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The angiogenin (ANG) gene is mutated frequently in individ-
uals with amyotrophic lateral sclerosis (ALS), a fatal neurode-
generative disease characterized by the progressive loss of
motor neurons. Delivering human ANG to mice that display
ALS-like symptoms extends their lifespan and improves motor
function. ANG is a secretory vertebrate RNase that enters neu-
ronal cells and cleaves a subset of tRNAs, leading to the inhibi-
tion of translation initiation and the assembly of stress granules.
Here, using murine neuronal and astrocytic cell lines, we find
that ANG triggers the activation of the Nrf2 (nuclear factor
erythroid 2-related factor 2) pathway, which provides a critical
cellular defense against oxidative stress. This activation, which
occurred in astrocytes but not in neurons, promoted the survival
of proximal neurons that had oxidative injury. These findings
extend the role of ANG as a neuroprotective agent and under-
score its potential utility in ALS management.

Amyotrophic lateral sclerosis (ALS)4 is a progressive, late-
onset, and fatal neurodegenerative disease that is characterized
by selective motor neuron loss in the spinal cord, brainstem,
and motor cortex (1). Approximately 10% of ALS cases are
inherited dominantly. The most common genetic determinants
of ALS are the expansion of noncoding GGGGCC repeats in
C9ORF72 and mutations in the copper/zinc superoxide dismu-
tase 1 (SOD1) locus (2, 3). The search for other gene mutations
that segregate with disease in ALS pedigrees has led to loss-of-

function mutations in the human angiogenin (ANG) gene
(4 –6). Indeed, providing ALS-like transgenic mice that overex-
press human SOD1G93A with human ANG increases their lifes-
pan and improves their motor function (7).

ANG belongs to the pancreatic-type RNase (ptRNase) super-
family (8). This secretory protein is able to enter cells and cat-
alyze the cleavage of the anticodon loops of mature tRNAs to
produce 5� and 3� fragments that are designated as tRNA-de-
rived, stress-induced RNAs (tiRNAs) (9). 5�-tiRNAs recruit the
translational silencer protein YB-1 and sequester the eukary-
otic translation initiation factor 4G/A complex to inhibit trans-
lation. Specific 5�-tiRNAs also trigger the assembly of stress
granules at sites of ANG localization (10 –12).

Translation repression is critical to overcoming oxidative
stress, which is a hallmark of neurological disorders (13, 14).
Oxidative stress results from an imbalance in the production
and detoxification of free radicals from reactive oxygen species
(ROS) (15–17). To neutralize ROS toxicity, cells replenish anti-
oxidants by activating Nrf2 (nuclear factor erythroid 2-related
factor 2) (18, 19). This transcription factor is usually latent
within cells. Under basal conditions, the dimeric multidomain
protein Keap1 (Kelch-like ECH-associated protein 1) binds to
Nrf2 and promotes its ubiquitination and proteasomal degra-
dation by acting as an adaptor for the Cul3-based E3 ligase.
Oxidants react with key sulfhydryl groups of Keap1, which then
loses its ability to target Nrf2 for degradation. Consequently,
Nrf2 enters the nucleus, where it forms a heterodimer with
small Maf proteins. This heterodimer binds to antioxidant-re-
sponse elements (AREs) to drive the expression of antioxi-
dant enzymes that compensate for the physiological and
pathophysiological outcomes of oxidant exposure (20 –22).
Crossing mice in which the Nrf2 gene is overexpressed selec-
tively in astrocytes with two ALS mouse models leads to
double transgenic mice with a significant delay in onset and
extended survival compared with the single transgenic ALS
mice (23, 24). Moreover, activation of the Nrf2 pathway in
astrocytes increases neuronal survival (25).

We recognized that this synergism between astrocytes and
neurons resembles aspects of ANG-mediated neuroprotec-
tion. ANG is enriched in motor neurons and protects them
against various ALS-related insults, such as excitotoxicity,
hypoxia, and endoplasmic reticulum stress (7, 27, 28). These
relationships provoked us to ask: Does ANG activate Nrf2?
Here, we reveal that ANG does indeed activate the astrocytic
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Nrf2 pathway. Moreover, this activation transmits survival-
promoting signals to proximal neurons, protecting them
from oxidative stress.

Results

ANG activates the Nrf2 pathway selectively in astrocytes

The Nrf2 pathway mediates the transcriptional induction
of a battery of genes that comprise the antioxidant response
system. We examined whether ANG activates Nrf2 in cul-
tured cells that were derived from ARE–hPAP transgenic
mice. Upon induction, the ARE drives hPAP expression,
which increases the level of human placental alkaline phos-

phatase (hPAP). The phosphatase activity of hPAP was mea-
sured as a readout of Nrf2/ARE-dependent promoter activa-
tion (29).

tert-Butylhydroquinone (tBHQ) is a known inducer of Nrf2
and was used as positive control in these experiments (30).
tBHQ increased hPAP activity to various extents, depending on
the cell type. tBHQ treatment led to a 15-fold increase in hPAP
activity in astrocytes (Fig. 1A) and only a 7-fold increase in
neurons (Fig. 1C). Remarkably, in a mixed culture of astrocytes
and neurons, hPAP activity was elevated by 249-fold (Fig. 1E),
suggesting that cross-talk between neurons and astrocytes
amplifies activation of the Nrf2 pathway.

Figure 1. ANG activates ARE-dependent promoters selectively in astrocytes. A, C, and E, graphs showing that treatment with tBHQ (40 �M) increased hPAP
activity by 15-fold in astrocytes (A), 7-fold in cortical neurons (C), and 249-fold in a mixed culture (E). B, D, and F, graphs showing that treatment with WT ANG
(5 �g/ml) increased hPAP activity by 4-fold in astrocytes (B) and 49-fold in a mixed culture (F) but did not change the activity significantly in cortical neurons (D).
hPAP activity remained unchanged upon treatment with defective ANG variants (H114R, S28N, and C39W). Significant changes in hPAP activity compared to
vehicle controls are marked by asterisks, where * refers to p � 0.05.
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WT ANG activated hPAP comparably to tBHQ. Relative to
vehicle, WT ANG induced the highest hPAP signal in a mixed
culture, induced the second-highest signal in astrocytes, and
caused no change in neurons (Fig. 1, B, D, and F). Moreover, the
effect of ANG was dose-dependent, because ANG treatment at
5 �g/ml produced greater hPAP activity than at 1 �g/ml. To
demonstrate signal specificity, we evaluated the phosphatase
activity produced by ALS-associated ANG variants. As de-
scribed previously (4, 31), H114R ANG is an inactive catalyst,
S28N ANG is deficient in nuclear localization, and C39W ANG
lacks conformational stability. None of these variants promoted
hPAP gene expression (Fig. 1, B, D, and F).

ANG drives the expression of endogenous Nrf2/ARE-
dependent genes in astrocytes

Next, we sought to demonstrate the intrinsic activation of
ARE-dependent gene expression upon ANG treatment. Nrf2
induces the transcription of an array of antioxidant genes, and
we selected three for analysis. NAD(P)H:quinone oxidoreduc-
tase 1 (NQO1) is involved in the reduction of quinones to hyd-
roquinones to prevent redox cycling, which often generates
free radicals (32). Glutamate-cysteine ligase modifier subunit
(GCLM) is part of the rate-limiting enzyme complex for the
synthesis of GSH, a free radical scavenger (33). GSH S-transfer-
ase �4 (GST�4) catalyzes the conjugation of reduced GSH to
electrophilic substrates, detoxifying endogenous and xenobi-
otic alkylating agents (34).

Using qPCR, we evaluated the expression of these antiox-
idant genes following treatment with ANG. In this experi-
ment, tBHQ again served as a positive control. tBHQ treat-
ment significantly up-regulated the expression of NQO1,
GCLM, and GST�4, consistent with the results of the re-
porter assay, in both neurons and astrocytes (Fig. 2, A and B).
Consistent with the hPAP activity data, ANG activated Nrf2-
dependent genes in astrocytes but not in neurons. Taken
together, data from the reporter assay and on antioxidant
gene expression indicate that WT ANG activates Nrf2-de-
pendent gene expression.

ANG-mediated change in gene expression depends on Nrf2

Then we asked whether Nrf2 is required for this ANG-medi-
ated induction of gene expression. In WT astrocytes derived
from ARE-hPAP reporter mice, there was a significant increase
in hPAP activity with ANG treatment (Fig. 3A). This ANG-
mediated increase was attenuated in cultures from ARE-hPAP/
Nrf2�/� mice (Fig. 3B). As expected, none of the ANG variants
increased hPAP activity in WT or Nrf2-deficient astrocytes.
Further, the increase in NQO1 and GST�4 expression follow-
ing ANG treatment was reversed almost completely in Nrf2-
deficient cultures (Fig. 3B). These results demonstrate that
ANG-mediated changes are dependent on Nrf2.

In astrocytes, ANG is internalized after it binds to synde-
can-4, a transmembrane heparan sulfate proteoglycan (35, 36).
To compete with the heparan sulfate– binding site within syn-
decan-4, we applied a saturating amount of heparin, which
mimics heparan sulfate and is known to prevent the intracellu-
lar accumulation of ANG (37). Pretreatment with heparin did
indeed prevent the ANG-mediated increase hPAP activity

(Fig. 3A). These data support the hypothesis that the binding
of ANG to syndecan-4 is essential for activation of the Nrf2
pathway.

ANG treatment selectively protects against oxidative
stress-induced cell death

As described above, Nrf2 is the master regulator of antioxi-
dant responses (18). Small-molecule Nrf2 activators can pro-
vide cells with powerful protection from oxidative damage (19).
Accordingly, tBHQ treatment protected cells from H2O2-me-
diated toxicity (Fig. 4, A, C, and E). The degree of protection did,
however, vary among cell types; astrocytes were most respon-
sive to tBHQ treatment, followed by a mixed culture, and then
neurons.

We note that WT ANG treatment likewise activated the
Nrf2/ARE pathway (Figs. 1–3). The robustness of activation
appeared to correlate positively with the degree of cellular
protection against H2O2-mediated toxicity (Fig. 4). As
expected, WT ANG treatment protected astrocytes and a
mixed culture less potently than did tBHQ (Fig. 4, B and F).
Nonetheless, the protective effect of WT ANG in these cul-
tures was significant. No protection was observed in neuro-
nally enriched cultures (Fig. 4D). Once again, the data sug-
gest that neuron–astrocyte communication is necessary to

Figure 2. ANG drives the expression of ARE-dependent genes in astro-
cytes. A and B, graphs of quantitative RT-PCR data demonstrating that treat-
ment with tBHQ (40 �M) increased the expression of antioxidant genes
encoding NQO1, GCLM, and GST�4 in both astrocytes and cortical neurons
relative to vehicle. In contrast, WT ANG promoted the expression of these
genes in astrocytes (A) but not cortical neurons (B), and higher ANG concen-
tration induced greater gene expression.
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support neuronal survival against the deleterious conse-
quences of oxidative stress.

Neurons use ANG as a messenger to signal for astrocyte
protection

Previous studies have demonstrated that stressed neurons
secrete ANG, which is then taken up by astrocytes (36). We
replicated these findings, detecting a high level of secreted
ANG in conditioned medium collected from neurons exposed
to a low nontoxic dose of H2O2. Using a zymogram that pro-
vides a highly sensitive assessment of ribonucleolytic activity
(38, 39), we calibrated known ANG concentrations and the
intensity of bands on a gel. Then we estimated that normal and
stressed neuronal conditioned medium contained 0.5 and 4.0
�g of ANG/ml, respectively (Fig. 5A).

Then we investigated how well stressed neurons are protected
when treated with astrocytic conditioned medium that was pre-
exposed to WT ANG. First, we treated astrocytes with 5 �g/ml of
WT ANG or the inactive H114R variant. After 24 h, we collected
the astrocytic conditioned medium and treated neurons with that
medium for 24 h. The neurons were then subjected to H2O2-me-
diated toxicity. Only conditioned medium from astrocytes that
were stimulated by WT ANG protected the neurons; conditioned
medium from astrocytes exposed to the H114R ANG variant had
no effect. Likewise, no change was observed from conditioned
medium derived from Nrf2-deficient astrocytes, even upon stim-
ulus with WT ANG (Fig. 5B).

Discussion

Members of the ptRNase superfamily have evolved to be effi-
cient, nonspecific catalysts of RNA degradation (40). Unlike its
homologs, ANG has nearly unmeasurable ribonucleolytic
activity toward model substrates (41, 42). Moreover, whereas
other ptRNases function in the extracellular space, ANG acts
within cells (43–46).

Previous studies have shown that ANG cleaves tRNA to
mediate neuroprotective activity (10 –12). Most ANG muta-
tions that segregate with ALS do not significantly alter the
secondary structure or conformational stability of ANG.
Instead, they disrupt its ribonucleolytic activity or subcellu-
lar distribution (47–50). This observation has stimulated
interest in understanding the molecular basis of the role of
ANG in neuroprotection.

We find that ANG activates the Nrf2 pathway in astrocytes
and that this activation protects neurons from oxidative injury.
In this mechanism of action (Fig. 6), stressed neurons secrete
high levels of ANG, which then binds to syndecan-4 receptors
on astrocytes and enters the astrocytes via endocytosis (51).
The binding of ANG to the receptor activates PKC�, which
phosphorylates Nrf2, endowing it with the ability to evade the
Keap1 inhibitor (52). Phosphorylated Nrf2 translocates to the
nucleus and forms heterodimers with Maf. These dimers bind
to AREs to stimulate antioxidant gene expression that defends
against H2O2-mediated toxicity. A fraction of the ANG in

Figure 3. ANG depends on Nrf2 to induce ARE-dependent gene expression. A and B, in astrocytes, ANG-mediated hPAP activation (A) and induction of the
expression of antioxidant genes (B) were comparable with those in Figs. 1A and 2A. These activities were absent in Nrf2-deprived astrocytes (Nrf2�/�). Treating
cells with heparin prior to ANG stimulation likewise prevented ANG-induced changes in hPAP activity (A). Significant changes in gene-expression level
compared to Nrf2�/� astrocytes are marked by asterisks, where * refers to p � 0.05 and ** refers to p � 0.01.
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endosomes escapes into the cytosol. Cytosolic ANG is seques-
tered in granules through the recruitment of 5�-tiRNAs, which
are produced by the ANG-mediated cleavage of tRNAs (9).
These tiRNAs interact with the translational silencer protein
YB-1 and sequester the eukaryotic translation initiation factor
4E/G/A complex to suppress protein translation (10–12). Nota-
bly, this mechanism of action (Fig. 6) is consistent with PKC�
being activated when ANG binds to the syndecan-4 receptor (35,
36, 53) and with the phosphorylation of Nrf2 by PKC� up-regulat-
ing the transcriptional activity of Nrf2 (52, 54).

We have demonstrated that ANG activates the Nrf2 path-
way. The inactive H114R variant does not, however, trigger the

Nrf2 pathway (Fig. 5B). This finding suggests that the ribonu-
cleolytic activity of ANG against tRNAs is essential for Nrf2-de-
pendent protection from H2O2-mediated toxicity. Likewise, a
recent study has shown that increasing ribonucleolytic activity
of ANG improves astrocyte survival when the cells suffer oxi-
dative stress (39). These two effects of ANG—activating the
Nrf2 pathway and cleaving tRNAs—apparently coordinate to
manifest antioxidant activity (Fig. 6).

Oxidative stress irritates neurons, leading to the release of
ANG, which acts as a “distress” signal that is conveyed to astro-
cytes. Within astrocytes, catalysis by ANG generates special-
ized tiRNAs that form G-quadruplexes that arrest protein

Figure 4. ANG protects neurons from oxidative stress via astrocyte communication. A and B, astrocytes; C and D, cortical neurons; E and F, mixed culture.
A, C, and E, tBHQ treatment (40 �M) protected cells from H2O2-mediated toxicity. The degree of protection varied between cell types: astrocytes were the most
responsive to the treatment, followed by the mixed culture, and then neurons. B, D, and F, treating cells with WT ANG, at two doses, protected only astrocytes
and the mixed culture, but not neurons. Three or more biological replicates were performed for each experiment. Significant cell death compared with vehicle
controls is marked by asterisks, where * refers to p � 0.05, ** refers to p � 0.01, *** refers to p � 0.001, and **** refers to p � 0.0001.
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translation. Delivery of these tiRNAs to neurons is known to be
neuroprotective (12). In addition, Nrf2 activation in astrocytes
protects proximal neurons (24, 33). This protection is transmit-
ted in ANG-treated astrocytic conditioned medium (Fig. 5B),
perhaps by tiRNAs that enter neurons and induce ROS
clearance.

ANG elicits manifold effects within astrocytes (55). Like typ-
ical ligands that bind to the extracellular face of membrane-
bound receptors, ANG activates the intracellular Nrf2 pathway.
This activation leads, ultimately, to changes in gene expression.
In addition, ANG enters astrocytes and migrates to stress gran-
ules to suppress protein translation. ANG, in part, directs the
translational machinery to focus on the synthesis of antioxidant
enzymes and specifically induces ARE-dependent gene expres-
sion through Nrf2. Notably, the mechanism of ANG-mediated
neuroprotection is distinct from that of its mechanism for pro-
moting cell proliferation and neovascularization, in which
ANG migrates to the nucleolus and promotes rDNA transcrip-
tion (43, 45, 56, 57).

Nrf2 is the master regulator of the cellular antioxidant sys-
tem. In this role, Nrf2 senses the presence of oxidants and is
responsible for the production of a vast array of antioxidants to
counterbalance ROS. Many attempts have been made to
develop small-molecule activators of the Nrf2 pathway to com-

bat free radicals. Nevertheless, only one Food and Drug
Administration–approved drug (dimethyl fumarate) and one
herbal dietary supplement (Protandim) claim to be Nrf2 activa-
tors (58, 59). Here, we report that an endogenous protein, ANG,
activates the Nrf2 pathway and counteracts the deleterious
consequences of ROS. Its activation of Nrf2 underscores the
role of ANG as a neuroprotective agent to combat oxidative
stress–mediated cellular toxicity and highlights its potential
utility in the treatment of ALS.

Experimental procedures

Materials

All chemicals and reagents were from Sigma–Aldrich unless
indicated otherwise. Medium and added components trypsin
(0.25% w/v), and Dulbecco’s PBS were the Gibco brand from
Thermo Fisher Scientific.

Conditions

All procedures were performed at ambient temperature
(�22 °C) and pressure (1.0 atm) unless indicated otherwise.

Angiogenins

Human ANG and its variants were produced by heterologous
expression in Escherichia coli and were purified as described
previously (39, 42, 45).

Animals

ARE-hPAP transgenic mice were created by installing 51 bp
of the NQO1 promoter upstream of a reporter gene that
encodes hPAP, as described previously (29). Nrf2 knockout
mice (Nrf2�/�) were graciously provided by Dr. Kaiman Chan
and Dr. Yuet Wai Kan (Howard Hughes Medical Institute, Uni-
versity of California, San Francisco) (60). All mice were on a
C57Bl/6 background. All animal procedures were approved by
the University of Wisconsin–Madison Institutional Animal
Care and Use Committee, and all animal experiments were
conducted according to the National Institutes of Health Guide
for the Care and Use of Laboratory Animals.

Mammalian cell culture

Cultures of primary astrocytes (�98% astrocytes) were pre-
pared from the cortices of 1-day-old mice as described previ-
ously (24, 25). Astrocytes were plated at a density of 2 � 104

cells/cm2 in 6- or 96-well collagen-coated plates and main-
tained in complete medium (CEMEM). CEMEM contained
minimum Eagle’s medium supplemented with 10% (v/v) fetal
bovine serum, 10% (v/v) horse serum, 0.5 mM L-glutamine, 1%
(w/v) penicillin (100 IU/ml), and streptomycin (100 �g/ml).
Neuronally enriched cultures (�98% neurons) were prepared
from embryos on embryonic day 15 or 16 as described previ-
ously (29). The neurons were plated at a density of 3 � 104

cells/cm2 in 6- or 96-well poly(D-lysine)– coated plates and
maintained in CEMEM for 45 min before the medium was
replaced with fresh neurobasal medium (NBM). Every 2–3
days, half of the old NBM was replaced with fresh NBM. A
mixed culture (50% neurons and 50% astrocytes) was prepared
similarly to neuronal cultures, with the following exceptions.

Figure 5. Neurons release ANG to signal their need for protection to
astrocytes. A, pre-exposing cortical neurons to H2O2 (1 �M) caused the
release of ANG. A zymogram gel of conditioned medium from stressed neu-
rons revealed a high level of active ANG (4.0 �g/ml) compared with that from
normal neurons (0.5 �g/ml). B, neurons were protected by conditioned
medium collected from astrocytes that were pre-exposed to WT ANG (5
�g/ml). Three or more biological replicates were performed for each experi-
ment. Protection depended on Nrf2 and the ribonucleolytic activity of ANG.
Significant cell death compared with Nrf2�/� astrocytes is marked by aster-
isks, where ** refers to p � 0.01 and *** refers to p � 0.001.
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After the cells were plated in CEMEM and incubated for 45
min, the medium was replaced with fresh CEMEM. On day 2,
the medium was switched to NBM. Every 2 or 3 days, half of the
old NBM was replaced with fresh NBM. The cells were incu-
bated at 37 °C in a tri-gas incubator with 5% O2, 5% CO2, and
90% N2.

hPAP reporter assay

Intracellular hPAP levels were quantified by using a lumi-
nescence assay. The cells were grown in 96-well plates and
seeded at a density that was appropriate for a particular cell
type. Fully differentiated cultures were treated with vehicle
(PBS), tBHQ, ANG, or an ANG variant for 24 h. Whole-cell
extracts were prepared in the plates by adding lysis buffer (50
mM Tris-HCl, pH 7.5, containing 100 mM NaCl, 5 mM MgCl2,
and 1% (w/v) CHAPS), and the extracts were incubated at
65 °C for 30 min to inactivate endogenous alkaline phospha-
tase activity. Next, an hPAP substrate and its enhancer
(CSPD and Emerald, respectively, from Tropix) were added,
and hPAP activity was quantified based on the appearance of
luminescence, which was recorded with an M1000 plate
reader (Tecan).

Cell survival assay

The surviving cells were quantified by using an assay based
on the ability of intracellular enzymes to catalyze the reduction
of a tetrazolium dye, MTS (61). The cells were grown in 96-well
plates and seeded at the density indicated for the various cell
types. Fully differentiated cultures were treated with vehicle

(PBS), tBHQ, WT ANG, or an ANG variant for 24 h and then
with increasing concentrations of H2O2 for an additional 48 h.
The cells were then incubated with CellTiter 96 MTS reagent
(Promega) for 1– 4 h, depending on cell type. Absorbance at 490
nm was recorded with an M1000 plate reader, and the data were
analyzed with Prism 5.0 software.

Quantitative RT-PCR

Total cellular RNA was isolated by extraction with TRIzol
(Invitrogen), and the RNA samples were then treated with
DNase I (Invitrogen) at 37 °C for 15 min. The RNA was purified
by phenol-chloroform extraction followed by ethanol precipi-
tation. RNA concentrations and purities were assessed with a
NanoVue instrument (GE Healthcare Life Sciences). Purified
cellular RNA (�1 �g) was used in a reverse transcription
reaction along with random hexamers from the SuperScript
III reverse transcriptase kit (Invitrogen). A 1-�l aliquot of
the resultant cDNA solution was used in qPCRs in conjunc-
tion with PerfeCTa SYBR Green FastMix reaction mixes
(Quanta Biosciences). Amplified cDNAs were evaluated
with an ABI Prism 7200 sequence detector (PerkinElmer).
The primers used for qPCR were described previously (24)
and are listed in Table 1.

Zymogram assay

Solutions of WT ANG and conditioned medium were
diluted 1:1 with 2� Laemmli buffer from Bio-Rad, and the
resulting solutions were loaded on to a polyacrylamide gel (15%,
w/v) containing poly(cytidylic acid). The loaded gel was sub-

Figure 6. Putative neuroprotective pathway of ANG. Upon ANG binding, syndecan-4 activates PKC� to phosphorylate Nrf2. Phosphorylation enables Nrf2
to evade its binding partner, Keap1. Phosphorylated Nrf2 translocates into the nucleus and forms a heterodimer with Maf. The dimer binds to ARE, driving the
expression of antioxidant genes to counteract cellular oxidative injury. In addition, ANG participates in stress-induced protein translation repression by
generating tiRNAs. ANG executes both actions—activating the Nrf2 pathway and cleaving tRNAs—in a coordinated manner to manifest neuroprotection.
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jected to electrophoresis for 1.5 h at 100 V. Subsequent wash-
ing, refolding and staining with toluidine blue were performed
as described previously (38, 39). Zymograms were quantified by
scanning the stained gel with an ImageQuantLAS4000 instru-
ment (GE Healthcare Bio-Sciences) and by using the program
ImageJ (26).

Statistical analyses

The data were analyzed by using the program Prism
(GraphPad). The values are represented as the means � S.D.
Significance was determined by using an unpaired Student’s t
test or a one-way analysis of variance followed by post hoc anal-
ysis to determine significant paired comparisons based on
experimental design.
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