurs, ribosomal protein sensors acti-
vate a stress response via a p53 pathway [26,27]. Our
data are consistent with a model whereby FBXO7 nor-
mally promotes the ubiquitin-mediated degradation of
excess RPL23 subunits. However, in the absence of
FBXO7, increased levels of RPL23 titrate away MDM2,
leading to increased p53 levels, which we observed
in SHSY-5Y cells and in TH* cells from the mid-
brain at the mRNA and protein level. Moreover, these
5-week-old mutant mice have increased expression of
pS3-regulated pro-apoptotic genes, while p53-regulated
cell cycle genes, such as p21, 14-3-3c or GADD45a,
were repressed or unchanged. This is likely due to the
upregulation of Asppl known to recruit p53 specifically
to pro-apoptotic gene promoters and hinder binding of
p53 to the p21 (Cdknl) promoter [38]. Other transac-
tivators, such as Myc and Mizl, may also be causing
p53-mediated repression of p21 [39,40]. It is known that
p53-mediated regulation of the ratio of Bax to Bcl-2
protein levels influences cell fate in response to vari-
ous cellular stresses. We predicted that there should be
an increased anti-apoptotic signal (upregulation of Bcl-2
and Bcl-xL mRNAs) to counteract the pro-apoptotic
signal, which is what we observed. The net effect of
these increased Bax and Bcl-2 mRNAs is that the ratio
between these two effectors is unchanged, and this likely
accounts for the lack of cell death at 5 weeks of age
when these samples were analysed. However, between 6
and 20 weeks, these animals experience significant cell
loss in the SNpc and locomotor defects. One possibil-
ity is that sustained p53 stabilisation and accumulation
over time enable p53’s pro-apoptotic activity directly on
mitochondria [41-43]. Another possibility is that these
cells have a greater susceptibility to undergo apoptosis,
and additional factors, such as proteasomal or oxidative
stress, contribute to cell death. Multiple studies indi-
cate that FBXO7 loss can cause defects in proteasomal
assembly and activity and impair mitophagy, potentially
increasing cell stress [13,25,44]. The complex pheno-
types seen in this mouse argue that multiple pathways
are regulated by FBXO7 in the midbrain, which poten-
tially represent avenues of therapeutic intervention dur-
ing disease progression. FBXO7 models represent valu-
able tools to study the dynamic molecular processes
involved in neurodegeneration.
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