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Tumor cell migration depends on the interactions of adhesion
proteins with the extracellular matrix. Lutheran/basal cell adhe-
sion molecule (Lu/BCAM) promotes tumor cell migration by
binding to laminin �5 chain, a subunit of laminins 511 and 521.
Lu/BCAM is a type I transmembrane protein with a cytoplasmic
domain of 59 (Lu) or 19 (Lu(v13)) amino acids. Here, using an
array of techniques, including site-directed mutagenesis, immu-
noblotting, FRET, and proximity-ligation assays, we show that
both Lu and Lu(v13) form homodimers at the cell surface of
epithelial cancer cells. We mapped two small-XXX-small motifs
in the transmembrane domain as potential sites for monomers
docking and identified three cysteines in the cytoplasmic
domain as being critical for covalently stabilizing dimers. We
further found that Lu dimerization and phosphorylation of its
cytoplasmic domain were concomitantly needed to promote cell
migration. We conclude that Lu is the critical isoform support-
ing tumor cell migration on laminin 521 and that the Lu:Lu(v13)
ratio at the cell surface may control the balance between cellular
firm adhesion and migration.

Lutheran/basal cell adhesion molecule (Lu/BCAM),3 or
CD239, is a type I transmembrane protein carrying the antigens
of the Lutheran blood group system. Lu/BCAM is a member of
the immunoglobulin superfamily (IgSF); it exhibits an extracel-
lular domain composed of two variable (V) and three constant
(C2) Ig-like domains, a single transmembrane domain, and a

cytoplasmic domain of 59 or 19 amino acids that defines the
two Lu/BCAM isoforms Lu (85 kDa) and Lu(v13) (78 kDa),
respectively.

Lu/BCAM was first reported in circulating red blood cells
(RBCs) through the presence of the Lutheran blood group anti-
gens, but it is not restricted to the erythroid lineage because it
has a broad expression pattern including epithelial and endo-
thelial cells of most organs. Lu/BCAM binds to �5 chain–
containing laminins and is the unique laminin receptor on the
surface of circulating RBCs in humans (1–3). The adhesive
function of Lu/BCAM has been studied mainly in the context of
blood and lysosomal pathologies (4), such as sickle cell disease
(5–9), hereditary spherocytosis (10), myeloproliferative neo-
plasms (11–13), and Gaucher disease (14), and to a lesser extent
in epithelial cells and tumor invasion or metastasis.

Metastasis is often initiated and supported by the ability of
tumor cells to invade the basement membrane through a coop-
erative process extracellular matrix (ECM) degradation, cell
adhesion, and cell migration. The ECM protein laminin is
believed to play a central role in cell adhesion and cell migration
during tumor invasion. Laminins are heterotrimeric glycopro-
teins composed of �, �, and � chains. There are five � chains,
three � chains, and three � chains (15), the combination of
which gives rise to 19 different isoforms in the laminin family
(16).

BCAM was first identified as an overexpressed antigen in
human ovarian carcinomas in vivo that was up-regulated fol-
lowing malignant transformation (17, 18). Rahuel et al. (19)
later demonstrated that BCAM and Lutheran were two splice
variants (Lu(v13) and Lu, respectively) encoded by the LU gene.
Since then, Lu/BCAM expression has been studied in a number
of cancer cells and found modulated in several cancer types
such as colon, skin, brain, liver, thyroid, breast, and bladder
cancer (2, 20–28). Lu/BCAM has been shown to sustain tumor
cell migration by modulating integrin-mediated cell attach-
ment to laminin 511 (29) and to play a role in metastatic spread-
ing of KRAS-mutant colorectal cancer (30).

In this study, we investigated the nature of Lu/BCAM mole-
cules expressed at the membrane of epithelial cancer cells
and revealed the presence of homodimers. We mapped two
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small-XXX-small motifs in the transmembrane domain as
potential sites for monomers docking and identified three
cysteines in the cytoplasmic domain as critical residues for
dimers’ covalent stabilization. Finally, we showed that
dimerization of Lu/BCAM together with the phosphoryla-
tion of its cytoplasmic domain at serine 621 are critical fac-
tors to promote cell migration on laminin 521.

Results

Lu/BCAM forms homodimers at the surface of epithelial cells

To study the nature of Lu/BCAM molecules at the cell mem-
brane, surface proteins of Caco-2 cells, a human epithelial colo-
rectal carcinoma cell line, were biotinylated before cell lysis
and Lu/BCAM was immunoprecipitated using the F241 anti-
human Lu/BCAM mAb. After SDS-PAGE and transfer to
nitrocellulose membrane, immunoprecipitated proteins were
revealed using streptavidin-HRP. Under nonreducing condi-
tions, a band of 170 –175 kDa was detected in addition to the
expected Lu/BCAM isoforms Lu (85 kDa) and Lu(v13) (78 kDa)
(Fig. 1A). This band was not detected in the presence of a reduc-
ing agent (�-mercaptoethanol) and no proteins other than Lu
and Lu(v13) were detected in these conditions, suggesting that
the 170 –175 kDa band represented a dimer of Lu/BCAM that
was reduced to the monomeric size by �-mercaptoethanol (Fig.
1A). To test whether these potential dimers were not forming in
vitro after cell lysis, immunoprecipitation experiments were
performed after mixing two populations of Lu/BCAM proteins
with antithetical antigen specificities: Lua and Lub. Caco-2 cell
lysates containing biotinylated Lu/BCAM with the Lub antigen
(biotin-Lub) were mixed with nonbiotinylated lysates of Caco-
2–Lua cells expressing a recombinant form of Lu/BCAM with
the Lua antigen (31). Immunoprecipitation of Lua using the
4G11 anti-Lua mAb did not show any biotinylated band at the
dimer size (Fig. 1B, left panel) indicating that no Lua/biotin-Lub

dimers were forming in vitro during the purification step. This
was not due to the inability of 4G11 mAb to immunoprecipitate

Lu dimers because such dimers were detected when surface
proteins of Caco-2–Lua cells were biotinylated (Fig. 1B, right
panel).

To test whether dimer formation was restricted to Caco-2
cells, similar immunoprecipitation experiments using the
A-498 human renal epithelial cell line were performed. The
presence of Lu/BCAM dimers was also detected in these cells
(Fig. 1C) indicating that this was not exclusive to Caco-2 cells.

Because Lu(v13) is weakly expressed in Caco-2 and A-498
cells it was not possible to detect Lu(v13) dimers in our exper-
iments. To test if Lu and Lu(v13) are both able to form dimers,
Madin-Darby canine kidney cells (MDCK) were transfected to
generate stable cell lines that express either of the two human
isoforms. In both cases, a high molecular weight band corre-
sponding to the putative dimers was observed after biotinyla-
tion and immunoprecipitation with F241 mAb (Fig. 1D). As
expected, the Lu and Lu(v13) dimers were different in size
because of the 40 amino acid difference between the two
monomers.

Lu homodimers are detected at the cell surface by FRET

Lu homodimerization in living cells was assessed by FRET
assays using HEK 293T cells. HEK 293T cells were cotrans-
fected with vectors encoding the fluorophores cerulean (Cer) or
citrine (Cit) fused to the C terminus of the long Lu isoform
(pE-Lu-Cer and pE-Lu-Cit). Positive and negative controls
were performed: A vector encoding a Cit-Cer tandem (pE-Cit-
Cer, positive control), cotransfection of a vector encoding Cit
(pE-Cit) with a vector encoding Cer (pE-Cer), cotransfection of
pE-Lu-Cit and pE-Cer vectors, and cotransfection of pE-Lu-Cit
vector with a vector encoding an independent transmembrane
protein of the IgSF (ICAM4) fused to Cer (pE-ICAM4-Cer).
The Cer/Cit fluorophore pair was selected for its good spectral
overlap allowing for efficient energy transfer from the donor
(Cer) to the acceptor (Cit). The transfer of energy was measured
as an increase in the donor fluorophore emission after photo-

Figure 1. Lu/BCAM forms homodimers at the surface of epithelial cells. A–D, Lu/BCAM was immunoprecipitated from Caco-2 (A and B), A-498 (C), or
transfected MDCK (D) epithelial cells using the F241 anti-human Lu mAb with or without biotinylation of surface proteins. SDS-PAGE was performed under
reducing (Red) or nonreducing (Non-Red) conditions. Proteins were revealed using streptavidin-HRP. A, biotinylated endogenous Lu (85 kDa) and Lu(v13) (78
kDa) monomers are immunoprecipitated from Caco-2 cells (n � 7). An extra 170 –175 kDa band corresponding to putative Lu dimers is visible under Non-Red
conditions. B, left panel, biotinylated lysates containing endogenous Lu/BCAM isoforms with the Lub antigen specificity were mixed with nonbiotinylated
lysates containing recombinant Lu isoform with the antithetical Lua antigen specificity. Immunoprecipitation was performed with F241 or 4G11 anti-Lua mAbs.
B, right panel, immunoprecipitation of biotinylated recombinant Lua allelic variant using 4G11 mAb (n � 1). C, immunoprecipitation of biotinylated endoge-
nous Lu and Lu(v13) in A-498 cells using F241 mAb (n � 2). D, immunoprecipitation of biotinylated recombinant Lu and Lu(v13) in transfected MDCK cells using
F241 mAb (n � 7). Arrows indicate dimers. IP, immunoprecipitation.
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bleaching of the acceptor. Fig. S1 shows representative images
of the photobleaching process on an area where Lu-Cit is
expressed. FRET efficiency of the cells expressing the Cit/Cer
or the Lu-Cit/Cer pair was much lower than that of those
expressing the Cit-Cer tandem (positive control) used to deter-
mine the maximal FRET efficiency that could be obtained in
this system (38.6 � 2.6%, mean � S.D.; Fig. 2). The FRET effi-
ciency of the Cit/Cer pair was not null, indicating that there was
some background because of a crosstalk between the two over-
expressed fluorescent proteins. The FRET efficiency of cells
co-expressing Lu-Cit and Lu-Cer was significantly higher than
that of cells expressing the Cit/Cer or the Lu-Cit/Cer pair (neg-
ative controls), indicating that Lu molecules interact with each
other at the cell membrane and form homodimers or homoolig-
omers (Fig. 2). The measured FRET efficiency of Lu dimers was
not subsequent to Lu overexpression at the cell membrane
because it was greater than the efficiency of Lu-Cit co-ex-
pressed with ICAM4-Cer, another IgSF transmembrane pro-
tein that does not interact with Lu (pE-Lu-Cit � pE-ICAM4-
Cer; Fig. 2).

Mapping of Lu/BCAM dimerization site

Analysis of the primary sequence of Lu/BCAM transmem-
brane domain revealed the presence of two overlapping “small-
XXX-small” motifs: A553-XXX-S557 and A555-XXX-G559 (Fig.
3A). Small-XXX-small motifs are overrepresented in trans-
membrane proteins and well-known for promoting helix-
helix interactions and protein oligomerization. Site-directed
mutagenesis was performed to substitute serine 577 or glycine
559 by valine: LuS557V and LuG559V mutants. Immunopre-

cipitation assays performed after stable expression of these two
mutants in MDCK cells did not show altered dimerization as
compared with WT Lu (Fig. 3B).

Because dimerization was not suppressed by the S557V and
G559V mutations, the role of disulfide bonds in Lu homo-
dimers stabilization was investigated. This hypothesis is sup-
ported by the absence of homodimers when SDS-PAGE was
performed under reducing conditions (Fig. 1A). There are 13
cysteines common to Lu and Lu(v13), 10 cysteines in the extra-
cellular domain, and 3 in the cytoplasmic tail (Fig. 3C). We
focused on the latter because Lu/BCAM isoforms exhibit five
Ig-like extracellular domains involving the 10 other cysteines
(Fig. 3C). The 3 cytoplasmic cysteines were mutated into serine
or alanine as shown in Fig. 3A. The triple mutant LuC/S-
CC/AA was stably expressed in MDCK cells and showed no
dimers after immunoprecipitation (Fig. 3B), suggesting that the
dimers of Lu WT detected by SDS-PAGE under nonreducing
conditions were covalently linked by disulfide bonds involving
cysteines of the cytoplasmic domain.

The impact of these mutations was further investigated using
the proximity ligation assay (PLA) to assess Lu dimerization in
situ at the cell surface, without the interference of the cell lysis
and protein purification steps. Indeed, the triple mutant might
form noncovalently linked dimers at the cell surface that are
broken apart by the detergent at the lysis step before protein
immunoprecipitation. Anti-Lu F241 antibody was purified and
conjugated to the DNA oligo arms PLA-MINUS (F241-M) or
PLA-PLUS (F241-P). MDCK cells were fixed and labeled with
F241-M and F241-P antibodies. When close enough (�40 nm),
the PLUS and MINUS oligo arms facilitate ligation, amplifica-
tion, and subsequent fluorescent detection. In accordance with
the FRET results, MDCK-Lu cells showed high numbers of flu-
orescent dots, supporting the presence of Lu dimers at the cell
surface (Fig. 3, D and E). Similar results were obtained with the
MDCK-LuS557V and -LuG559V cells, in accordance with the
immunoprecipitation results. The number of fluorescent dots
was decreased in MDCK cells expressing the triple mutant
LuC/S-CC/AA, without reaching the background level mea-
sured with MDCK WT cells (Fig. 3D and 3E), indicating that the
dimerization of this mutant was altered but not abolished at the
cell surface, thus suggesting that disulfide bonds are not critical
for dimerization to occur.

Lu homodimers promote cell migration

Lu/BCAM promotes migration of human fibrosarcoma cells
through its interaction with laminin �5 chain (29). The poten-
tial role of Lu in inducing migration of MDCK cells was inves-
tigated by performing migration assays of individual MDCK
cells spread onto a matrix of purified recombinant laminin 521
(Fig. S2). As expected for epithelial cells, MDCK WT cells were
dynamic and showed basal migration activity (Fig. 4, A and B;
Video S1). In accordance with Kikkawa’s results using human
fibrosarcoma cells, MDCK-Lu cells were more dynamic and
showed a higher migration rate (Fig. 4, A and B; Video S2), with
more than 2-fold increase when compared with MDCK WT
(Fig. 4B). Migration of cells expressing Lu mutants LuS557V or
LuG559V was also increased but to a lesser extent (Fig. 4, A and
B; Videos S3 and S4). Migration of MDCK cells expressing LuC/

Figure 2. The fusion proteins Lu-Cit and Lu-Cer form homodimers at the
cell surface that are detected by FRET. FRET efficiency in transiently trans-
fected HEK 392T cells of the tandem pE-Cit-Cer fusion protein (positive con-
trol; green), three negative controls (pE-Cit � pE-Cer, pE-Lu-Cit � pE-Cer, and
pE-Lu-Cit � pE-ICAM4-Cer; red), and pE-Lu-Cit � pE-Lu-Cer combination.
Kruskal-Wallis one-way ANOVA on ranks test was performed followed by
Dunn’s multiple comparison procedure in case of differences at a 0.05 signif-
icance level. Significant differences between the pE-Lu-Cit � pE-Lu-Cer
cotransfectant and the negative controls are shown: ***, p � 0.001; ****, p �
0.0001 (tandem, n � 26; pE-Cit � pE-Cer and pE-Lu-Cit � pE-Cer, n � 28;
pE-Lu-Cit � pE-ICAM4-Cer, n � 27; pE-Lu-Cit � pE-LuCer, n � 35). The energy
transfer between Lu-Cer and Lu-Cit and the negative control pE-Lu-Cit �
pE-ICAM4-Cer has been assessed in two additional independent experiences.
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S-CC/AA mutant was significantly diminished when compared
with MDCK-Lu cells (Fig. 4, A and B; Video S5), suggesting that
covalently linked homodimers are important for Lu-dependent
cell migration.

Lu phosphorylation is essential for Lu-induced cell migration

Although Lu induced MDCK cell migration, Lu(v13) did not.
As shown in Fig. 5, MDCK-Lu(v13) cells showed a similar
behavior to MDCK WT cells (Video S6). Because Lu(v13) forms
dimers at the MDCK cell surface (Figs. 1D and 5C), we con-
cluded that dimerization alone was not sufficient to promote

cell migration. Lu(v13) lacks 40 amino acids at the C-terminal
end, when compared with Lu, among which the only serine
residues of the cytoplasmic domain are found. Phosphorylation
of serine 621 has been shown to activate Lu-mediated cell adhe-
sion to laminin 511/521 (5, 11, 32). Therefore, we investigated
the role of serine 621 phosphorylation in Lu-mediated cell
migration by performing migration assays with stably trans-
fected MDCK cells expressing a Lu mutant in which serine 621
was substituted by alanine (LuS621A). Migration of MDCK-
LuS621A cells was strongly inhibited (Fig. 5, A and B; Video S7).
This inhibition was not caused by altered dimerization because

Figure 3. Mapping of Lu/BCAM dimerization sites. A, primary amino acid sequence of the transmembrane and cytoplasmic domains of Lu/BCAM and the
three mutants LuS557V, LuG559V, and LuC/S-CC/AA. Substituted amino acids are underlined for each mutant. B, immunoprecipitated Lu and Lu mutants from
transfected MDCK cells after biotinylation of surface proteins. SDS-PAGE was performed under nonreducing conditions; proteins were detected using strepta-
vidin-HRP. The upper band of 250 kDa, detected in all cell types including MDCK WT, is a nonspecific band. LuS557V and LuG559V: n � 7; LuC/S-CC/AA: n � 3.
C, schematic representation of two molecules of Lu/BCAM and the relative position of the 13 cysteines common to Lu and Lu(v13) isoforms. The 10 extracellular
cysteines are involved in five Ig-like domains (D1-D5). D, boxplot showing the proximity ligation assay results obtained for MDCK WT and transfected MDCK
cells expressing Lu or Lu mutants. Results are expressed as number of fluorescent dots per cell. Kruskal-Wallis one-way ANOVA on ranks test was performed for
the transfected cells, followed by Dunn’s multiple comparison procedure in case of differences at a 0.05 significance level. ****, p � 0.0001 versus MDCK-Lu cells
(WT, n � 14; Lu and LuG559V, n � 22; LuS557V, n � 19; LuC/S-CC/AA, n � 21). This experiment has been performed three times. E, representative confocal
microscopy images showing the PLA signal (red) on MDCK WT and transfected MDCK cells expressing Lu or Lu mutants; nuclei are stained with DAPI (blue). Scale
bar: 20 �m.
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LuS621A mutant showed normal levels of immunoprecipitated
dimers (Fig. 5C). As serine 621 can be phosphorylated by PKA
(32) or Akt (11), we performed migration assays in the presence
of the PKA inhibitor H89 or the Akt inhibitor Akti. Migration of
MDCK-Lu cells was significantly inhibited in the presence of
H89 suggesting that it depended on Lu phosphorylation by
PKA (Fig. 5D; Videos S8 and S9). Altogether, our results show
that Lu-mediated cell migration on laminin 521 depends on
concomitant dimerization and phosphorylation of Lu mole-
cules at the cell surface.

Discussion

Although Lu/BCAM has been investigated for decades, it is
the first time that its ability to form dimers at the cell surface is
reported. These dimers were not detected previously because
Western blotting experiments were performed under reducing
conditions that are shown here to abolish dimerization.

Lu/BCAM binds to �5 chain– containing laminins and is the
unique laminin receptor on the surface of circulating RBCs in
humans (1–3). The binding site of Lu/BCAM to laminin was
first mapped to the first three Ig-like extracellular domains
(D1-D2-D3) (33), and then delimited to a negatively charged
area in the D2-D3 interdomain flexible region (34). Whether
Lu/BCAM binds preferentially to laminin under its monomeric
or dimeric form is not known. Nevertheless, dimerization of
Lu/BCAM does not seem to hinder binding to laminin as sur-

face plasmon resonance experiments showed a high affinity
between laminin 511/521 and soluble dimers of Lu-Fc chimeras
composed of Lu/BCAM extracellular domain fused to the
human immunoglobulin Fc fragment that drives dimerization
(33, 35). Thus, Lu/BCAM dimers might be the active form
needed for laminin binding or might bind laminin with higher
affinity than the monomeric form as it was shown for ICAM-1
dimers binding to integrin �L�2 (36). This is supported by our
functional cellular experiments showing the importance of
these dimers for cell migration on a laminin-coated surface.
Several adhesion molecules of the IgSF are known to form
dimers that are critical for their adhesion and migration func-
tions. Cis-dimerization of CD146 and JAM-A regulates adhe-
sion and migration of endothelial and epithelial cells, respec-
tively (37, 38). In contrast to CD146 (39) and JAM-A (38),
Lu/BCAM does not seem to modulate cell migration on
laminin 521 by down-regulating integrins but rather by modu-
lating their binding to laminin, weakening firm adhesion and
promoting migration (29).

Our findings support the role of Lu/BCAM in inducing cell
migration and further identify dimerization and phosphoryla-
tion as novel mechanisms through which it operates to sustain
this action. Dimerization and phosphorylation are concomi-
tantly needed to induce cell migration as cells expressing the
long isoform Lu migrated faster than those expressing the short

Figure 4. Lu homodimers sustain Lu-mediated cell migration. Indicated cells were plated in channels coated with laminin 521. Cell movements were
monitored by time-lapse video microscopy. Cells were tracked for 12 h at 10 min intervals. A, representative tracks of 10 cells for each cell line over a span of 4 h.
B, quantification of cell motility as evaluated by cell mean velocity (�m/min) on data collected from two independent experiments. ANOVA was performed on
log-transformed data, followed by Tukey’s honest significance test. **, p � 0.01 versus MDCK WT cells; #, p � 0.05 versus MDCK-Lu cells; ##, p � 0.01 versus
MDCK-Lu cells (WT, n1 � 38, n2 � 43; Lu, n1 � 29, n2 � 42; LuS557V, n1 � 36, n2 � 44; LuG559V, n1 � 37, n2 � 45, LuC/S-CC/AA, n1 � 37, n2 � 41). Number of
tracked cells of each cell line, for two independent experiments (n1 and n2).
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isoform Lu(v13), which forms dimers but is not phosphorylat-
ed. In addition, we mapped serine 621 of Lu as the phosphory-
lation target site of PKA that is involved in MDCK cell migra-
tion. Phosphorylation of this serine had been described to
support adhesion of red blood cells in sickle cell disease (32) and
polycythemia vera (11) through a PKA- and an Akt-dependent
pathway, respectively, and here we reveal its novel role in sus-
taining the migration of epithelial cells. We believe that serine
621 is the only residue involved in the PKA-induced migration
as its substitution into alanine in the same MDCK cell line abol-
ishes the cAMP-induced phosphorylation of Lu (32).

Our results on Lu-mediated migration are in accordance
with previous studies performed with human fibrosarcoma cell
lines overexpressing Lu or with hepatocellular carcinoma cells
(29, 40). Lu expression has also been shown to mediate motility
on biliary cells in a liver injury context (27). Nevertheless,
although our results showing that Lu(v13) does not sustain cell
migration are in accordance with the suggested suppressive

oncoprotein role of this isoform (41) they are different from
those reported by Kikkawa et al. (29), showing a migration
function for this isoform, although slightly lower than for Lu.
This discrepancy might arise from differences in the cell lines
used in both studies or from the number of tracked cells in the
migration assays, as in our experiments we tracked a much
higher number of cells (more than 40 cells in triplicate versus 10
cells in Ref. 29). Our results highlight the importance of the
relative expression of Lu and Lu(v13) as the Lu/Lu(v13) ratio at
the cell surface may control the balance between cellular firm
adhesion and migration.

The observation that both Lu/BCAM isoforms form
homodimers indicates that the dimerization sites are com-
prised within the 588 amino acids that are common between Lu
and Lu(v13). To gain insights into the structural properties of
Lu/BCAM we performed in silico modeling analyses. The single
transmembrane region was analyzed through different predic-
tion approaches (see “Experimental procedures”) to determine

Figure 5. Phosphorylation of Lu serine 621 is necessary for cell migration. Indicated cells were plated in channels coated with laminin 521 and monitored
as in Fig. 4. A, representative tracks of 10 cells for each cell line over a span of 4 h. B, quantification of cell motility as evaluated by cell mean velocity (�m/min)
on data collected from three independent experiments. ANOVA was performed on log-transformed data, followed by Tukey’s honest significance test. **, p �
0.01 versus MDCK WT cells; ###, p � 0.001 versus MDCK-Lu cells; ####, p � 0.0001 versus MDCK-Lu cells (WT, n1 � 44, n2 � 39, n3 � 44; Lu, n1 � 46, n2 � 29,
n3 � 43; Lu(v13), n1 � 44, n2 � 36, n3 � 46; LuS621A, n1 � 45, n2 � 34, n3 � 44). C, immunoprecipitated Lu, Lu(v13), and LuS621A from transfected MDCK
cells after biotinylation of surface proteins. SDS-PAGE was performed under nonreducing conditions; proteins were detected using streptavidin-HRP
(n � 5). D, quantification of migration rate (�m/min) of MDCK WT and MDCK-Lu cells treated with the PKA inhibitor H89, the Akt inhibitor Akti, or DMSO
alone. Data collected from three independent experiments. ANOVA was performed for the MDCK-Lu cells on log-transformed data, followed by Tukey’s
honest significance test. *, p � 0.05 versus MDCK-Lu DMSO (WT DMSO, n1 � 45, n2 � 45, n3 � 50; Lu DMSO, n1 � 36, n2 � 45, n3 � 40; Lu H89, n1 � 48,
n2 � 45, n3 � 36; Lu Akti, n1 � 42, n2 � 45, n3 � 40).
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the most probable residues incorporated in the lipid bilayer.
Predicted residue positions were consistent with those found in
the literature (549 –570) (42). Prediction of dimeric regions
within the transmembrane domain of Lu WT was performed
combining two specific methods: LIPS (LIPid-facing Surface)
(43) and PREDDIMER (44). LIPS is dedicated to the prediction
of helix-lipid interfaces, enabling identifying residues exposed
to lipids or involved in helix interactions. The LIPS approach
underlined mainly the importance of contact between the two
alanine residues at position 555. The PREDDIMER analysis
generated 10 different dimeric conformations of which 3 pre-
sented the contact constraint at alanine 555 defined by LIPS.
Fig. 6, A to C shows the best-selected solution of the dimeriza-
tion state in three orientations; it is a classic right-handed
dimer. Structural prediction for both LuS557V and LuG559V
mutants provided the same dimeric conformation, indicating
that the point mutations do not modify the interaction between
the two transmembrane helices, further supporting our bio-
chemical results. Indeed, for LuG559V, the side-chain of valine
at position 559 is exposed to the lipid bilayer and does not
interfere with the dimer docking surface (Fig. 6D). As for
LuS557V, the side-chain of valine at position 557 is oriented
toward the dimer interface but has a neutral effect because it
does not interfere with the docking of LuS557V monomers
(Fig. 6E).

FRET and PLA experiments supported the presence of Lu
homodimers at the cell surface. As expected, the FRET effi-
ciency of Lu WT was lower than the positive control (Cit-Cer
tandem) as it is underestimated by 50% because of experimental
limitation. As a matter of fact, Lu-Cit-Lu-Cit and Lu-Cer-Lu-
Cer homodimers do form at the cell surface but are not detected
in the assay (25% of total dimers for each subtype). Similarly, the
PLA assay also underestimates the dimerization of Lu WT
because homodimers that bind two F241-P (25%) or two
F241-M (25%) antibodies do not generate fluorescent dots.

FRET and PLA results were in accordance with the immuno-
precipitation results of Lu WT, LuS557V, and LuG559V. In
contrast, although LuC/S-CC/AA dimers were not detected
after immunoprecipitation, PLA experiments showed the pres-
ence of fluorescent dots for this mutant. The number of dots
associated with LuC/S-CC/AA was significantly lower than for
Lu WT but higher than for the negative control (MDCK WT,
not shown) indicating the presence of low amounts of LuC/S-
CC/AA dimers at the cell surface. One explanation is that LuC/
S-CC/AA is still able to form some dimers at the cell surface
that are dissociated after cell lysis because of the absence of
disulfide bonds. The potential presence of such dimers does not
seem to support cell migration, strongly suggesting that cova-
lent stabilization of Lu dimers is critical for their mediated
migration function.

The absence of Lu dimers in the presence of �-mercaptoeth-
anol and the abrogation of dimerization of the LuC/S-CC/AA
mutant support the presence of at least one disulfide bond
within each dimer involving one of the three cysteines of each
monomer. We performed structural and sequence analyses to
evaluate this hypothesis (see “Experimental procedures”). Pro-
tein structural analysis indicated that cysteine 570, which is at
the boundary of the transmembrane and cytoplasmic domains,
is the less likely to form disulfide bonds. To determine the puta-
tive cysteine involved in such bonds we studied the evolution of
this cytoplasmic region using multiple sequence analyses. We
performed a mining of the UniProt/Swiss-Prot database using
PSI-BLAST and found more than 400 conserved sequences
with appropriate similarity. Interestingly, cysteine 570 was
found in all mammals but not in some reptiles. The two other
cysteines, cysteine 578 and cysteine 579, were found in all mam-
mals with complete conservation. In the reptile species, it was
difficult to distinguish cysteine 578 from cysteine 579 as the
local similarity decreased. In contrast, analyzing the sequence
from Ornithorhynchus anatinus, which has only one cysteine at
this position and a high similarity with the human sequence,
indicated that cysteine 578 was the conserved residue, suggest-
ing that this cysteine is most probably the residue involved in
disulfide bonds within Lu dimers.

In summary, our findings show that Lu/BCAM molecules
form dimers at the cell surface and reveal a novel mechanism
regulating Lu/BCAM-mediated adhesion and migration of epi-
thelial cells. Further studies of this mechanism could be of
interest both in pathological situations, such as cancer cell
migration and abnormal red cell adhesion, and in normal phys-
iology during development and tissue formation.

Experimental procedures

Antibodies

Mouse anti-human Lu/BCAM monoclonal antibody (mAb),
clone F241, was produced in our institute (32). Human anti-Lua

mAb, clone 4G11, was produced as described (31). Biotinylated
goat polyclonal anti-Lu/BCAM antibody (Ab) was from R&D
Systems.

Expression vectors and site-directed mutagenesis

Lua, Lub, and Lub(v13) cDNAs were cloned into the pcDNA3
expression vector as described (45). Mutated forms of Lub were

Figure 6. Molecular modeling of the transmembrane dimerization
region of Lu/BCAM. A–C, the transmembrane helices are shown in three
orientations: from the top (A) and the side (B) with a rotation of 90° (C). Alanine
555 residues are represented as pink spheres, the other alanine residues are in
red, glycine residues are in blue; the orange sphere at the C-terminal end rep-
resents cysteine 570. D and E, structure of the transmembrane helices of
LuG559V (D) and LuS557V (E) mutants in which valine 559 and 557 residues
are represented as gray and yellow spheres, respectively.

Lu dimerization and phosphorylation mediate cell migration

J. Biol. Chem. (2019) 294(41) 14911–14921 14917



obtained using site-directed mutagenesis as described previ-
ously (46). Primers used for the S621A mutation (�1 is taken as
the methionine residue of the initiation codon) are already
described (46). Primers used for the other mutants are (mutated
nucleotides are underlined): for LuS557V, forward 5�-CAT-
GGCCGTGGCCGTCGTCGTGGGCCTCCTGCTCCTCG-
3�, reverse 5�-CGAGGAGCAGGAGGCCCACGACGACGG-
CCACGGCCATG-3�; for LuG559V, forward 5�-CGTGGCC-
GTCAGCGTGGTCCTCCTGCTCCTCGTCG-3�, reverse
5�-CGACGAGGAGCAGGAGGACCACGCTGACGGCC-
ACG; LuC/S-CC/AA mutant was obtained using 2 steps, first
cysteine 570 was mutated into serine, forward 5�-GTTGC-
TGTCTTCTACAGCGTGAGACGCAAAGG-3�, reverse 5�-
CCTTTGCGTCTCACGCTGTAGAAGACAGCAAC-3�; then
CC578 –579 were mutated into alanine, forward 5�-CGC-
AAAGGGGGCCCCGCCGCCCGCCAGCGGCGGGAG-3�, re-
verse 5�-CTCCCGCCGCTGGCGGGCGGCGGGGCCCCCTT-
TGCG-3�.

Cell culture, transfection, and flow cytometry

MDCK (ATCC), HEK 293T (ATCC) and Caco-2 (DSMZ)
cells were grown in DMEM GlutaMAX I supplemented with
10% (MDCK, HEK 293T) or 20% (Caco-2) FCS, antibiotic/an-
timycotic and 0.1 mM nonessential amino acids. Cells were
grown in a humidified atmosphere at 37 °C with 5% CO2. Stable
MDCK and Caco-2 cells expressing WT or mutant Lu/BCAM
were obtained as described (32).

Cell surface expression of Lu/BCAM was analyzed using
anti-Lu/BCAM F241 mAb followed by a phycoerythrin-
conjugated anti-mouse IgG (H�L) (Beckman Coulter); a BD
FACSCanto II flow cytometer (Becton Dickinson) with
FACSDiva software (version 6.1.2) for acquisition and FlowJo
v10 software for data analysis. Expression of Lu WT and
dimerization mutant forms in Lu-positive MDCK cells fell
within the same range except for LuS557V (Fig. S3A); expres-
sion of Lu(v13) and LuS621A mutant were similar and higher
than Lu WT (Fig. S3B).

Protein biotinylation and Western blotting

Cells were washed twice with ice-cold PBS with 1 mM cal-
cium and magnesium (PBS-CM) and incubated with 0.5 mg/ml
EZ-Link Sulfo-NHS-LC-Biotin (Pierce) in 10 mM Hepes, pH
7.3–7.6, 150 mM NaCl, 0.2 mM CaCl2, and 0.2 mM MgCl2 for 30
min at 4 °C. Cells were washed twice with PBS-CM and incu-
bated with 10 mM glycine in PBS for 10 min at 4 °C to quench
free biotin. After two extra washes with PBS-CM, cells were
lysed for 40 min on ice in lysis buffer (10 mM Tris/HCl, pH 7.4,
150 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, and 1% Triton X-100
supplemented with a protease inhibitor mixture (cOmplete,
EDTA-free, Roche) and 1 mM PMSF). Cell lysates were centri-
fuged for 20 min at 11,000 � g, and supernatants were pre-
cleared with Protein A Sepharose CL-4B beads (GE Healthcare
Life Sciences) supplemented with goat serum during 3 h. Fol-
lowing centrifugation at 5000 � g for 20 min, Lu/BCAM was
immunoprecipitated from supernatants overnight at 4 °C using
F241 mAb coupled to Protein A Sepharose beads. After wash-
ing the beads five times with the lysis buffer, immunoprecipi-
tated proteins were eluted with Laemmli buffer and analyzed by

SDS-PAGE (8% gels), membrane transfer, and chemilumines-
cence after incubation with horseradish peroxidase-conjugated
streptavidin (Life Technologies).

FRET experiments

Lu isoform was expressed as a fusion protein with two differ-
ent tags: citrine (Cit) and cerulean (Cer). A pEGFP-N2 vector
containing Lu cDNA between the BglII (5� end) and EcoRI (3�
end) restriction sites was used as a backbone. The cDNA
sequence encoding the GFP tag was excised by a double EcoRI/
NotI digestion and replaced by PCR products digested by the
same enzymes encoding either citrine or cerulean, which were
amplified from pECitrineFP-C1 or pECeruleanFP-C1vectors
using the following primers: forward 5�-GGCCGAATTCATG-
GTGAGCAAGGGCGAGG-3� and reverse 5�-CCGGCGGCC-
GCTCATCACTTGTACAGCTCGTCCATGC-3�. The vector
encoding the citrine-cerulean tandem protein was obtained by
cloning the cerulean cDNA in the pECitrineFP-C1 vector using
the following primers: forward 5�-GGCCGAATTCTGGAG-
GAGGAGGAATGGTGAGCAAGGGCGAG-3� and reverse
5�-CCGGGGATCCTCATCACTTGTACAGCTCGTCCA-
TGC-3� between the restriction sites EcoRI and BamHI.
ICAM-4/LW was expressed as a fusion protein with ceru-
lean. The vector encoding the Cit-Cer tandem was used to
clone ICAM-4 cDNA. The citrine tag was excised by a NheI/
XhoI double digestion and replaced by ICAM-4 cDNA,
digested with the same enzymes, amplified from corre-
sponding vector using the following primers: 5�-GGCCGC-
TAGCATGGGGTCTCTGTTCCCTCTG-3� and reverse 5�-
GGCCCTCGAGCCGCCTGGGACTTCATAGCTA-3�.

HEK 293T cells grown on glass coverslips were transfected
with 1 �g of plasmid DNA using FuGENE® 6 Transfection
Reagent (Promega). After 36 h cells were fixed with 4% parafor-
maldehyde in PBS for 20 min at room temperature, washed
with PBS, and mounted in ProLong® reagent (Life Technolo-
gies). FRET Acceptor bleaching experiments were performed
between Cer and Cit. FRET acquisition and measurement were
done using a Leica SP5 confocal microscope using the FRET AB
wizard (Leica Microsystems). Excitation and emission wave-
lengths were 405 and 428 – 487 nm, respectively, for Cer/donor
channel; 514 and 532–592 nm, respectively, for Cit/accep-
tor channel; and 405 and 532–592 nm, respectively, for the
FRET channel. Microscope acquisition was done using a 63 �
1.4 NA oil immersion objective (Leica Microsystems). Maxi-
mum laser power (65 milliwatt multi-Argon laser) and zoom
bleach option were used to bleach the Acceptor (Cit). Pre- and
post-bleached images were acquired at 1000 Hz speed, 1024 �
1024 pixels (pixel size 160 nm), and a pinhole set at 1 airy unit.
FRET image analysis was done using FRET Acceptor photo-
bleaching (AB) in LASAF software (Leica Microsystems). All
fluorescence values were corrected for background noise. The
energy transfer efficiency was quantified as follow: FRETeff �
(Dpost-Dpre)/Dpost, where Dpost is the fluorescence intensity
of the donor after photobleaching and Dpre is the fluorescence
intensity of the donor before photobleaching. Several control
experiments have been performed under the same experimen-
tal condition: Tandem with Cer and Cit (positive control), Cer
and Cit, Lu-Cit and Cer, and Lu-Cit and ICAM4-Cer.
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Proximity ligation assay

Anti-Lu mAb F241 was conjugated to the PLUS (F241-P) or
MINUS (F241-M) oligo arms using the Duolink® In Situ Probe-
maker PLUS or MINUS kits (Sigma), respectively. MDCK cells
were seeded at 500 � 103 cells/30 �l/channel in ibiTreat
�-Slide VI0.4 chambers (ibidi) and grown for 24 h in complete
medium. Cells were fixed with 4% paraformaldehyde in PBS for
20 min at room temperature and PLA assays were performed
using Duolink® In Situ Detection Reagents Red kit (Sigma), fol-
lowing the manufacturer instructions. Briefly, cells were incu-
bated in blocking solution for 30 min at room temperature
before incubation with F241-P (negative control) or F241-M
(negative control) or both antibodies for 1 h at room tempera-
ture. After a washing step with PBS, ligation and amplification
steps were performed, cells were washed, and Duolink® In Situ
Mounting Medium with DAPI was added in the channels. Cells
were imaged using a laser scanning confocal microscope
(LSM700, Carl Zeiss). Acquired images were then processed
using ImageJ (National Institutes of Health) to count the num-
ber of spots per field of acquisition using the following steps:
maximum intensity projection along z axis, subtract back-
ground, smooth and find maxima to count the number of spots.
The number of nuclei per field of view was determined manu-
ally. Data were processed using Excel software (Microsoft) to
calculate the ratio “number of spots/nucleus” for each experi-
mental condition.

Cell migration assays

For cell migration on coated laminin, untreated �-Slide VI0.4

chambers (ibidi) were coated with human recombinant LN-521
(Biolamina) at 2 �g/cm2 and blocked with 1% BSA. MDCK cells
were seeded at 2.25 � 103 cells/30 �l/channel to ensure a sur-
face with sparse cells and grown for 3 h in complete medium.
Cells were then incubated at 37 °C in FCS-depleted DMEM
GlutaMAX I medium for 1 h in a CO2 microscope stage incu-
bator before monitoring cell migration by time-lapse micros-
copy, without medium change. Bright field pictures composed
of 2 � 2 mosaics were taken with 10-min intervals for 12 h at
37 °C and 5% CO2 using an AxioObserver Z1 microscope
(Objective 10�) and AxioVision 4 software (Carl Zeiss). For the
inhibition assays, cells were treated with the PKA inhibitor H89
(Sigma 19 –141, 10 �M), the Akt inhibitor Akti (Sigma A6730,
2.5 �M) in depleted medium and bright field pictures were
taken for 5 h at 37 °C and 5% CO2 using a Celldiscoverer 7
microscope and Zen Blue software (Carl Zeiss). Images were
processed with ZEN lite (blue edition) software (Carl Zeiss),
and the position of nuclei was tracked using the MTrackJ plugin
(47) of Fiji (48) to quantify cell motility; velocities were
expressed in �m/min. For each condition, cells were tracked
from three different fields (12–15 cells/field). Cells undergoing
mitosis were excluded. Randomly selected cells’ paths were
plotted with SigmaPlot software (Systat Software Inc.) for illus-
trative purposes.

Protein structural analyses

Different prediction methods were used to define precisely
the transmembrane domain of Lu/BCAM, e.g. HMMTOP
(http://www.enzim.hu/hmmtop/) (49, 57) and TMHMM

(http://www.cbs.dtu.dk/services/TMHMM/) (50).4 The trans-
membrane segment (in a large window (positions 549 to 570)) was
used to predict the potential dimerization using PREDDIMER
(http://model.nmr.ru/preddimer/)4 (44). The sequences from Lu
WT and the two mutants (LuS557V and LuG559V) were tested.
The methodology LIPS (http://gila.bioe.uic.edu/lab/lips/)4 was
used to define potential important interaction(s) in the transmem-
brane region of the homodimer (43).

Protein sequence analyses

Using the transmembrane and the cytoplasmic regions, a
mining was done with PSI-BLAST (http://blast.ncbi.nlm.nih.
gov/)4 classic approach (51) on UniProt/Swiss-Prot database
(52). The selected sequences were aligned using Clustal Omega
(http://www.ebi.ac.uk/Tools/msa/clustalo/)4 webserver (53, 58).
The sequences were conserved when they had an e-value higher
than 10�4 and a coverage higher than 80%.

Statistical analyses

Descriptive analyses and statistical hypothesis testing were
performed using R software on RStudio (54, 55). For FRET and
PLA analyses, Kruskal-Wallis one-way ANOVA on ranks test
was performed, followed by Dunn’s multiple comparison pro-
cedure in case of differences at a 0.05 significance level. For the
migration assays, normal, log-transformed data were used to fit
a two-factor (transfectant and experiment or treatment and
experiment) linear model. The most influential points (accord-
ing to the Cook’s distance), all of them classified as potential
outliers (with absolute studentized residuals values 	2.5) were
removed to achieve homoscedasticity (p 	 0.05 on Bartlett’s
test). This led to removal of 6, 5, and 1 outliers for each analysis
(Figs. 4, 5B, and 5D, respectively). Statistical hypothesis testing
was performed by the Tukey post hoc test after analysis of
variance.
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