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Recent work has provided strong empirical support for the classic polygenic model for trait variation. Population-based findings

suggest that most regions of genome harbor variation affecting most traits. Here, we use the approach of experimental genetics

to show that, indeed, most genomic regions carry variants with detectable effects on growth and reproduction in Caenorhabditis

elegans populations sensitized by nickel stress. Nine of 15 adjacent intervals on the X chromosome, each encompassing �0.001

of the genome, have significant effects when tested individually in near-isogenic lines (NILs). These intervals have effects that

are similar in magnitude to those of genome-wide significant loci that we mapped in a panel of recombinant inbred advanced

intercross lines (RIAILs). If NIL-like effects were randomly distributed across the genome, the RIAILs would exhibit phenotypic

variance that far exceeds the observed variance. However, the NIL intervals are arranged in a pattern that significantly reduces

phenotypic variance relative to a random arrangement; adjacent intervals antagonize one another, cancelling each other’s effects.

Contrary to the expectation of small additive effects, our findings point to large-effect variants whose effects are masked by

epistasis or linkage disequilibrium between alleles of opposing effect.
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Impact Summary
Genetic association studies have suggested that nearly

every region of genome harbors variants that affect typ-

ical complex traits, providing ample fuel for evolution.

In this study, we test these findings using experimental

genetics in C. elegans. We used high-throughput phe-

notyping to measure a genetically complex multivariate

quantitative trait. We asked whether 0.001 of the genome

is likely to carry alleles that detectably influence the

trait. For nine of 15 such intervals, we found that allelic

differences between two strains conferred significant

phenotypic effects. Surprisingly, these effects were not

small. If such effects were present across the genome,

the total amount of variation would greatly exceed the

variation we observe. Our findings point to large-effect

variants whose effects are masked by epistasis or linkage

disequilibrium between alleles of opposing effect.

A detailed understanding of the genetic architecture of com-

plex traits is necessary to address questions about the origin and

maintenance of heritable phenotypic variation and the mecha-

nisms of adaptation. Many models explain heritable variation as

the result of an equilibrium between the introduction of varia-

tion by mutation and its erosion by drift and stabilizing selec-

tion. For traits affected by enormous numbers of loci, particularly

in species with low effective recombination rates, linkage be-

tween variants may also be important. Very tightly linked variants,

inherited together, can act as coupling-phased supergenes that in-

crease phenotypic variance or repulsion-phased linkage blocks
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that reduce phenotypic variance. Under stabilizing selection near

an optimum, we may expect an excess of the latter case: tightly

linked variants with opposite effects. Near a phenotypic optimum,

mutations that counteract the effect of linked variants will be fa-

vored, and recombination between antagonistic-effect loci will be

disfavored (Fisher 1930; Mather 1943; Lewontin 1964).

Experimental investigation of tightly linked polygenes is

challenging. Variants that occur in linkage equilibrium in nat-

ural populations are necessarily too weakly linked to provide the

relevant long-term selective effects, rendering association-type

methods ineffectual for this question. Polygenes are expected to

have miniscule effects, mandating very high levels of experimen-

tal replication. We therefore characterized linked polygene effects

directly by using high-throughput phenotyping and high levels of

replication in experimental panels of recombinant Caenorhabdi-

tis elegans. This species is well suited for this type of study, as it

has a short generation time and is naturally inbred (Barriere and

Felix 2005; Gray and Cutter 2014; Frezal and Felix 2015). These

features allow for relatively quick construction of recombinant

panels and high-throughput assays in 96-well plates (Andersen

et al. 2015). Although many traits in C. elegans have a simple

genetic basis (e.g., Palopoli et al. 2008; Ghosh et al. 2012; Noble

et al. 2015; Zdraljevic et al. 2017), complex traits in C. elegans

often have polygenic or otherwise complex architectures (Green

et al. 2013; Glater et al. 2014; Andersen et al. 2015; Greene et al.

2016; Evans et al. 2018; Noble et al. 2017).

A key feature shaping genetic variation in C. elegans is the

species’ androdioecious mating system; most individuals are self-

fertile hermaphrodites, incapable of mating with one another, and

so most wild individuals are completely homozygous, the prod-

uct of a predominantly selfing history. Rare males, which arise by

X-chromosome nondisjunction, can mate with hermaphrodites,

introducing rare outcrossing events. Overall, the mating system

means that dominance is expected to play a negligible role in the

patterning of variation, and the low rate of effective recombina-

tion contributes to strong linkage disequilibrium and its attendant

evolutionary consequences (Cutter et al. 2009; Felix and Braendle

2010; Rockman et al. 2010; Andersen et al. 2012). In short, in

this species new mutations rarely experience genetic backgrounds

other than those on which they arose, particularly over short ge-

netic distances and short evolutionary timescales.

To characterize the genetic architecture of complex trait vari-

ation in C. elegans, we used a sensitizing condition, excess of the

metal nickel, to expose variation that might not be visible under

favorable laboratory conditions, and we measured individual and

population growth rates in animals from two recombinant panels:

a large set of recombinant inbred advanced intercross lines (RI-

AILs) from a cross of strains N2 and CB4856 (Andersen et al.

2015), and a collection of near-isogenic lines (NILs) carrying

small regions of CB4856 donor genome on the X chromosome

within an otherwise N2 background (Bernstein and Rockman

2016) (Fig. 1). RIAILs leverage genotypic replication across ran-

dom backgrounds, whereas NILs control for background by hold-

ing it constant (Eshed and Zamir 1995; Koumproglou et al. 2002;

Keurentjes et al. 2007; Doroszuk et al. 2009; Shao et al. 2010). RI-

AILs provide an efficient way to survey the whole genome for loci

with significant marginal effects across multiple backgrounds, but

those multiple backgrounds also contribute phenotypic variation.

Thus, when comparing the phenotype distributions for two geno-

type classes at a given genetic marker, RIAILs have abundant

variation within each class due to segregating genetic effects.

With NILs, those background effects are eliminated, providing

greater power to detect differences between focal genotypes.

We tested polygeny by estimating the probability that a small

piece of genome, 0.1% of the whole, harbors allelic differences

that affect growth and reproduction. We tested for antagonism

between linked intervals by comparing the effects of the intervals

to those expected under alternative arrangements. And we tested

for the generality of our findings by making a model with param-

eters that could jointly explain the observed variation in the NIL

and the RIAIL panels.

Methods
Overview
Our experimental goal was to measure quantitative traits at high

replication in a large number of genetically characterized inbred

strains (Fig. 1). For each assay, we initiated a population with

three L4 hermaphrodites and then used a worm sorter to count

and measure the progeny of those founders, yielding a multivariate

population-level phenotype that captures aspects of fecundity and

growth rate (see Results section and Fig. S1 for details). We then

performed statistical tests to evaluate the contribution of genetic

variation to the measured phenotypic variation.

Strains
We used 282 strains from the Andersen panel of Recombi-

nant Inbred Advanced Intercross Lines (Andersen et al. 2015;

Zdraljevic et al. 2017) and 16 strains from the Bernstein panel of

Near Isogenic Lines (Bernstein and Rockman 2016). Details of

strain construction are provided in the Supporting Information.

Growth assays
The RIAILs and the NILs were assayed by worm sorter, as

described previously (Andersen et al. 2015; Zdraljevic et al.

2017). The assay conditions are detailed in the Supporting In-

formation, and phenotype is described in detail in the Re-

sults section. Sorter data were processed using the R package

COPASutils (Shimko and Andersen 2014), which is available at

github.com/Andersenlab/easysorter.
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Figure 1. X chromosomes of the two genetic mapping panels. Left: Sixteen of 282 recombinant inbred advanced intercross lines, each

homozygous for a unique mosaic of N2 (orange) and CB4856 (blue) genomes. At any specific marker, approximately half the lines are

homozygous N2 and the remainder homozygous CB4856. Right: Near isogenic lines derive almost entirely from the N2 background but

carry small regions of CB4856 genome within a 1.4 Mb region on the X chromosome. Each CB4856 interval shares a common right

end, so that pairs of most-similar strains differ only by 53–148 kb of genome. In both panels, every strain also carries qgIR1, a 110-kb

introgression of CB4856 genome at 4.8 Mb; this introgression carries the ancestral allele of npr-1, where N2 carries a laboratory mutation

(see Supporting Information). The introgression is included in the experiment to avoid potentially confounding effects of this large-effect

mutation.

For the RIAIL experiments, each of the 282 RIAILs was as-

sayed once. These experiments took place over 10 assay days. For

all analyses of RIAIL data, we used as phenotypes the residuals of

a multivariate linear regression of raw phenotypes on assay day,

modeled as a factor.

Assays of NILs were performed at much higher replication, to

allow for well-powered pairwise comparisons of strains (Fig. S1).

This kind of replication is not necessary in the RIAILs because

each allele is present in roughly half the RIAIL strains, providing

effective replication for the effects of each locus. Prior to each of

three NIL assay days, each of the 16 NILs was grown and passaged

in five independent replicates for four generations to reduce or

eliminate shared transgenerational environmental effects. Then

on the assay day, each of the five independent populations of each

strain was grown in a well on each of nine to 11 different assay

plates, with positions of each NIL randomized across assay days.

In all, this amounts to 2312 assays: 3 assay days × 16 strains × 5

passaging replicates × 9–11 growth assay replicates. One strain

was assayed on only two of the three assay days, and 20 assay

wells were excluded from analysis as outliers, leaving 2293 assays

(mean 143.3 per strain). All results are robust to the treatment of

outliers.

Statistical analyses
We performed all statistical tests and analyses in R (R Core Team

2017). Fixed-effect multivariate analyses used the R package car

(Fox and Weisberg 2011), and mixed-effect models used the pack-

age lme4 (Bates et al. 2015). The raw data for the RIAILs and

NILs are provided as Supporting Information Files S1 and S2,

and an annotated reproducible pipeline for all analyses is present

in Supporting Information File S3.

Linkage mapping in RIAILs
To identify regions of genome that harbor allelic differences that

affect phenotypes, we performed multivariate marker regression

(Knott and Haley 2000) with a forward search strategy (Doerge

and Churchill 1996). The model and fitting procedure are de-

scribed in Supporting Information. Ten of 282 RIAILs had five or

fewer progeny per initial worm and were excluded from analysis.
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Analysis of near-isogenic lines
We accounted for experimental variation in our measures of NIL

demography by treating assay day, assay plate, well position, and

passaging replicate as random effects in univariate analyses of

each trait. This analysis yielded estimates (Best Linear Unbiased

Predictors) for each trait for each of 237 independently passaged

replicate populations (3 assay days × 16 strains × 5 passaging

replicates, less some missing data). We used this 237-observation

dataset to test whether genotype accounts for phenotypic varia-

tion, as described below.

To test for the effect of each interval on the multivariate de-

mography phenotype, we compared two strains at a time. For each

pair of strains that differ by a single interval (that is, the top two

NILs in Fig. 1, or the second and third NILs, or the third and

fourth, etc.), we used a multivariate analysis of variance to ask

whether strain identity explained any of the phenotypic variation.

We used this same approach to test for a significant difference

between the two parental NILs (i.e., the top and bottom NILs in

Fig. 1). To estimate P-values for these comparisons, we used per-

mutations, shuffling the strain labels among the observations for

the pair of strains in each test. We used these permutations to de-

rive null test statistic distributions for univariate trait comparisons

as well.

Results
HIGH-THROUGHPUT MEASUREMENTS OF

MULTIVARIATE PHENOTYPES

To characterize the genetic basis for variation in growth and

reproduction, we used a previously established pipeline for

high-throughput population phenotyping (Andersen et al. 2015;

Zdraljevic et al. 2017). We measured phenotypes for 272 RIAILs

grown in liquid cultures containing 350 µM nickel chloride. We

chose NiCl2 because a preliminary survey of diverse stressors

suggested that the left side of the X chromosome, a region for

which we had previously generated NILs, carried a quantitative

trait locus (QTL) for a nickel-by-genotype interaction. After plac-

ing three L4 hermaphrodites in each well of a microtiter plate and

allowing them to mature and produce progeny over four days, we

passed each resulting population through a COPAS BIOSORT

large-particle sorter (Union Biometrica). The sorter counts the

number of animals in each well, and for each animal it measures

time of flight, which serves as a measure of body length. The re-

sult of each assay is thus a histogram of the body lengths observed

in the broods of three hermaphrodites at a fixed time (Fig. S1).

We divided the body-length histograms into three bins: less than

90 µm (small), 90–200 µm (medium), and greater than 200 µm

(large), and we calculated the proportion of worms from each

well in each bin. Under control conditions, these bins correspond

to developmental stages L1, L2 + L3, and L4 + adult. These

stage assignments are unlikely to hold under nickel stress, but

they nevertheless provide a simple way of describing the body-

length distribution. The three body-length–bin proportions within

a well must sum to one, so we can use any two proportions to

provide a description of the body-length distribution of the well.

We combined three traits—the proportion of worms in the Small

size bin, the proportion of worms in the Medium size bin, and

Number of progeny per founding L4—into a three-dimensional

phenotype vector [SMN] for our subsequent genetic analyses. As

a shorthand, we refer to this vector as “demography.” This vector

is simply a way of summarizing the body-length histogram in a

manner that retains interpretable features of worm biology. We

chose a multivariate approach because it improves power in cases

where QTL affect combinations of traits (Jiang and Zeng 1995;

Korol et al. 1995; Knott and Haley 2000; Stephens 2013), and

because it obviates problems with multiple hypothesis testing in

the context of high-content high-throughput data.

MULTIPLE QTLs AFFECT REPRODUCTION AND

GROWTH IN RIAILS

We performed multivariate QTL mapping to identify regions

of the genome that influence demography in the RIAILs. We

employed simple multivariate marker regression (Knott and

Haley 2000) on the assay-corrected RIAIL phenotypes, and

we used a forward search strategy with a genome-wide P =
0.05 permutation-based residual empirical threshold (Doerge and

Churchill 1996). This approach identified eight significant QTL

(Fig. 2A). The effects of the CB4856 allele at each QTL, projected

into bivariate space, are plotted in Figure 2B, and the underlying

phenotype data are in Figure S2. Many of the QTL influence

multiple aspects of demography, although several are restricted to

one or a few trait axes. For example, QTL 3 affects the propor-

tion of worms in the medium size class, but it has little effect on

progeny number or the proportion of small worms. For each trait,

we observe QTL where the CB4856 allele increases the trait value

and others that decrease it. For example, QTL 4 and 5, linked on

chromosome IV, are nearly collinear in three-trait space, but with

effects in opposite directions. In other words, the parental strains

carry mixtures of antagonistic alleles.

We found no evidence for pairwise or higher order epistasis

among the detected QTL (P = 0.52 and 0.99 for comparisons

to a purely additive model), and the eight-QTL model explains

29% and 16% of the variance in the small and medium size worm

proportions, and 8% of the variance in progeny number.

NEAR ISOGENIC LINES PROVIDE A DIRECT TEST OF

A POLYGENIC ARCHITECTURE

One possible genetic model for our traits ascribes the unex-

plained phenotypic variation to a large number of variants spread

across the genome. Under this polygenic model, any region of
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Figure 2. Quantitative trait loci in RIAILs. (A) Multivariate QTL scans with a forward search strategy identified an eight-locus genetic

model. Test statistic profiles (−log10(p)) for eight sequential scans are plotted in different colors, and the QTL retained from each scan

indicated by its number and color. The x-axis represents genetic position. The solid red box below the X chromosome marks the NIL

interval dissected later in the paper. Each QTL is annotated according to whether its univariate effect is nominally significant (P < 0.05)

for small worm proportion (S), medium worm proportion (M), or number of progeny (N). (B) Bivariate projections of the QTL effects. Each

vector shows the estimated effect of the CB4856 genotype at the indicated QTL, numbered and colored as in panel A.

the genome is likely to harbor phenotypically penetrant variants.

We used a panel of 16 Near Isogenic Lines to test 15 consecutive

intervals of 53–148 kb (i.e., �0.001 of the 100 Mb genome each)

spread along a 1.4 Mb region on the X chromosome (Bernstein

and Rockman 2016). Among the RIAILs, this region is partly

contained within QTL 2 (Fig. 2A), although it does not include

the QTL peak (Fig. S3).

The NILs allow for straightforward tests, comparing two

strains that differ only in a single interval. These strains enable

us to control for loci outside the interval (thereby removing a

major source of within-marker-class variation), and they expose

the variation within the interval that could be masked by tightly

linked antagonistic QTL. In total, there are 1838 SNPs and 635

indels in the NIL interval (Thompson et al. 2015). We assayed

growth in three independent experiments (Fig. S1). In each of

the three experiments, each strain was grown in five independent

replicate populations and passaged over several generations, prior

to phenotype assays, to reduce shared environmental effects. Each

of these passaging replicates was then assigned to a random well

position in a 96-well plate, and that plate layout was replicated

across 9–11 plates within that assay day. In total, we analyzed

NIL demography in 2293 assays (mean 143.3 per strain). The

design allows us to test the effect of genotype while accounting for

variation due to experimental factors. Note that our NIL analysis

compares two genotypic classes, each measured approximately

143 times, whereas in the RIAIL analysis, each marker genotype

class is present in approximately 136 (= 272/2) strains.

To account for variation due to experimental factors, we used

univariate mixed-effect models to extract phenotype values (best

linear unbiased predictors) for each of the �15 replicate pop-

ulations of each NIL (3 assay days × 5 passaging replicates,

less some missing data), using the entire dataset to account for
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Figure 3. Phenotypes of 16 near isogenic lines. (A) Boxplots show the distribution of trait values for �15 replicates of each of the 16

NILs, after accounting for variation due to experimental factors. (B) Multivariate strain phenotypes from a fixed-effect model, with each

NIL colored as in panel A. The parental NILs are highlighted.

variation due to assay day, assay plate, and well position. We then

applied a fixed-effect multivariate model to estimate each strain’s

demography phenotype. As shown in Figure 3, the NILs vary in

demography. Most of the variation is confined to a subspace, as

the proportions of small- and medium-sized worms are highly

negatively correlated among the NILs (Fig. S4). The parental

NILs, one entirely N2 and the other entirely CB4856 within

the NIL region, differ from one another slightly but significantly

(P = 0.001). The differences between the parental NILs are lim-

ited to the size-class distribution, as the number of progeny is

indistinguishable (P = 0.79; Fig. 3).

MULTIPLE QTLs ARE FOUND WITHIN THE NIL

INTERVAL

We tested whether the demography phenotype of each strain dif-

fered significantly from that of the genetically adjacent strain,

thereby testing each of 15 genomic intervals. Twelve of the 15 in-

tervals contained nominally significant QTL, nine at a Bonferroni-

adjusted P-value threshold of 0.003 (Fig. 4A; Table S1).

The estimated effects of each NIL interval are plotted in

Figure 4B, and they reveal several striking patterns. First, as in

the case of the RIAILs, the effects point in both directions for

each trait, indicating that the NIL region harbors a mixture of an-

tagonistic QTL. Adjacent intervals often have effects in opposite

directions. For example, intervals f and g result in an increase and

decrease in the number of progeny, cancelling one another’s ef-

fects. Second, many effect vectors are nearly collinear, consistent

with the reduced range of variation in certain axes of pheno-

typic variation. For example, intervals f, l, and o have effects that

nearly occupy a line in three-dimensional space, with l’s effect

in the opposite direction to that of f and o. Most of the intervals

have pleiotropic effects, and some effect directions are absent.

For example, no interval simultaneously increases the number of

progeny and the proportion of small worms. As in the RIAILs,

some of the NIL QTL affect only one or a few of the phenotypic

axes. For example, interval n acts almost exclusively on progeny

number. In general, the orientations of the effects are quite dif-

ferent from those observed for the QTL detected in the RIAILs

(Fig. 2B), indicating a substantially different genetic correlation
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Figure 4. NILs reveal antagonistic QTL. (A) The genotypes of the 16 NILs, at left, define 15 intervals (a-o). By comparing strains that
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the number of SNPs and indels in each interval. Each significant point is colored to facilitate comparison with panel B. (B) Estimated

effects of the CB4856 genotype for each significant NIL interval.

structure in the two experimental panels. Finally, the magnitudes

of the effects in the NILs are large, comparable to those detected

in the RIAILs. For example, many of the NIL interval effects

change the number of progeny per animal by 10 offspring.

We found that 60% of �100 kb windows had significant phe-

notypic effects in this assay (nine out of 15). If we assume that

these windows are typical samples of the 100 Mb genome, simple

extrapolation implies that N2 and CB4856 differ in about 600

100 kb intervals with significant effects on the phenotype. The

large effect sizes in the NILs raise the question of whether a

genome full of such effects is consistent with the variation ob-

served from genome-wide segregation in the RIAILs. We there-

fore simulated a RIAIL phenotype (number of progeny) by as-

signing effects to a random 600 of the markers genotyped in the

RIAILs, with effects drawn from a normal distribution with the in-

ferred NIL effect-size mean (−0.1) and variance (8.6). In a million

simulated datasets, the simulated RIAIL variance was on average

11 times greater than the observed RIAIL variance, and never

as low as the observed variance. Other approaches to simulating

the effect sizes, including drawing from a uniform distribution or

resampling directly from the NIL effects, yielded similar results

(Fig. S5).

The simulations aimed to synthesize the RIAIL and NIL

findings, and they reject the simplest such synthesis, wherein the

NIL interval effects are simply assigned to random positions in

the genome. An alternative model is that the causal variants of
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Figure 5. The QTL effects of the NIL intervals increase and decrease the phenotype, number of progeny. The estimated effect of

substituting a CB4856 allele (blue) is plotted in the top left panel. The phenotype of the all-orange N2-like NIL is zero and the phenotype

of the all-blue NIL is the sum of the plotted effects. The histogram below shows the phenotype distribution of the NILs. To generate a

null distribution of phenotypic variance, we permuted the order of the NIL effects. At right, an example of permutation is given. The

distribution of phenotypic variance for a million shuffled orders is shown below, with the observed variance indicated by the red line.

opposite sign tend to be tightly linked more than expected under

a random distribution of effect signs (i.e., adjacent antagonistic

QTL cancel one another). Under such a model, we predict (1) that

the sequence of effects along the 15 intervals in the NILs should

not be random but instead should roughly alternate in sign, and

(2) simulations of coupled canceling QTL should recapitulate the

observed RIAIL variance.

To test the first prediction, we asked whether the phenotypic

variance among the NILs is smaller than we would observe if the

NIL intervals were randomly ordered. We estimated the null dis-

tribution of this variance by permuting the genetic effects among

the NIL intervals. The null hypothesis of random QTL effect ar-

rangement is rejected with P = 0.014 (Fig. 5). That is, the QTLs

in the NIL intervals are arranged in a sequence that significantly

reduces phenotypic variance relative to a random arrangement.

The phenotypic effect of the 1.4 Mb NIL interval as a

whole—the difference between the parental NILs—is a relatively

modest 1.6 progeny (Fig. 3). If we assume that the NIL inter-

val is typical, and that there are 100 such intervals across the

genome, simulations are consistent with the variance observed

among the RIAILs. For example, if we model 100 QTLs with

effects drawn from a normal distribution with standard deviation
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4.5 (rather than 600 QTLs with standard deviation 8.6), and we

assume arbitrarily that the heritability of progeny number in the

RIAILs is 0.5, then the mean simulated RIAIL variance matches

the observed RIAIL variance, and the general features of the RI-

AIL QTL distribution are also replicated (Fig. S6) (cf. Visscher

and Haley 1996). Notably, this model is only one of an enormous

number of possible genetic models that could synthesize the NIL

and RIAIL findings, but it demonstrates that additive effects in

tight repulsion-phase linkage could account for the observations.

Arbitrary models of suppressive epistasis could also produce these

findings.

Discussion
For more than a century, experimental and theoretical studies have

examined the extent to which phenotypes are polygenic. Evidence

from experimental studies describing quantitative trait variation

suggests that polygeny is the norm (Mackay et al. 2009; Rockman

2012; Boyle et al. 2017). For example, recent analyses of human

genetic variation have inferred that the majority of 1 Mb windows

harbor variation that affects schizophrenia risk (Loh et al. 2015),

and most 100 kb windows affect height (Boyle et al. 2017). These

estimates require assumptions about the relationship between al-

lele frequency, effect size, and linkage disequilibrium (reviewed

by Yang et al. 2017), and direct assessment of individual polygene

effects is difficult in the context of small effects, complex genetic

backgrounds, and low minor allele frequencies. Here, we used

a classical genetics approach to isolate small genomic intervals

and directly assess their effects on complex traits. Our NIL-based

analysis of small genomic region provides a simple and direct

validation of polygeny: most intervals carry segregating variation

that affects a complex trait. Both of our experimental panels, RI-

AILs and NILs, revealed that two strains, CB4856 and N2, harbor

large numbers of allelic differences that affect demographic traits

under stress.

Nine of 15 intervals, each �95 kb on average, had significant

effects on the phenotypes. The focal region of the X chromosome

is not particularly noteworthy with regard to trait variation as a

whole in these strains (Andersen et al. 2015; Evans et al. 2018).

Its SNP density is similar to the X chromosome arms as a whole,

and the X chromosome arms are considerably less SNP-dense

and indel-dense than the autosome arms (Thompson et al. 2015).

Our simple extrapolation to 600 causal intervals genomewide is

likely conservative, given the probability that tightly linked vari-

ants within the nonsignificant intervals may cancel each other’s

effects, causing us to miss them, as we observed for our parent

NILs. Moreover, our power to detect very small effects remains

quite limited. Projecting to the broader C. elegans population, our

sample of two strains provides a narrow view of phenotypically

relevant genetic variation. N2 and CB4856 differ in our 1.4 Mb

focal genomic region by 1838 SNPs, while a survey of 249 dis-

tinct wild isolates (isotypes) identified more than 8900 single

nucleotide variants segregating in the region (Cook et al. 2017,

release 20170531; Hahnel et al. 2018).

The genetic variation that we analyze derives from the two

most widely studied C. elegans isolates. N2 is the canonical refer-

ence strain. Isolated from mushroom compost in Bristol, England,

in 1951, the strain experienced substantial adaptive evolution in

the laboratory prior to its cryopreservation in 1969 (McGrath et al.

2009, 2011; Sterken et al. 2015) (only one variant within the NIL

region, in interval o, arose in N2 after its isolation; McGrath et al.

2011). CB4856, isolated from a pineapple field in Maui in 1972,

was for many years the C. elegans isolate most different from

N2, and these two strains have been the subject of an enormous

number of genetic studies. Both strains have exceptional high-

quality genome assemblies (Consortium 1998; Thompson et al.

2015; Kim et al. 2019; Yoshimura et al. 2019). Population genetic

studies have revealed that the similarity of most wild isolates to

N2 results from very recent partial selective sweeps and migration

events that have homogenized much of the species, while CB4856

retains alleles that were lost in the swept populations (Rockman

and Kruglyak 2009; Andersen et al. 2012). Many other additional

isolates are now known that retain ancestral variation (Cook et al.

2017).

Our results contribute to a growing consensus that tightly

linked antagonistic QTL (whether additive or epistatic) are a com-

mon feature of complex-trait architectures (Steinmetz et al. 2002;

Kroymann and Mitchell-Olds 2005; Shao et al. 2008; Gaertner

et al. 2012; Green et al. 2013; Glater et al. 2014; Mackay 2014;

Metzger and Wittkopp 2019). Partial selfing may facilitate the

evolution of these complexes, and they may contribute to the

widely observed pattern of outbreeding depression in the par-

tially selfing Caenorhabditis species (Dolgin et al. 2007; Baird

and Stonesifer 2012; Gimond et al. 2013; Snoek et al. 2014).

Although this pattern may be most common in selfers, it should

arise in any species in traits under stabilizing selection with tight

linkage, as evidenced by excess repulsion-phase linkage disequi-

librium between coding and cis-regulatory variants in humans

(Castel et al. 2018). Moreover, for the pattern that we observe—

polygeny and tight linkage of antagonistic effects—to arise by

stabilizing selection, some outcrossing and recombination is re-

quired; otherwise, antagonistic alleles could sit anywhere in the

genome and we would not predict an alternating sequence.

Tight repulsion-phase linkage disequilibrium provides a sim-

ple model for the generation and storage of cryptic genetic

variation in natural populations (Mather 1943; Lewontin 1964;

Kroymann and Mitchell-Olds 2005; Hansen 2006; Paaby and

Rockman 2014). In Lewontin’s (1964) words,
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“Despite the very low genetic variance in the tightly linked
cases, the opportunity for the manifestation of new genotypes
is much greater because gene frequencies are held at inter-
mediate frequencies. The tightly linked genes then have a
greater potential to respond to new selective forces because
potential genetic variability is maintained in the form of linked
complexes.”

On longer timescales, tight linkage among antagonistic-

effect loci may explain the widely observed phenomenon of devel-

opmental systems drift (True and Haag 2001), whereby cellular

and developmental events are conserved despite extensive func-

tional turnover at the molecular level (Ludwig et al. 2000; Barriere

et al. 2012).

Our data show that a simple model of additive effects in

repulsion-phase linkage disequilibrium can account for the mis-

match between the amount of variation in RIAILs and the magni-

tude of differences between nearly identical NILs. However, more

complicated models are also possible. In particular, our NIL data

do not directly address the possibility that the large effects we

observe are normally masked by epistatic interactions among ad-

jacent intervals. If epistasis is systematically suppressive (Hansen

et al. 2006; Hansen 2013), then the effects of isolated variants will

routinely exceed their effects in their native genetic background.

Such a pattern has been observed repeatedly in laboratory mice

(Shao et al. 2008; Tyler et al. 2016), and several experiments have

pointed to large stores of normally cryptic epistatic variation in

C. elegans that can be exposed by genetic perturbations (Paaby

et al. 2015; Snoek et al. 2017; Sterken et al. 2017). Whether by

repulsion-phase additive effects or tightly linked epistatic vari-

ants, C. elegans harbors a store of variation beyond that exposed

by ordinary segregation.
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