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Offspring produced by older parents often have reduced longevity, termed
the Lansing effect. Because adults usually have similar-aged mates, it is dif-
ficult to separate effects of maternal and paternal age, and environmental
circumstances are also likely to influence offspring outcomes. The mechan-
isms underlying the Lansing effect are poorly understood. Variation in
telomere length and loss, particularly in early life, is linked to longevity in
many vertebrates, and therefore changes in offspring telomere dynamics
could be very important in this context. We examined the effect of maternal
age and environment on offspring telomere length in zebra finches. We kept
mothers under either control (ad libitum food) or more challenging (unpre-
dictable food) circumstances and experimentally minimized paternal age
and mate choice effects. Irrespective of the maternal environment, there
was a substantial negative effect of maternal age on offspring telomere
length, evident in longitudinal and cross-sectional comparisons (average of
39% shorter). Furthermore, in young mothers, sons reared by challenged
mothers had significantly shorter telomere lengths than sons reared by con-
trol mothers. This effect disappeared when the mothers were old, and was
absent in daughters. These findings highlight the importance of telomere
dynamics as inter-generational mediators of the evolutionary processes
determining optimal age-specific reproductive effort and sex allocation.
1. Introduction
The conditions under which offspring are produced can have profound effects
on their subsequent health and life histories [1]. In long-lived, iteroparous
species with parental care, key aspects of this are likely to be parental age
and the prevailing environmental conditions. The age at which offspring are
produced is a fundamental factor in the evolution of reproductive scheduling
as the temporal pattern of investment is expected to be tailored to maximize
individuals’ lifetime fitness [2,3]. This is because both the success of a breeding
event and the quality of the offspring produced can be influenced by parental
age at reproduction. The general relationship between age and measures of
reproductive performance tends to be an inverted U-shape, showing improve-
ment with age early in reproductive life and a decline in old age [3–6]. The late-
life decline in offspring production has been attributed to parental senescence
[7,8]. However, in addition to a decline in fertility with age, there is substantial
evidence that parental age at reproduction also has consequences for the health,
pattern of ageing and longevity of those offspring that are produced, with off-
spring of older parents often showing reduced probability of survival and
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impaired health, termed the Lansing effect [9–14]. Thus,
reduced offspring production in later life could be an evolved
strategy to reduce investment in less fit offspring. The stron-
ger such late-life effects, the greater the impact this will have
on the evolution of reproductive schedules.

There has recently been substantial work investigating
and modelling the evolutionary consequences of parental,
and particularly maternal, age effects on offspring perform-
ance [15,16]. However, the processes by which offspring are
adversely influenced by the age of their parents are not well
understood, and are likely to involve both environmental
and genetic effects. The quality of both the prenatal and
post-natal environment provided by parents is likely to be
very important. The genetic inheritance of the offspring can
be influenced by parental age via, for example, increased like-
lihood of their inheriting adverse germ-line mutations with
advancing parental age, changes in the genome stability of
germ cells or via changes in the epigenome with age [17–21].

Prevailing environmental conditions are also an impor-
tant component influencing offspring fitness, and
potentially also the magnitude of parental age effects,
which could be masked or exaggerated under environmen-
tally induced stress. In line with the disposable soma
theory of ageing, models have proposed the presence of inter-
active trade-offs between the optimal allocation of maternal
investment in somatic maintenance and investment allocated
to the production and rearing of the offspring [16]. Such
trade-offs would result in old mothers or mothers living
under poor environmental conditions having offspring with
altered biological age at birth and long-term fitness conse-
quences, such as reduced lifespans [16,22]. However,
empirical evidence in support of such predictions is limited
(but see [22,23]). Furthermore, because rearing male versus
female offspring could be associated with different costs
and benefits, parental age effects on offspring might be
sex-specific and vary with environmental conditions [24].

One key mechanism that could have an important inter-
and trans-generational effect on offspring performance, and
potentially vary with parental age and environmental con-
ditions, is effects on offspring telomere dynamics; this
could affect both the telomere length that offspring inherit
from their parents and the subsequent pattern of telomere
loss in offspring during the period of parental dependence.
Telomeres are highly conserved, protective structures that
occur at the ends of the linear eukaryotic chromosomes,
involving tandem repeats of DNA. Together with shelterin
proteins, telomeres play a key role in genome stability, shield-
ing genes from loss of coding sequences as cells divide and
preventing end-to-end joining of chromosomes by the DNA
repair machinery [25,26]. Across many studied species, telo-
mere length decreases with age in most somatic tissues,
and such a decline is especially pronounced during early
development [27–30]. Telomere length has been associated
with organismal fitness proxies as individuals with shorter
telomeres have shorter lifespans [28,31–33] and can have an
increased susceptibility to disease [34–37]. Telomeres are
thought to be integrative markers of exposure to stress [38].
Stress exposure, induced either via direct experimental
elevations of glucocorticoid stress hormones or via exposure
to various stressors, including poor parental care or immune
challenges, has been shown to increase telomere shortening,
especially in developing individuals [39,40]. As recently
reviewed [41], accumulating evidence from studies in birds
and mammals highlights that stress exposure in the parental
generation, occurring primarily via the maternal route during
the pre- or post-natal stages, can have a long-lasting impact
on offspring telomere dynamics (e.g. [42–44]).

We still know relatively little about parental age effects on
offspring telomere dynamics, or the impact that any such
effects have for offspring fitness, and we know even less
about the extent to which parental age effects vary depending
on differing environmental circumstances. The majority of
the studies of parental age effects on telomeres carried out
to date have focused on testing the association between
paternal age and offspring telomere length [45]. While
across human populations older fathers have offspring with
longer telomere lengths (reviews: [45,46]), in most non-
human species, this pattern is either reversed [13,14,47–49]
or absent [46,50]. Most studies of the association between
maternal age and offspring telomere length have been per-
formed in humans and found no association between these
two factors when statistically controlling for the age of the
fathers (review: [46]). The limited work in other vertebrate
species reports variable results, with some species showing
a negative association of maternal age with offspring telo-
mere length [51] and others showing no maternal age effect
[13,46,49,50]. However, a multitude of factors, in addition to
study design, are likely to be important in this context,
including variation in maternal health status [32], the age of
offspring at telomere measurement, the age of fathers [46]
and the differential survival of parents with differing telo-
mere lengths [28]. It remains therefore unclear to what
extent maternal ageing influences offspring telomere length.

Here, we used an experimental manipulation (i) to exam-
ine the effect of maternal age at reproduction on offspring
telomere length at the time of parental independence and
(ii) to assess to what degree challenging environmental con-
ditions experienced by the mothers alter any such maternal
age effects. We used zebra finches (Taeniopygia guttata),
which begin to show signs of reproductive senescence
between 2 and 3 years of age [52,53]. We manipulated the
quality of the environment by exposing our study females
to unpredictable episodes of food withdrawal throughout
adulthood and experimentally controlled the breeding
opportunities of the birds. When the females were young,
and when they were old, they were paired with a randomly
assigned, relatively young adult male. Thus, we experimen-
tally minimized the association between male and female
age, and the effect of assortative mating via mate choice
often occurring in correlative studies.
2. Material and methods
(a) Study subjects and housing conditions
All females used in this study (n = 180) were produced from the
breeding stock at the University of Glasgow. We conducted two
replicates of the experiment; replicate 1 females were produced in
April–June 2011 and replicate 2 females were produced in
August–September 2011. The environmental manipulations
started when the focal females were fully grown, sexually
mature, young adults (approx. five months old; mean ± s.e.:
152 ± 1 days). Prior to the start of the study, birds were kept in
single-sex groups under standard housing and feeding con-
ditions, with ad libitum supply of mixed seeds (common
millet, yellow millet and canary seed in a ratio of 3 : 1 : 1; Johnson
and Jeff, UK), oyster shell grit, cuttlefish and ad libitum water
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and treatment-specific cages (n = 7–10 females per 120 × 50 ×
50 cm cage). The photoperiod was always maintained at 14 h :
10 h light : dark cycle and the temperature was between 20 and
24°C. All procedures were carried out under UK Home Office
Project Licence 60/4109.
ypublishing.org/journal/rspb
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(b) Environmental manipulation
When the females were approximately five months of age, they
were randomly allocated to one of the two experimental
groups: a challenging (n = 89) or control environment (n = 91).
In the challenging environment, food was made unavailable
for a continuous period of approximately one-third of the day-
light period (4.9 h), 4 days per week on a random time
schedule. For the remaining two-thirds of the day and on the
remaining 3 days per week, challenged females received ad libi-
tum food. Challenged females always experienced this food
regime except during breeding when they were given ad libitum
access to food from the time they were paired with a male or
shortly afterwards until after they completed breeding (approx.
two months for each breeding event). The treatment had no
detectable effect on female body mass [53]. Control females
were always provided with ad libitum food and experienced
exactly the same breeding scheduling as the challenged birds.
As previously shown, the simulated challenged environmental
conditions led to increases in corticosterone secretion, the primary
avian glucocorticoid stress hormone. At the end of each food
withdrawal exposure, challenged females had higher corticoster-
one than controls (on average 1.6-fold increase and within the
baseline range of variation for our study species), and this phys-
iological response was consistent over a very prolonged exposure
periods (up to 3 years), indicating no habituation of the birds to
the environmental manipulation [6,53].
(c) Adult female breeding timeline and offspring
sampling

We examined the telomere length of offspring produced by
mothers that bred at two time points: (i) during young adulthood
at six months (i.e. young mother breeding event: mean age ± s.e.,
187.6 ± 1.0 days; range: 156–207 days, n = 172 mothers) and (ii) in
old age at 3.5 years old (i.e. old mother breeding event: mean age
± s.e., 1269.3 ± 1.3 days; range: 1259–1293 days, n = 52 mothers).
When not breeding, the females were kept in single-sex groups
and thus did not form long-term pair bonds with particular
males. The reduced number of mothers in the old mother breed-
ing event was due to natural maternal mortality and/or breeding
failure (i.e. no fledglings produced); offspring telomere length
data from the same mothers in both the young and old mother
breeding events were available for 44 females (18 controls and
26 challenged). During these two breeding events, females were
paired with a different, unrelated, randomly assigned male of
prime breeding age. These males had always been kept in control
environmental conditions (see above). While the males were simi-
lar in age to the females during the first breeding event, when the
females themselves were young (age of the males at the young-
mother breeding event—mean ± s.e.: 185.7 ± 1.2 days, range:
142–204 days), the experimental design ensured that this was
not the case when the females were old; the males with which
the females were paired in their old age were still relatively
young, on average, just over 1.2 years (age of the males at the
old mother breeding event—mean ± s.e.: 464.1 ± 23.9 days,
range: 212–699 days). The age of the father in the old mother
breeding event, where males were substantially younger than
females (t-test: t =−53.72, d.f. = 125, p < 0.0001), had no effect on
offspring telomere length (GLMM: p≤ 0.85; full statistics in
electronic supplementary material, table S1).
Each pair was placed in individual breeding cages (60 × 50 ×
50 cm) equipped with an external nest-box and nest material
(coconut fibres and jute, Haiths Ltd). Breeding birds were pro-
vided with a commercial seed mix (Johnson and Jeff, UK),
oyster shell grit, cuttlefish and water. Once a week, the birds
were also provided with Calcivet calcium supplement (Vetafarm,
Wagga Wagga, New South Wales, Australia), a protein con-
ditioning supplement (J. E. Haith, Cleethorpes, UK) and fresh
vegetables. Between the young and old mother breeding
events, females in both replicate groups experienced the same
breeding schedules, with two breeding events in the intervening
years. They were allowed to lay, but not rear, a clutch of eggs at
1.1 years and to rear their biological or foster brood when they
were 1.8 years old. Both these breeding events involved pairing
with similarly young males as in the young- and old-mother
breeding events, but the fact that the breeding regime varied
from that in the young and old breeding events precludes com-
parison of the effects on offspring. The actual number of eggs
laid and young reared to fledging prior to the 3.5 years breeding
event were included in the analysis to check whether variation
among females in prior breeding effort was associated with
variation in offspring telomere length produced during the old-
mother breeding event. Neither of these estimates of breeding
effort had any effect on offspring telomere length, thus excluding
the possibility of potential confounds between differences
in prior maternal reproductive effort and chronological age
(electronic supplementary material, table S1).
(d) Blood sampling and telomere length analysis
Chicks were weighed and small blood samples (approx. 70 µl)
were collected by venipuncture of the alar vein when they
were approximately 30 days old and feeding independently of
their parents (fledgling mean age ± s.e.: 29.6 ± 0.05 days, range:
25–32 days) during both the young mother and old mother
breeding events. Chick age was estimated from the first chick
hatched within each clutch; hatching order within each nest
was also recorded since this can influence telomere length [54].
Blood samples were immediately placed on ice after sampling.
Within 4 h, the blood samples were spun to separate plasma
from red blood cells, and the latter were stored at −80°C until
later telomere analysis. Our cohort of experimental females was
also periodically sampled for telomere analysis. However, the
blood sampling was never performed in close proximity to or
during the breeding events to minimize disturbance and poten-
tial additional stress associated with handling. We found no
correlations between maternal and offspring telomere lengths
(to be published in a separate manuscript).

During the first breeding event, we measured telomere
length in two randomly selected chicks per nest (brood sizes
reaching the sampling age for mothers that produced a clutch:
3.15 ± 0.09 chicks, mean ± s.e.); there was no sampling bias in
the hatching order of the selected chicks among the differing
clutch sizes (χ2 = 47.15, d.f. = 40, p = 0.20). At the old mother
breeding event, when brood sizes were smaller, all chicks were
measured (brood sizes reaching the sampling age for mothers
that produced a clutch: 2.50 ± 0.17 chicks, mean ± s.e.) to ensure
an adequate sample size per brood similar to that during the
young mother breeding event. DNA from red blood cells was
extracted using commercial kits and following the manufacture’s
protocol (Macherey-Nagel, USA). Relative telomere length (RTL)
was quantified in the red blood cell DNA by using qPCR as
described elsewhere [55]; this correlates well with measurements
using TRF method [55]. Briefly, the RTL of each sample was
measured by determining the ratio (T : S) of telomere repeat
copy number (T) to a single copy control gene (S), relative to
the same DNA reference sample run on each plate. Glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) was used as the
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single-copy control gene. The telomere and GAPDH reactions
were carried out on separate plates, and in both reactions, the
number of PCR cycles (Ct) required for the products to accumu-
late enough fluorescent signal to cross a threshold was
determined. Reaction efficiencies were always within the accep-
table range (i.e. 100 ± 10%). All samples fell within the bounds
of the standard curve run on every plate (6 standard dilutions,
from 40 to 125 ng of DNA). All telomere assays were run
between October 2015 and February 2016 and samples were ran-
domly spread across the different plates; each plate contained a
standard curve and all standards and samples were always run
in triplicate. The intra-plate coefficient of variation for the telo-
mere and GAPDH assays for the raw Ct values were 0.65%
and 0.97%, respectively; the inter-plate coefficient of variation
calculated using the standard dilutions that were run across
each plate for both the telomere and GAPDH assays were
1.63% and 1.96%, respectively.

The raw qPCR data were analysed using the software QBASE+
[56]. The mean Ct values were used to calculate a relative
measure of telomere length as a T : S ratio of telomere repeat
copy number to a control, single copy gene number (GAPDH).
The QBASE+ software provides the advantage of adjusting for
differences in amplification efficiencies among plates (as
described in [57]) and correcting for further inter-run variation
by including three inter-run calibrators (i.e. the reference
sample and two points from the standard curve—10 and 5 ng
of DNA). For each sample, the software produced a calibrated
normalized relative telomere measurement, which is similar to
the T : S ratio described by Cawthon [31] but offers a greater con-
trol of inter-plate stochastic variation. The inter-assay coefficient
of variation for the calibrated normalized T : S ratios calculated
using the standard dilutions run across each plate was 15.25%.
(e) Data analysis
Analyses were performed in R (v. 3.5.1; R Core Team, 2014). We
used generalized linear mixed models with a Gaussian distri-
bution—GLMMs R package ‘lme4’ [58] and ‘lmerTest’ [59]—to
examine whether maternal age and/or the maternal environ-
mental treatment influenced offspring body mass or offspring
telomere length at fledgling, upon nutritional independence of
the chicks from their parents. Telomere data were ln-transformed
to improve the normality of model residuals. One offspring pro-
duced during the first breeding event with a telomere length
value of 4.56 was excluded from telomere analyses because this
value was an extreme statistical outlier as suggested by inspec-
tion of model residuals and as exceeds the upper quartile by
more than three times the interquartile range [60].

All final models included the effects of experimental design
factors expected to influence the response variables either as par-
ameters of interest integral to the questions being investigated or
for the purpose of adjustment (i.e. to control for potentially con-
founding variables). These relevant factors were always retained
in the main models rather than tested using selection procedures
to avoid overfitting and inflating the type I error. Unless other-
wise specified, final models always included the following
main factors: maternal age (young mother breeding event or
old mother breeding event), maternal treatment (control environ-
ment or challenging environment), replicate, offspring sex
(determined by colour plumage when the chicks were approxi-
mately 50 days old), brood size (i.e. number of chicks reared)
at the time of sampling and the hatching order within the
clutch to control for the slight variation in age of the chicks at
the time of sampling [54]. We also entered the two- and three-
way interactions among maternal age, maternal treatment and
offspring sex in order to test whether the potential effect of
maternal age and/or treatment on offspring body mass or off-
spring telomere length differed between male and female
offspring; non-significant interactions ( p > 0.05) were sequen-
tially removed using backward selection starting from the
three-way interaction. In initial models of the telomere length
data, we also examined whether body mass of the offspring at
the time of sampling (values available for 441 out of 444
chicks) and the two-way interaction between offspring body
mass and maternal age influenced offspring telomere length;
but neither of these factors were significant ( p≥ 0.5) and were
consequently removed from the final models. The identities of
the mothers were included as random factor to account for
non-independence of offspring from the same mother. In order
to assess within-mother age and treatment effects and to exclude
bias in the results associated with the loss of specific individuals
from the female population due to death or non-breeding, we
also performed analyses using only those offspring telomere
data from females that reared chicks during both the young-
and old-mother breeding events (185 out of 444 chicks and 44
out of 180 mothers). We used the R package ‘lsmeans’ [61] to per-
form pairwise post hoc comparisons for significant outcomes in
the main models (Tukey’s p-value adjustment). Multi-collinearity
was examined in all models by calculating variance inflation
factors; these ranged from 1.0 to 1.3 indicating acceptable
degrees of multi-collinearity among the explanatory variables.
All models met the assumption of normality and homogeneity,
which was assessed via graphical diagnostics of the residuals
[62]. Unless otherwise specified, descriptive statistics are
provided as mean ± s.e.
3. Results
(a) Effects of maternal age and environmental

conditions on offspring body mass
There was no effect of the maternal treatment, replicate, off-
spring sex and hatching order on offspring body mass as
main factors; there were no interacting effects among
maternal age, maternal treatment and offspring sex on the
response variable (full statistics in electronic supplementary
material, table S2a). Regardless of the maternal environment
and offspring sex, fledglings produced during the old
mother breeding event were lighter when compared with
the fledglings produced during the young mother breeding
event (maternal age: p = 0.001; electronic supplementary
material, figure S1a). We also found that lighter offspring
were those reared in larger broods ( p = 0.001, electronic sup-
plementary material, table S2a). However, when restricting
the analysis to the subset of offspring produced by the
mothers that bred during both the young and old mother
breeding events, the significant effects of maternal age and
brood size on offspring body mass disappeared (electronic
supplementary material, table S2b and figure S1b).

(b) Effects of maternal age and environmental
conditions on offspring telomere length

The strongest main effect on offspring telomere length was
maternal age ( p < 0.001, full statistics in electronic sup-
plementary material, table S3a) with offspring produced in
the old-mother breeding event having substantially shorter
(39% on average) telomere lengths compared to offspring
produced during the young mother breeding event
(figure 1a). However, the effect of the maternal environment
on offspring telomere length differed with offspring sex and
with maternal age (maternal treatment ×maternal age × off-
spring sex: p = 0.02; electronic supplementary material, table
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S3a; figure 1). For mothers living in the control conditions,
the effect of maternal age was consistent in both sons and
daughters; daughter telomere lengths were 43.5% shorter
when their mothers were old compared with when mothers
were young, and 49.2% shorter in sons (p≤ 0.003 for both).
There was no effect of the maternal environment on the telo-
mere length of daughters either when their mothers were
young or old ( p≥ 0.8 for both). Telomere length of sons how-
ever was reduced in young mothers living in the challenging
environment compared with the sons produced by the young
control mothers (by 27.7%, p = 0.0001). This resulted in
daughters produced by young mothers living in challenging
conditions having longer telomeres than equivalent sons (by
20.7%, p = 0.048). By contrast, when mothers were old, telo-
mere length in their sons did not differ between the two
maternal treatment groups ( p = 0.8), and the same was true
in their daughters ( p = 0.9). Telomere lengths of sons pro-
duced by young mothers in the challenging environment
were similar to those of the sons of old challenged mothers
( p = 0.2), but slightly longer compared to the telomere lengths
of sons of the old control mothers (p = 0.04). We found no
effect of replicate, hatching order or brood size as main fac-
tors on offspring telomere length (electronic supplementary
material, table S3a). Results were qualitatively similar (36%
on average telomere shortening with maternal age) when
we performed the same analysis on the subset of offspring
reared by the same mothers during both the young- and old-
mother breeding event (figure 1b; electronic supplementary
material, table S3b).

4. Discussion
This is the first long-term, longitudinal study to compare
changes in telomere length in offspring produced by females
at different ages (i.e. when young at six months of age, and
when old at 3.5 years of age) and in which the age of their
partners was experimentally standardized to enable maternal
effects to be identified. From young adulthood and when not
breeding, our focal females were living either under control
(ad libitum food) or more challenging environmental circum-
stances (random withdrawals of food, which produced
repeated increases in circulating glucocorticoid stress hor-
mones). Our study therefore also enabled us to examine
whether any reduction in telomere length resulting from
maternal age was affected by the environmental conditions
experienced by the mothers prior to breeding (thus excluding
direct effects of the environment on offspring), and whether
effects differed between sons and daughters. Our data clearly
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show that, in non-stressful environments, both sons and
daughters produced by mothers in old adulthood have sub-
stantially shorter telomeres than those produced by mothers
in young adulthood. We also found sex-specific interactive
effects between the maternal environment and maternal age
with sons produced by the challenged females as young bree-
ders effectively having their telomere lengths equivalent to
those sons produced when mothers were old; the decline in
telomere length in the sons was of comparable magnitude
to the telomere shortening associated with maternal age.
These results are consistent with the results we obtain
when we restrict the analyses to the subset of mothers that
reared chicks during both breeding events, which confirms
that these trans-generational effects on offspring telomere
length occurred within-individual mothers and were not
due to selective mortality or breeding quality of the females.
Overall, the mean decline in offspring telomere length with
maternal age was marked—approximately 39% over the
elapsed maternal age period of approximately 3 years—over-
riding any potential effect associated with the maternal
environmental manipulation. However, we do not know
whether this decline was linear, or only occurred after a
particular maternal age, which warrants future investigation.

The negative relationship between maternal age and off-
spring telomere length in both offspring reared by either
challenged or control females can be attributed to the
change in maternal age; other factors such as variation in pre-
vious maternal reproductive effort had no significant effect
on offspring telomere length. Experience and resource acqui-
sition by older individuals are also likely to be important
factors, especially in the field. Our study was conducted in
captivity under controlled environmental conditions, thus
making it easier to isolate effect due to changes in maternal
age as well as to challenging environmental circumstances.
Paternal age, independently of maternal age, has been
shown to affect telomere length in zebra finches as early as
the embryonic developmental stages [14]. The design of our
study aimed at minimizing variation in the father’s age; the
females grew older and we were therefore able to examine
the effect of maternal ageing in the absence of an effect of
paternal ageing on offspring telomere length. We do not
however know whether the stage at which maternal effects
occur differs from that of paternal effects, or indeed whether
such maternal and paternal effects are additive. Clearly, the
effect of maternal age was also influenced by the maternal
environment and offspring sex, which could also contribute
to inconsistencies in the effects found in different studies
[13,49,51]. The lack of an effect of the maternal treatment
during old adulthood in either sons or daughters suggests
that the effect of maternal age might have overridden any
maternally environmentally derived effects on offspring telo-
mere length. It may be that there is a critical length below
which offspring telomere length cannot fall and the offspring
remain viable; hence, the absence of an additive effect. All
our experimental females were housed in single-sex groups
and were paired with a young adult male only during the
age-specific breeding events to minimize mate familiarity.
We can thus exclude the possibility that the reduction in off-
spring telomere length during the old mother breeding event
could be attributable to increased maternal stress due to the
sudden introduction of an unfamiliar male after years being
paired with the same male, thereby having formed a long-
term pair bond which is broken. That the effect of the
maternal treatment was observed only when the mothers
were young, and only in their male offspring is also intri-
guing. There are several possibilities that could explain
such sex-dependent sensitivity to maternal effects. For
instance, it is plausible that male nestlings were simply
more vulnerable to poorer maternal rearing conditions than
female nestlings as has been reported in a number of studies
in birds including lesser black-backed full (Larus fuscus)
[63,64], great tits (Parus major) [65] and collared flycatchers
(Ficedula albicollis) [66]. However, studies in the zebra finch
suggest that sons are generally over-produced under poor
rearing conditions and so daughters may be more vulnerable
[67–69]. We note, however, that in our study, we are unable to
distinguish among effects that might arise from differential
survival of sons and daughters during the prenatal or the
very early post-natal stages or by shifts in primary sex
ratios linked to maternal condition [63,64]. It is also possible
that the sex-specific effect could relate to differences in telo-
mere dynamics in the sex chromosomes, but nothing is
known about this in birds.

The reduction in offspring body mass with maternal age
probably reflected earlier mortality of females producing hea-
vier offspring during early adulthood, not maternal age-
specific variation in offspring body mass within individual
mothers. Such effect is interesting as it occurred in the
benign conditions of captivity and it might be associated
with trade-offs between reproduction and survival. That
adults can adopt differing patterns of reproductive invest-
ment that are related to their lifespan variation has also
been found in other studies. For example, in the red-billed
chough, parents that produced high-quality offspring had
reduced longevity compared to parents producing lower
quality offspring [23].

Studies in humans suggest that maternal effects on off-
spring telomere length could occur as early as the oocyte.
This may be because eggs ovulated in older women enter
meiosis at a later point in fetal egg formation than eggs ovu-
lated when women are younger [20]. These late ovulated eggs
will therefore have been produced via more cell replications,
which could shorten telomeres [20,70]. Increased exposure to
ROS-induced oxidative damage with storage time in the
ovary may also play a role [21]. Alternatively, the decrease
in offspring telomere length with maternal age in birds
could occur as a consequence of differences in egg compo-
sition, including differences in yolk : albumen ratio content
[71], concentrations of hormones and immune antibodies
[72], and yolk fatty acid profiles [73]. Such differences could
be the result of adaptive age-specific adjustments or could
arise because of physiological constraints associated with
female reproductive senescence. Similar proposed mechan-
isms could also explain the shortening of telomere length in
the offspring produced by the challenged mothers as mothers
exposed to stress deposit higher levels of stress hormones
in ovo [74], and this effect has been linked to faster offspring
telomere loss in early life [42].

Rearing conditions after hatching could also play a key
role in telomere shortening. The latter effect was reported in
the European shag (Phalacrocorax aristotelis), where telomere
length at hatching was not related to parental age, but at fled-
ging, offspring of older parents had shorter telomeres. This
post-hatching effect is presumably attributable to the quality
of the rearing environment, which could potentially be
poorer and thus more challenging when parents are older,
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and stress exposure during the rearing developmental stages
is associated with faster offspring telomere loss [39,43]. Evi-
dence suggesting that the quality of female parental care
might be important comes from a recent experiment in the
Alpine swift, in which offspring telomere length at parental
independence was negatively related to the age of the
cross-fostered mother but not to the age of the cross-fostered
father [48]. Potential age-related differences in maternal and
paternal care, together with associated offspring fitness con-
sequences, would be important to investigate in future
research in our study species.

That offspring longevity can be adversely affected by par-
ental age, the so-called Lansing effect, has been established in
many taxa [9,10]. It is also known that exposure to stressors
can accelerate cellular ageing, alter survival trajectories and
increase vulnerability to diseases [41,52]. A key question aris-
ing from this study is therefore whether the decline in
offspring telomere length in relation to maternal age and
maternal challenging conditions of the magnitude we
observed is sufficient to modulate offspring longevity and
life-history trajectories. Noguera et al. [14] recently showed
that increasing parental age is associated with a substantial
reduction in offspring longevity in zebra finches in captivity,
though maternal and paternal effects could not be clearly sep-
arated. Heidinger et al. [28] showed that telomere length upon
parental independence in zebra finches is predictive of long-
evity; the relationship observed in that study suggested that
the approximately 39% decline that we observed in offspring
telomere length with an increase in maternal age of approxi-
mately 3 years would be associated with some 25% reduction
in offspring lifespan. For mothers living in control conditions,
the effect on offspring was more marked—a 44–49% telomere
reduction in daughters and sons, respectively. The effect
of maternal age on offspring longevity is thus likely to have
substantial fitness consequences.

To conclude, our results strongly emphasize the need of
more studies to improve our understanding of the role of
parental age in determining the optimal timing of breeding
and breeding effort across the life course [15]. Such studies
should be carried out under a variety of different parental
environments for a greater understanding of the dynamics
of such induced trans-generational phenotypic plasticity,
thus determining the ‘fittest’ genotype depending on the
environment. That telomere length is reduced when mothers
are old suggests that reduced offspring production at older
ages reduces investment in less fit offspring and is not
simply a consequence of parental ageing. This study also
raises the intriguing question of why zebra finches remain fer-
tile in old adulthood. This could be because some fitness
benefits are still accrued from such offspring, provided the
effects on parent and offspring survival are not too severe.
The potential fitness benefits associated with different scen-
arios of parental effort, quality of the rearing environment
and longevity effects should be further explored in future
studies.
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