
Temperature impacts on dengue emergence in the United 
States: Investigating the role of seasonality and climate change

Michael A. Roberta,b,c,*, Rebecca C. Christoffersond,e, Paula D. Weberb, Helen J. Wearinga,b

aDepartment of Biology, University of New Mexico, Albuquerque, NM, United States

bDepartment of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United 
States

cDepartment of Mathematics, Physics, and Statistics, University of the Sciences, Philadelphia, PA, 
United States

dDepartment of Pathobiology, Louisiana State University, Baton Rouge, LA, United States

eCenter for Computation and Technology, Louisiana State University, Baton Rouge, LA, United 
States

Abstract

Tropical mosquito-borne viruses have been expanding into more temperate regions in recent 

decades. This is partly due to the coupled effects of temperature on mosquito life history traits and 

viral infection dynamics and warming surface temperatures, resulting in more suitable conditions 

for vectors and virus transmission. In this study, we use a deterministic ordinary differential 

equations model to investigate how seasonal and diurnal temperature fluctuations affect the 

potential for dengue transmission in six U.S. cities. We specifically consider temperature-

dependent mosquito larval development, adult mosquito mortality, and the extrinsic incubation 

period of the virus. We show that the ability of introductions to lead to outbreaks depends upon the 

relationship between a city’s temperature profile and the time of year at which the initial case is 

introduced. We also in-vestigate how the potential for outbreaks changes with predicted future 

increases in mean temperatures due to climate change. We find that climate change will likely lead 

to increases in suitability for dengue transmission and will increase the periods of the year in 

which introductions may lead to outbreaks, particularly in cities that typically have mild winters 

and warm summers, such as New Orleans, Louisiana, and El Paso, Texas. We discuss our results in 

the context of temperature heterogeneity within and across cities and how these differences may 

impact the potential for dengue emergence given present day and predicted future temperatures.
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1. Introduction

In recent years, mosquito-borne viruses have spread globally and emerged in populations 

where the viruses had rarely or never before been present. This emergence has been driven 

by urbanization, in-creased global travel, and climate change (Gubler, 2002, 1998, 2009; 

Tatem et al., 2012; Reisen, 2013; Weaver and Reisen, 2010). While transmission of 

arboviruses in new populations necessitates numerous factors working in conjunction, 

understanding the relative contribution of individual factors remains critical to understanding 

where and when emergence will occur (Liang et al., 2015; Gubler, 2002; Wearing et al., 

2016; Weaver and Reisen, 2010; Carbajo et al., 2012). In particular, as global surface 

temperatures rise and distributions of vector species expand, it is becoming increasingly 

important to understand the relationship between temperature and arboviral diseases 

(Lafferty and Mordecai, 2016; Reisen, 2013; Johnson and Ritchie, 2015).

Dengue fever, endemic in tropical and subtropical regions of the world, has been reported in 

areas with more temperate climates in recent years (Gjenero-Margan et al., 2011; Marchand 

et al., 2013; Rezza, 2014; Rey, 2014; Estallo et al., 2014). In many places, this has followed 

expansion or reestablishment of populations of the vectors that transmit the virus, Aedes 
aegypti and Aedes albopictus (Rezza, 2014; Mackenzie et al., 2004; Nasci, 2014; Hennessey 

et al., 2016; Vezzani and Carbajo, 2008). While dengue transmission in previously naïve 

areas is due, in part, to a higher frequency of importation rates of the virus from endemic 

regions, transmission would not occur without favorable environmental conditions, so it is 

highly likely that environmental conditions have become more suitable for dengue in these 

regions (Hales et al., 2002). Many components of the dengue transmission cycle and the 

vector life cycle are temperature-dependent (Couret and Benedict, 2014; Brady et al., 2013; 

Chan and Johansson, 2012). Several life history characteristics of the primary vector Ae. 
aegypti are temperature-dependent, including egg viability, development of larvae, and adult 

lifespan (Couret and Benedict, 2014; Brady et al., 2013; Rueda et al., 1990; Yang et al., 

2009; Marinho et al., 2015; Byttebier et al., 2014; Christofferson, 2016; Beserra et al., 

2009). In general, studies suggest that larval development is faster at warmer temperatures 

within a viable range for larval survival and that there exists an intermediate optimal 

temperature for adult lifespan (Brady et al., 2013; Rueda et al., 1990; Yang et al., 2009; 

Christofferson, 2016). Viral dynamics within the mosquito also depend upon temperature 

(Lafferty and Mordecai, 2016; Chan and Johansson, 2012; Watts et al., 1987). In particular, 

the extrinsic incubation period (EIP) – the time between exposure of the mosquito to the 

virus and the time at which the mosquito can transmit the virus – is a thermodynamic 

process. The EIP, a measure of viral dynamics within the mosquito, decreases with 

increasing temperature (Chan and Johansson, 2012; Watts et al., 1987; Carrington et al., 

2013).

Recent empirical and modeling studies have begun to investigate the relationships between 

temperature and dengue transmission, in part to understand the potential influence of climate 

change on dengue transmission. A number of analyses have linked temperature to vector 

distributions and defined regions of the world at risk for dengue transmission (Campbell et 

al., 2015; Brady et al., 2014; Messina et al., 2015; Kraemer et al., 2015). Other studies have 

built upon this work to include the interactions of temperature with vector mortality, 
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oviposition, egg hatching, and development, as well as contact and transmission rates 

(Mordecai et al., 2017; Butterworth et al., 2017; Siraj et al., 2017; Esteva and Yang, 2015; 

Huber et al., 2018; Johnson and Ritchie, 2015). These studies follow similar work aimed at 

studying the impacts of temperature on malaria and its vectors over the last decade (Beck-

Johnson et al., 2013; Blanford et al., 2013; Mordecai et al., 2013; Paaijmans et al., 2010; 

Gething et al., 2011). Based on these studies, a rise in global surface temperatures is 

generally expected to modify the distribution of some disease-vectoring mosquito 

populations and could lead to expansion of the distribution of mosquito-borne viruses and 

increases in the magnitude of outbreaks of some mosquito-borne diseases (Mordecai et al., 

2017; Butterworth et al., 2017; Siraj et al., 2017; Huber et al., 2018).

Although dengue is not currently endemic to the United States, there are historical reports of 

dengue in various parts of the country prior to the 1950s, including outbreaks in the 

Southeast and Texas during the early part of the 1900s (Rey, 2014; Dick et al., 2012). Since 

then, small outbreaks have been reported in Texas and Florida, and in 2015–2016, the Big 

island of Hawaii experienced a large outbreak (Rey, 2014; Radke et al., 2012; Adalja et al., 

2012; Johnston et al., 2016). In 2016, Miami, Florida experienced a relatively large Zika 

virus outbreak, which indicates suitable environmental conditions for urban Aedes-arbovirus 

transmission (Florida, 2018). Outside of the fifty U.S. states, dengue has been endemic to 

Puerto Rico since the 1970s, and presently all four serotypes of the virus are regularly 

detected in Puerto Rico (Rigau-Pérez et al., 2002; Messina et al., 2014). Given the recent 

increase in frequency of dengue outbreaks in the United States, it is becoming more 

important to understand in what regions the environment is favorable for dengue 

transmission and how that favorability could change as global surface temperatures rise so 

that precautionary measures such as enhanced vector and virus surveillance can be 

employed.

As efforts to characterize the relationship between temperature and dengue continue, there 

remain significant gaps in understanding the role of heterogeneity in that relationship. 

Previous studies have made substantial progress in investigating the relationship between 

temperature and dengue transmission by focusing primarily on the contributions of 

temperature to mosquito and virus traits and how they influence the likelihood of outbreaks 

and the basic reproductive number, R0 (Butterworth et al., 2017; Mordecai et al., 2017). 

With a few exceptions (Lambrechts et al., 2011; Carrington et al., 2013), many of these 

studies do not, however, consider the impact of temperature on dengue dynamics or consider 

day-to-day or diurnal fluctuations in temperature and how this potentially impacts 

transmission. In the present study, we focus on the impacts of seasonal and diurnal 

fluctuations of temperature on mosquito and virus traits and how these fluctuations 

contribute to dengue transmission and the potential for emergence. We employ a 

deterministic mathematical model to investigate the influence of temperature-dependent 

dynamics of Ae. aegypti and interactions with temperature-dependent viral dynamics within 

the mosquito on the potential for dengue transmission in naïve populations in six cities in the 

United States or U.S. territories that currently have or potentially could support populations 

of Ae. aegypti: San Juan, Puerto Rico; Miami, Florida; New Orleans, Louisiana; Atlanta, 

Georgia; El Paso, Texas; and Los Angeles, California. We illustrate how seasonal and 

diurnal fluctuations of temperatures across the year could impact the potential for outbreaks 
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at current observed temperatures in each of the cities in an effort to inform future risk of 

autochthonous dengue transmission. Finally, we investigate the implications of warmer 

average temperatures predicted due to climate change.

2. Materials and methods

We constructed an ordinary differential equations model that considers the human and 

mosquito vector populations subdivided into compartments based upon infection status. In 

our model, larval mosquito development time, adult mosquito mortality, and the EIP are 

dependent upon temperature and thus vary with time. We first describe our mathematical 

model before describing how temperature-dependent relationships are parameterized and 

incorporated into the model.

2.1. Temperature driven dynamic transmission model

Throughout the following description of the model, the human population is represented 

with the subscript h and the vector population with the subscript v. Susceptible, Exposed, 

Infectious, and Recovered humans are then denoted by Sh, Eh, Ih, and Rh, respectively. The 

total number of humans in the population is Nh = Sh + Eh + Ih + Rh. We allow the vector 

population to be divided into five juvenile classes representing four larval instars and one 

pupal stage, Ji (i = 1, 2, 3, 4, P), and an adult female class Nv. The adult female class is 

further divided into Susceptible, Exposed, and Infectious vectors, denoted by Sv, Ev, and Iv, 

respectively, and the total number of adult female vectors is Nv = Sv + Ev + Iv. The exposed 

adult female vector class is further divided into θ subclasses so that Ev = Ev
1 + … + Ev

θ. The 

number of subclasses and thus the value of θ is dependent upon the parameterization of the 

relationship between EIP and temperature, as we later describe in more detail.

In the human population, we assume that the human population size, Nh, is constant since 

we are only considering relatively short time scales in this study. We assume all humans 

begin in the susceptible class. Upon being bitten by an infectious vector, susceptible humans 

become infected at a per capita rate 
βVhIV

Nh
, where βvh is the transmission rate of dengue 

from vectors to humans, which takes into account both the biting rate of mosquitoes and the 

probability of dengue transmission from vector to human. Once exposed, humans become 

infectious at a per capita rate σh, where σh
−1 is the average intrinsic incubation period. 

Infectious humans recover at a per capita rate γh, where γh
−1 is the average duration of 

infectiousness. In this study, we are interested in outbreaks of a single serotype of dengue 

over a relatively short time scale (one year), so we only consider a single serotype of dengue, 

and we assume that once humans have recovered, they cannot be infected again. This 

assumption is reasonable for the scenarios considered within this work given evidence of 

temporary cross-immunity among dengue serotypes and long-term immunity within a single 

serotype (Guzmán and Kourí, 2002).

We let λv be the per capita recruitment rate of juveniles. Note that because the first juvenile 

class is taken to be first instar larvae, λv is the per capita rate at which adult females give 
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birth to first instar larvae. Egg laying and survival to the larval stage is implicitly accounted 

for in this value. Juveniles die at a per capita rate (aJL)b−1 + μJ, where the first term 

represents density-dependent mortality and the latter term represents density-independent 

mortality. In the density-dependent mortality term, a and b determine the strength of density-

dependent mortality and, along with other parameters, determine the equilibrium population 

size, and JL=J1+J2+J3+J4. We discuss these parameters further in the Model Calibration 

section below. Although density dependence may have impacts on other life history 

characteristics and the adult population, we assume here that larval density only directly 

impacts larval survival (Walsh et al., 2012; Couret et al., 2014; Dye, 1984). Juveniles 

progress through each of the five juvenile stages at a temperature-dependent per capita rate 

νi(T) (i = 1, 2, 3, 4, P). Adult vectors emerge from the pupal stage at a temperature-

dependent per capita rate 0.5νP(T), where the multiplier 0.5 accounts for the assumption that 

there is a 1:1 sex ratio in the vector population. Note that we only explicitly model adult 

female mosquitoes because males are not involved in the disease transmission cycle. Adult 

vectors die at a temperature-dependent per capita rate μv (T). This mortality rate is 

independent of infection status.

Susceptible adult vectors become infected at a per capita rate 
βhvIh

Nh
, where βhv is the 

transmission rate from humans to vectors, which, like βvh, takes into account the biting rate 

of mosquitoes and the probability of dengue transmission from humans to vectors. Once 

infected, vectors enter the first of the exposed classes as they begin the extrinsic incubation 

period (EIP). Because we assume that the EIP is gamma-distributed but we are modeling the 

EIP with exponential rates utilizing the “linear chain trick” ((Fargue, 1973; MacDonald, 

1978)), we set the total number of exposed classes to θ which is the integer-valued shape 

parameter obtained from fitting a gamma distribution to data as described below. Adult 

vectors progress through each of the exposed subclasses at a rate σv(T) = ρv
−1(T). once adult 

vectors are infectious, we assume that they do not recover from infection before death.

Taken together, the system of differential equations that we obtain for our model is:

dSh
dt = μhNh −

βvhIv
Nh

+ μh Sh

dEh
dt =

βvhIv
Nh

Sh − σh + μh Eh

dIh
dt = σhEh − γh + μh Ih
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dRh
dt = γhIh − μhRh

dJ1
dt = λvNv − aJL

b − 1 + μJ + v1(T) J1

dJk
dt = vk − 1(T)Jk − 1 − aJL

b − 1 + μJ + vk(T) Jk, k = 2, 3, 4

dJp
dt = v4(T)J4 − μJ + vP(T) JP

dSv
dt = 0.5vp(T)J p −

βhvIh
Nh

+ μv(T) Sv

dEv
1

dt =
βhvIh

Nh
Sv − σv(T) + μv(T) Ev

1

dEv
j

dt = σv(T)Ev
( j − 1) − σv(T) + μv(T) Ev

j, j = 2, …, θ

dIv
dt = σv(T)Ev

θ − μv(T)Iv

A description of all parameter values that we assume to be temperature-independent, 

together with default values, is presented in Table 1. Parameterizations of functions that 

determine temperature-dependent parameters are presented in Table 2.

2.2. Model calibration

The cities we chose for his study are locations within the distribution of Ae. aegypti or, as in 

the case of Atlanta, areas that would be suitable for Ae. aegypti (Hahn et al., 2016). 

Currently, the only cities of these six where autochthonous dengue transmission has been 

reported in the past decade are Miami and San Juan; however, transmission of viruses such 

as dengue, Zika, and chikungunya would be possible in each of these cities if the virus is 

imported because of the presence of Ae. aegypti and/or the presence of Ae. albopictus. 

Because San Juan, Puerto Rico has year-round autochthonous transmission of dengue, we 
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include San Juan as a reference point against which we can compare the results from other 

cities. To do so, we utilize dengue case data collected from San Juan to calibrate the model 

(NOAA, 2015). The details of this process are explained in Appendix A. In short, we 

estimated a parameter that represents the strength of density dependence (a) in the larval 

mosquito population and plays a role in determining adult vector population size by fitting 

the model to dengue case data from San Juan and estimating a along with the initial 

population of susceptible humans. For this, and all model fitting conducted for this study, we 

utilized a nonlinear least squares method (via the function lsqnonlin in MATLAB 

(MathWorks, 2018)). We choose to estimate the value of a from San Juan dengue case data 

and utilize this value of a across populations in each of the six cities in order to maintain 

some consistency across the cities so that we can investigate the impacts of temperature in 

the absence of other influential variables such as exposure to vectors that would occur from 

different living conditions or human activity. We note that the density-dependent parameters 

a and b are closely related and estimating both parameters simultaneously from dengue case 

data is intractable due to structural non-identifiability (Kao and Eisenberg, 2018; Roosa and 

Chowell, 2019; Tuncer et al., 2016).

2.3. Temperature data

We obtained temperature data from the National Oceanic and Atmospheric Administration 

(NOAA) - National Centers for Environmental Information (NOAA, 2018). We calculated 

the longitudinal average of the mean daily temperature (across thirty years of data, 1981–

2010) as well as the mean diurnal temperature range. In our dynamic model, we characterize 

the temperature, T, each day of the year, t, using the function

T(t) = M1 − A1cos 2π
365 t + τ1 − A2sin(2πt), (1)

where M1 is the mean yearly temperature, A1 is the seasonal temperature range, τ1 is a 

phase-shifting parameter to capture timing of seasonality, and A2 is the diurnal temperature 

range. We estimated the parameter values for each city by fitting Equation (1) to the mean 

daily temperature profile of each city. First, we estimated these parameters in the absence of 

diurnal fluctuations (A2 = 0) by fitting Eq. (1) to the mean daily temperature. Then, we 

estimated the parameters in the presence of diurnal fluctuations by also estimating A2 and 

fitting Eq. (1) to the mean diurnal temperature range. The parameter values we obtained 

from both fitting procedures are given in Table 2. Figs. B.12 andB.13 in the Appendix show 

the model fits to the data.

San Juan and Miami have relatively warm temperatures year-round with mild seasonal 

fluctuations, although Miami has larger seasonal fluctuations than San Juan. New Orleans, 

El Paso, and Atlanta experience large seasonal fluctuations in temperature. Of the three, 

Atlanta has the coolest temperatures year round. New Orleans has the warmest temperatures 

(in June and July) of any of the cities we consider in this study, and El Paso experiences the 

greatest fluctuation from warm temperatures (July) to cool temperatures (January). Los 

Angeles has mild seasonal fluctuations and relatively cool temperatures year-round.
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Diurnal fluctuations vary widely across all cities as well. San Juan has a relatively low 

diurnal temperature range (DTR) of about 6°C throughout the year. Miami and Los Angeles 

have a DTR of about 9 °C in the warmer months, but the DTR in Los Angeles decreases to 

about 5 °C in cooler months, and in Miami, the DTR decreases to about 7 °C. In New 

Orleans, the DTR is around 10 °C throughout the year. El Paso and Atlanta experience the 

greatest differences in DTR throughout the year. Atlanta has a DTR of about 10 °C in July 

and January-December when temperatures are warmest and coolest, respectively, but a 

higher DTR of around 14 °C at other times of the year. El Paso has an average DTR of 

around 15–16 °C between December and May (winter and spring months), but this 

decreases to about 13–14 °C between June and November (summer and autumn months).

2.4. Adult mortality

To describe daily mortality of female adult mosquitoes as a function of temperature in our 

model, we utilize the temperature-dependent adult mortality curve in (Brady et al., 2014), a 

meta-analysis of studies that observed adult Ae. aegypti mortality at different temperatures 

in the field and lab. We fit a quadratic function to the 50% field survival curves shown in 

(Brady et al., 2014), which describes the median lifespan of mosquitoes at different 

temperatures Lv
M(T) . Taking these values as the median and assuming an exponential 

distribution, we obtained the average lifespan Lv(T) =
Lv

M(T)
ln(2)  of mosquitoes at temperatures 

T between 0–45 °C at intervals of 0.25 °C. Finally, we fit a quadratic function (Eq. (2)) to 

the average lifespan Lv(T) at each temperature T to obtain the average mortality rates 

μv(T) = 1
Lv(T)

, where Lv(T) is the estimated average lifespan at temperature T (Fig. 1B). We 

note that we chose quadratic equations here because the data presented in (Brady et al., 

2014) appeared to be symmetric about an optimal temperature for vector lifespan. We 

explore the sensitivity of the parameterization of the adult vector lifespan in the appendix 

(Fig.C.20).

Lv(T) = c2T2 + c1T + c0 (2)

2.5. Larval development time

To characterize larval development time, we fit exponential equations to data presented in 

(Rueda et al., 1990), in which the authors conducted a detailed study of larval development 

(by instar) across 6 temperatures from 15 to 34 °C. These data are presented in Fig. 1A. For 

each juvenile stage i, we set the rate of development to be νi(T) = 1
Di(T)  where Di(T) is the 

development time of the juvenile stage at temperature T described by

Di(T) = di, 1e
−di, 2T

. (3)
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The estimates for di,1 and di,2 are given in Table 2, and Fig. 1A shows the curves associated 

with each set of data.

2.6. Extrinsic incubation period

To characterize temperature-dependent EIP, we utilize data previously published in 

(Christofferson et al., 2016) that demonstrates the impact of dengue infection and 

temperature on the mortality of adult female Ae. aegypti. In that study, vectors were exposed 

to temperatures of 26°C, 28°C, or 30°C and tested for disseminated infection upon death. In 

the current study, we censored the data published in (Christofferson et al., 2016) every four 

days (days 4, 8, 12, 16, 20, and 22, the final time point of experiments) and counted the total 

number of mosquitoes that had died within the previous 4 days. We then calculated the 

proportion of those mosquitoes with disseminated infection to obtain an estimate of the 

fraction of mosquitoes with disseminated infection at each time point (see Fig. 2). At each of 

the three temperatures, we utilized these proportions to generate 100 binomial samples at 

each time point and constructed 1000 sample trajectories for the fraction of mosquitoes with 

disseminated infection at 4, 8, 12, 16, 20, and 22 days post infection. We assumed that these 

trajectories were generated from a gamma cumulative distribution function (cdf) and 

estimated the scale (ρ) and shape (θ) parameters for the gamma distribution for each 

trajectory. We calculated the mean EIP for each trajectory as ρθ and the standard deviation 

as ρ θ. Some of the sample trajectories generated were outside of the margin of error of 

much of the data (see Fig. 2), so we removed outliers of the mean EIPs by only considering 

values that fell within the inter-quartile range (1.5(p75 − p25), where pi represents the ith 

percentile). We obtained the median shape parameter across temperatures (θ = 3), rounded 

to the nearest integer value (which is necessary for our model structure as described earlier), 

and recalculated the scale parameter that corresponds to that shape parameter and results in 

the same mean EIP for each temperature. We fit an exponential function to the mean EIP 

(ρθ) at each temperature T and assumed that the minimum possible EIP is 3 days (Watts et 

al., 1987). This resulted in the following relationship (Fig. 2D) between the temperature-

dependent mean EIP, ω(T), and temperature

ω(T) = ρv(T)θ = max α1exp −α2T , 3 . (4)

Parameter value estimates for α1 and α2 are shown in Table 2. We note that although both 

the scale and shape parameters change with temperature, we chose to fix the shape 

parameter. Because in the full model we utilize exponential rates (that sum to a gamma-

distributed rate) in our differential equations, the shape parameter determines the number of 

equations, which is held constant in our model formulation.

2.7. Probability of surviving the EIP

In order for a vector to successfully transmit dengue to humans, the vector must first survive 

the EIP. The probability that the vector survives the EIP will depend upon the adult lifespan 

of the vector as well as the duration of the EIP. To summarize this relationship and its impact 

on the potential for vectors to successfully transmit virus to humans, we approximate the 
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probability that adult vectors survive the EIP at time t, which will be dependent on the 

temperature at time t, T(t), as

exp −μv(t)ρv(t)θ . (5)

This represents the instantaneous probability of surviving the average EIP, assuming that 

adult mortality rates and average EIP are fixed at their values at time t. It does not take into 

account past and future fluctuations in either lifespan or EIP. However, given that the day-to-

day changes in mean daily temperature in the model are relatively minor, this is a reasonable 

approximation of the probability of surviving the EIP at time t and it is sufficient to help 

explain the results in our study. The seasonally-varying probability of surviving the EIP 

helps us to understand the time of the year when we would expect to see the most 

transmission occurring because Ae. aegypti are living long enough to survive the EIP and 

transmit dengue to humans. In the appendix, we show how the probability of surviving the 

EIP varies with temperature (Fig. B.14), and we show comparisons of the instantaneous 

probability of surviving the EIP across a year when only seasonal or both seasonal and 

diurnal fluctuations are considered in the model (Fig.B.16).

2.8. Vector-host ratio

Another useful metric for aiding in the understanding of mosquito-borne disease dynamics is 

the vector-host ratio, VHR, a measure of the size of the vector population relative to that of 

the human of the population. VHR helps to estimate the amount of contact between 

mosquitoes and humans, with higher values of VHR typically being associated with higher 

rates of disease transmission and vice-versa. In models in which the vector and human 

populations do not vary, the value is calculated as

VHR =
Nv
Nh

where Nv and Nh are the sizes of the total adult vector and human populations, respectively. 

In our model, the vector population will vary depending on larval emergence rates and adult 

vector mortality rates, thus the vector population size changes with time, and we calculate 

VHR as

VHR =
Nv(t)
Nh

.

2.9. Simulations

We consider a well-mixed sub-population within each of the six cities that contains 25000 

people that are equally at risk of contracting dengue. By keeping population sizes equal 

across cities, we isolate the impacts that temperature has on dengue dynamics without the 

influences of potentially confounding factors such as population size and heterogeneity of 

exposure to vectors. We vary the day of introduction across the year to capture the role that 
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timing of introduced cases plays in subsequent dynamics. We assume throughout that there 

is a 5% reporting rate of cases in each location (Shankar et al., 2018), and we present the 

cumulative number of reported cases that occur within a year of the initial introduction.

3. Results

We applied city-specific seasonal temperature profiles to the temperature-dependent 

parameters of the transmission model and compared the differences between cities. First, we 

observed differences in average adult mosquito lifespan (i.e., the adult lifespan of a mosquito 

averaged over a cohort of mosquitoes) between the sub-tropical and tropical cities of Miami 

and San Juan versus the more temperate cities. In Miami and San Juan, the average adult 

vector lifespan remained relatively stable, varying between 23.3 and 24.7 days (Fig. 3D). 

More notable were the differences observed between those cities and New Orleans (19.3–

24.7 days), Los Angeles (19.6–24.2 days), El Paso (12.2–24.7 days), and Atlanta (10.3–24.7 

days). The times at which the minimum and maximum average adult mosquito lifespans 

occurred were different across all cities (Table 3). All cities except San Juan and Los 

Angeles had two annual peaks in adult mosquito lifespan driven by temperatures that were 

near the optimum temperature for the average adult lifespan (Fig. 1B).

The vector-host ratio, an important component of the basic reproductive number of 

mosquito-borne diseases, varied throughout the year and was driven by the variation in 

mosquito development and survival. The vector-host ratio was highest in late July and early 

August for all cities with the exception of San Juan and Los Angeles, where the peaks were 

in mid-August (Fig. 3C). In general, these peaks in vector-host ratio did not correspond 

directly to peaks in adult mosquito lifespan (Fig. 3D) in part because the mosquito 

population size, and thus the vector-host ratio, is driven not only by adult mosquito survival 

but also by the rate of larval emergence, which is generally much faster at warmer 

temperatures (Fig. 1A), so the vector-host ratio is highest at times of the year when the 

temperature is the warmest (Fig. 3A).

The seasonal patterns of dengue EIP were also driven by the temperature profiles of each 

city (Fig. 3B, Table 3). The average EIP was shortest for all cities in July and August when 

temperatures were highest. The longest EIP for San Juan was in early February and late 

January for Miami. The differences in EIP across the year in the other cities are far more 

stark. For example, the shortest average EIP in Atlanta (7.9 days) occurs in late July while 

the longest average EIP is over 30 days in January. For El Paso and New Orleans, the 

shortest average EIP is 5.3 and 4.4 days, respectively, in July, and the longest for both cities 

was also over 30 days in January. In contrast, in Los Angeles, the shortest average EIP was 

no less than 27 days in July and August and over 30 days the rest of the year.

Finally, we investigated the seasonal probability of mosquitoes surviving the average EIP 

(Eq. (5), Fig. 3E). For all cities, the probability of surviving the average EIP was highest in 

July and August and lowest in January and February. The seasonally-varying probability of 

surviving the average EIP indicates that environmental temperatures render San Juan 

permissible for DENV transmission via Ae. aegypti all year, consistent with epidemiological 

data (NOAA, 2018). Further, it illustrates that dengue transmission is highly unlikely 
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between November and March in all of the other U.S. cities considered here, excepting only 

Miami.

3.1. Seasonal variation of dengue dynamics

Accounting for this temperature dependence, we demonstrate how dengue dynamics vary 

seasonally among these 6 U.S. cities in Fig. 4 and Figure B.15. Regardless of the timing of 

introduction of an index case, Los Angeles and Atlanta were not predicted to have any 

reported cases. Alternatively, El Paso was predicted to support local transmission enough to 

produce 1–2 reported cases when the index case was introduced in May or July. In New 

Orleans, relatively small outbreaks of fewer than 10 reported cases occurred following initial 

introduction in months between April and August, with introductions in early June leading 

to the largest number of locally-acquired cases. In Miami, introductions year round led to at 

least one reported locally-acquired case, and out-breaks of 10–25 reported cases occurred 

when the index case arrived between April and mid-July. Index case introductions in May 

resulted in the largest outbreaks. Again, consistent with year-round transmission in San 

Juan, our model predicted the largest number of cases given virus introductions in early May 

and the fewest number of reported cases following introductions in early October.

3.2. Inclusion of diurnal temperature fluctuations

When we added the increased granularity of diurnal temperature fluctuations, the variation 

in daily temperature interacts with the temperature-dependent parameters and, overall, 

results in longer vector lifespans and shorter EIPs than would be observed under 

assumptions of fixed daily temperatures in part because diurnal fluctuations lead to portions 

of each day to be at higher temperatures than the daily average. In general, the inclusion of 

diurnal fluctuations in temperature leads to longer chains of transmission or larger outbreaks 

than when temperature varied only seasonally (Fig. 5).

In Miami and San Juan, diurnal fluctuations led to a higher total number of reported cases 

regardless of the time of year of the initial introduction (Fig. 5A,B). The magnitude of the 

increase in reported cases was similar year round in San Juan, but the timing of introduction 

that led to the greatest number of cases shifted from mid May (seasonal fluctuations only) to 

late April (inclusion of diurnal fluctuations). In Miami, there was a difference in both the 

magnitude of the increase in cases (largest for introductions in May) and the timing of 

introduction corresponding to the largest outbreaks, which moved from late May (seasonal) 

to mid May (seasonal + diurnal).

The impacts of diurnal fluctuations could be particularly important in cities such as El Paso 

and New Orleans where outbreaks of at most 70 and 115 reported cases are predicted, 

respectively, when diurnal fluctuations are accounted for, whereas fewer than 10 cases (1 

and 8 cases, respectively) are predicted when only seasonal variation is considered (Fig. 5C–

D). Los Angeles was not predicted to support transmission under either set of conditions, 

and Atlanta experienced small chains of transmission when diurnal fluctuations were 

included at times when there were no cases expected when only seasonal fluctuations were 

considered (Fig. 5E–F).
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3.3. Climate change and dengue dynamics

Having demonstrated the importance of including seasonal and diurnal temperature 

fluctuations for the predicted dynamics of DENV transmission in Ae. aegypti, we 

investigated the potential impacts of rising temperatures on these dynamics. Specifically, we 

simulated scenarios in which the average yearly temperature of each city (M1 in Eq.(1)) 

increased by 0.5°C - 1.5°C with diurnal fluctuations included (Fig. 6). The choice of this 

range of increases in temperatures is motivated by predictions published in the 2013 climate 

change report of the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2013). The 

IPCC report predicts that global surface temperatures could increase by 0.49 − 2.37°C above 

the 1986–2005 average in the next thirty years depending on the rate of emission of 

greenhouse gases (IPCC, 2013). The IPCC report considers four scenarios considered to be 

from best to worst case defined by representative concentration pathways (RCP) that 

characterize rates and peaks of greenhouse gas emissions through the year 2100 (IPCC, 

2013; Meinshausen et al., 2011). These scenarios are (with 5th-95th percentiles): RCP2.6 

(0.49 − 1.65°C increase), RCP4.5 (0.84 − 1.97°C), RCP6.0 (0.69 − 1.81°C), and 

RCP8.5(1.20 − 2.37°C) (IPCC, 2013; Meinshausen et al., 2011). Each of the values we 

consider within this analysis fall within the range of these four scenarios, with an increase of 

0.5°C being representative of a best case scenario, and an increase of 1.5°C being 

representative of a worse case scenario. In the Appendix, we show results of additional 

investigations of the impacts of increases in variability in temperature as well as increased 

average temperatures in the absence of diurnal fluctuations. Those results are presented in 

Figs. B.1–B.18.

Increases in average temperature had a significant impact on the number of reported cases in 

most of the six cities we considered. The only exception is Los Angeles, where increases of 

up to 1.5° C only led to slight increases in the cumulative number of reported cases. In 

Miami, the total number of reported cases following introductions in May more than 

doubled when average temperatures were increased by 0.5° C and were increased by an 

order of magnitude when average temperatures were increased by 1.5° C. Regardless of the 

time of the initial introduction in Miami, initial cases led to outbreaks when average 

temperatures were increased by 1° C or more, even when no trans-mission or only small 

chains of transmission occurred under current average temperatures (such as in the months 

after August). In San Juan, increases in average temperatures of 0.5° C led to about 1.5–2 

times more reported cases following introductions throughout the year, with the largest 

differences being observed following introductions in late August and early September. An 

increase of 1.5° C led to an outbreak that included almost the entirety of the population 

regardless of the timing of the introduction of the index case.

In New Orleans and El Paso, increases in average temperatures had profound effects on the 

number of cases reported following an initial case, particularly during the time between mid-

April and early August. An increase in average temperature of 0.5° C led to more than 

double the number of cases occurring following introductions in May for both cities, and 

increases of up to 1.5° C led to about ten times as many cases occurring in New Orleans and 

eight times as many cases occurring in El Paso during May (all compared to the 

approximately 100 cases expected in both cities following introductions in May under 
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current average temperatures). In Atlanta, the impact of temperature increases was minimal, 

with only slightly larger chains of transmission occurring following introductions from May 

to Early August when warmer average temperatures were increased.

Increases in temperature could have important impacts not only on the number of dengue 

cases that occur, but also on the period of the year during which introductions lead to local 

transmission and potentially large outbreaks is also significantly impacted (Fig. 7). We 

define a “window of risk” for the occurrence of 1, 10, or 100 reported cases following an 

introduction of an index case as the duration of the year at which an introduction leads to a 

single, 10, or 100 reported cases. The window of risk when temperatures are increased is 

noticeably larger in Miami, particularly for larger outbreaks (of 100 or more cases), where 

under current temperatures the window of risk of outbreaks over 100 people would be 

between April and June but with an increase of 1 or 1.5 °C, the window of risk expands to 

the entire year. In New Orleans and El Paso, the windows of risk for local transmission and 

outbreaks expanded symmetrically beyond the current windows of risk, gaining just less 

than a month with each increase of 0.5 °C in average temperature. One exception is the 

window of risk for local transmission in New Orleans, which expanded substantially to the 

entire year when average temperature was increased from 1 °C warmer to 0.5 °C warmer. In 

Atlanta, the window of risk for local transmission increased slightly with each 0.5 °C 

increase in average temperature, but the window of risk did not change for larger chains of 

transmission or outbreaks.

4. Discussion

This study provides important insights into the role of temperature in driving the emergence 

and spread of dengue in U.S. cities, and highlights the impact of incorporating temperature-

driven heterogeneity into Ae. aegypti dynamics. While many studies have demonstrated the 

importance of temperature in dengue transmission (Brady et al., 2014; Messina et al., 2015; 

Kraemer et al., 2015; Campbell et al., 2015; Mordecai et al., 2017; Butterworth et al., 2017; 

Siraj et al., 2017; Esteva and Yang, 2015; Huber et al., 2018), our study combines several 

temperature dependencies into a single model of emergence potential into areas where 

dengue transmission has not yet become endemic. Furthermore, it investigates temporally 

integrated impacts of temperature on mosquito life history and virus traits.

A key finding of our model is that seasonal temperature variation alone may not be sufficient 

to capture the nuances of dengue emergence. Uniformly, our model suggests that when 

diurnal fluctuations are not taken into account, the predictions of the number of cases were 

less than those when diurnal fluctuations are included. The difference in results between 

these scenarios underscores both the importance of considering the temporally integrated 

impacts of traits as well as the potential importance of localized transmission patterns, the 

latter of which could provide more specific risk assessments. Indeed, Ae. aegypti habitats 

are variable throughout urban areas and while some habitats may be subject to more extreme 

environmental fluctuations, habitats that are more sheltered, such as indoor spaces, may 

experience muted fluctuations. Thus, it is possible that our results, both those including 

fluctuations that are seasonal and diurnal as well as seasonal-only, are conservative for areas 
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where the majority of habitats are shielded from more extreme fluctuations and therefore 

mosquitoes are less likely to experience the detrimental effects of extreme temperatures.

Studies explicitly investigating the impacts of seasonal and diurnal variation in temperature 

are relatively rare in an expanding field of work focusing on the relationship between 

temperature and mosquito-borne diseases. Our work follows several recent empirical and 

modeling studies that have investigated the impacts of temperature fluctuations on mosquito 

populations and mosquito-borne diseases (Beck-Johnson et al., 2017; Alto et al., 2018; 

Murdock et al., 2017; Carrington et al., 2013; Lambrechts et al., 2011). These studies have 

shown that temperature fluctuations can have a profound impact on disease trans-mission, 

mosquito lifespan, and vectorial capacity (Carrington et al., 2013; Lambrechts et al., 2011; 

Alto et al., 2018). Modeling studies have shown that excluding diurnal temperature variation 

and only including mean temperatures can lead to underestimating mosquito population size, 

the number of mosquitoes capable of transmitting pathogens, and ultimately the frequency 

of dengue transmission that occurs (Beck-Johnson et al., 2017; Carrington et al., 2013; 

Lambrechts et al., 2011). Our investigation of the impacts of diurnal and seasonal 

fluctuations in temperature is in agreement with much of this work and shows that even a 

simple treatment of the impacts of temperature on mosquito life history and dengue 

transmission can emphasize the importance of temperature variation on dengue transmission 

and spread.

When we accounted for both seasonal and diurnal variability in temperature profiles, our 

results showed that these temperature profiles drive the differences in the potential for 

dengue emergence across the year. In the sub-tropical city of Miami, the potential for 

emergence of dengue is likely for a large period of the year, as its temperature is relatively 

stable annually. Whereas, for cities with high variation between summer and winter 

temperatures (such as New Orleans and El Paso), there is likely to be suitability for dengue 

transmission for only a few months each year at current temperatures. However, as climate 

change and rising surface temperatures become an increasing problem, so does the risk of 

dengue emergence. In all cities studied, increases in 0.5 °C–1.5 °C led to an increased 

number of cumulative cases, suggesting longer chains of transmission relative to current 

conditions. This is better summarized in our description of the windows of risk, which 

define those times of year when introductions of dengue via index case would lead to at least 

1, 10, or 100 cases (Fig. 7). In Miami, increases in 1–1.5 °C lead to more sustained 

transmission in the months between October-January, leading to larger numbers of cases. In 

New Orleans and El Paso, increases of 1–1.5 °C led to large outbreaks where only small 

chains of transmission might be expected under current average temperatures, and in New 

Orleans, the window of risk for local transmission increased dramatically when average 

temperature was increased by 1.5 °C.

Our study takes into account a number of simplifying assumptions that allow us to focus our 

investigation on the impact of temperature variability and its relationship to mosquito life 

history characteristics and viral incubation period on the potential for dengue emergence. We 

note that a number of other factors could influence the results presented within this paper, all 

of which provide interesting routes of further investigation. For instance, studies have shown 

that a number of traits, such as mosquito fecundity and egg survival, larval survival, 
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mosquito-human contact, and dengue transmission rates are influenced by temperature. We 

have chosen to focus on larval development, adult longevity, and EIP in this study; however 

a more complex version of our model could include temperature dependence in these other 

traits. Another potential limitation of our study is that we have based many dynamic 

processes on data that are collected in static scenarios. That is, the studies investigating the 

role of temperature in the various parts of the dengue transmission cycle were studying the 

impacts of a constant temperature on mosquito life history or viral traits, and we have 

developed a model that takes into account the impacts of variation in temperature on these 

traits and dengue transmission by extrapolating from these various studies. Unfortunately, 

empirically investigating the impacts of temperature variation on traits is difficult and few 

studies of this nature exist (Lambrechts et al., 2011; Carrington et al., 2013; Alto et al., 

2018; Murdock et al., 2017), so the assumption that these observations under static 

conditions can be extrapolated to investigate dynamic scenarios was necessary. Even though 

investigating the impacts of dynamic temperatures on dengue virus and mosquito life history 

traits is challenging, it is important to do so in order to fully understand the relationship 

between temperature and dengue transmission.

Our study underscores the importance of temperature in current and future patterns of 

dengue transmission and emergence; however temperature is just one of many 

climatological factors that have been shown to have an influence on mosquito life history 

characteristics and dengue transmission. For instance, humidity and precipitation are known 

to have impacts on the dengue transmission cycle (Thu et al., 1998; Wu et al., 2007; Stewart 

Ibarra et al., 2013; Campbell et al., 2013), and it is expected that climate change will not 

only lead to increases in temperature, but also changes in humidity, precipitation patterns, 

and fluctuations of temperature, all of which are likely to play a role in the dengue 

transmission cycle (Easterling et al., 2000; Hales et al., 2002; Rahmstorf and Coumou, 2011; 

Rummukainen, 2012). However, temperature is inherently tied to these other variables, and 

the focus of much of the work investigating potential impacts of climate change on 

infectious diseases has been on temperature because influences of temperature on the 

mosquito-borne disease cycle are among the most thoroughly studied (Mordecai et al., 2017; 

Johnson and Ritchie, 2015; Siraj and Perkins, 2017).

Studies such as the present one are important to understand the impacts on dengue 

transmission of individual factors, in this case temperature, when considered in isolation 

from the myriad of other potential influences. The results of our study highlight the 

importance of accounting for both seasonal and diurnal temperature-dependence in the life 

traits and infection kinetics of Ae. aegypti. Importantly, our results can be used to inform 

risk assessment and proactive planning in cities where the risk of dengue importation is 

high. Our description of the windows of emergence risk have operational relevance as it can 

be used to inform resource allocation planning of vector control and public health 

intervention programs.
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Refer to Web version on PubMed Central for supplementary material.

Robert et al. Page 16

Epidemics. Author manuscript; available in PMC 2019 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The authors would like to thank Christopher Mores for input on an early version of this project. We would also like 
to thank four anonymous reviewers whose constructive input improved this manuscript. This work was supported 
by National Institutes of Health/National Institute of General Medical Sciences R01GM122077 and NIH/
NIGMSU01GM097661.

Appendix A.

Parameter selection

Model predictions throughout this work are based upon parameters that we obtained largely 

from published literature (refer to citations in the main text). However, we condition much 

of this work based upon observations in San Juan, Puerto Rico, where dengue has been 

endemic for a number of decades (NOAA, 2018; Rigau-Pérez et al., 2002). We utilized 

dengue case data from 1999–2008 to estimate the value of the density-dependent parameter 

a, which, together with other demographic parameters, determines the size of the vector 

population. By approximating a for San Juan and utilizing this value of a for the other five 

cities, we are able to maintain consistency in a baseline vector population size across all 

cities. The term “baseline” here indicates that if all explicit temperature-dependence was 

removed from the model, the vector population size would be the same in each city. Because 

our aim here is to look at the influence of temperature in the absence of other potentially 

confounding variables, it is important to have this consistency in vector population 

demographics.

The San Juan dengue case data that we utilize contains the number of reported dengue cases 

from the 1999–2000 dengue season through the 2008–2009 dengue season (NOAA, 2018). 

The dengue season as defined by the data begins at the end of April each year. This data 

contains the number of dengue cases reported each week, and some, but not the majority, of 

the cases are classified by serotype (DENV1, DENV2, DENV3, DENV4) (see Fig. A.8). 

When the cases were classified by serotype, the predominant serotype in most years was 

DENV3. For this reason, we chose to fit our model to the total number of reported dengue 

cases or the total number of DENV3 cases, but otherwise did not consider stratification by 

serotype. We note that when many of the cases in a season were stratified by type, each of 

the outbreaks was typically dominated by a single serotype (Fig. A.8). When we considered 

stratification by serotype in these years, our results did not differ substantially.
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Fig. A.8. 
The fraction of each serotype of cases among all cases reported in (NOAA, 2018) between 

1999–2008.

To estimate the value of a, we fit weekly counts of reported cases from our model 

parameterized for average daily temperatures in San Juan, Puerto Rico to weekly case report 

data from San Juan (NOAA, 2018). As with other model fitting in this work, we utilized a 

nonlinear least squares approach (lsqnonlin() in MATLAB (MathWorks, 2018)). We 

estimate the values of both a and SH(0). We did this in order to account for variability in 

population susceptibility across seasons. All other parameters are those default values in 

Tables 1 and 2 in the main text. We show all model fits to data in Figs. A.9–A.10. For all 

model fitting, the initial day of introduction was taken to be near the beginning of the dengue 

season in San Juan (approximately day 120 or April 30 of each year), and the initial number 

of cases were taken to be those reported at the beginning of the season.
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Fig. A.9. 
Model fits (black curves) to reported dengue case data (all serotypes) each week of the 

dengue season in San Juan (blue dots).

We estimated these parameter values for each of the 10 seasons of the data set. We fit our 

model to weekly case counts of both DENV3 and the sum of all dengue cases each season as 

well. Ultimately, we estimated 20 sets of parameters. We note that we chose to estimate 

parameters from all of the serotypes together in part because the majority of cases each year 

were not serotyped (see Fig. A.8). For each season, we input daily average temperature 

values as observed during that season.

The value of a influences the total number of adult mosquitoes in a population and thus the 

vector-host ratio of the model. The vector-host ratio in the model will then be dependent on 

both a and the population of humans in addition to other demographic parameters, and the 

total number of cases that occur during an outbreak will also be dependent on a and the 

initial susceptible population of humans. In the model we present in the main text, the 

susceptible human population is set to 25000 people in order to maintain consistency across 

the six different cities we consider. To choose
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Fig. A.10. 
Model fits (black curves) to reported dengue case data (DENV-3) each week of the dengue 

season in San Juan (blue dots).

our value of a for model simulations, we have to translate the estimates of a as it relates to 

the initial susceptible population estimated by the model fitting process to a value of a that is 

appropriate for our initial susceptible human population size of 25000. We do this by first 

considering the range of the product of a and SH(0) estimated from model fits (Fig. A.11C). 

We then choose an a value for which (1) the product 25000 × a falls within the range of 

values estimated from the model, and (2) the total number of cases predicted by the model 

with that value of a fall within the range of cases that were reported in the data from San 

Juan. This method of estimating a follows the method of choosing plausible parameter sets 

described in (Drake et al., 2015) and utilized in (Robert et al., 2016). We note that many 

parameters such as transmission rates (βHV, βVH) are practically non-identifiable due to 

their relationship with other parameters (Kao and Eisenberg, 2018; Roosa and Chowell, 

2019; Tuncer et al., 2016). For example, two different combinations of transmission rates 

and vector-host ratios could produce the same model results (Robert et al., 2016) (Table 4).
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Fig. A.11. 
Histograms of parameters from the parameter selection process. (A) The density dependent 

parameter a, (B) The initial Susceptible population, Sh(0), and (C) The product of a and 

Sh(0). The vertical dashed black line in each figure indicates the values used throughout this 

modeling study.

Table 4

Errors obtained when fitting the equation listed in Table 2. All errors are calculated as the 

sum of squared residuals.

City Seasonal fluctuations Seasonal and diurnal fluctuations

Temperature (Eq. (1))

Los Angeles 102.3523 628.9062

Miami 63.9022 227.3313

New Orleans 134.5618 213.1793

San Juan 16.0728 43.4333

Atlanta 123.6223 504.2515

El Paso 228.5677 592.4595

Adult Mortality (Eq. (2)) 265.6559

Larval Development (Eq. (3))

First Instar (i = 1) 2.9675

Second Instar (i = 2) 3.6089

Third Instar (i = 3) 3.6392

Fourth Instar (i = 4) 7.9856

Pupae (i = 5) 2.5900

Extrinsic Incubation Period (Eq. (4)) 0.5723
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Appendix B.

Climate change

Here we investigate the impacts of climate change in the absence of diurnal fluctuations on 

temperature, and we note some differences in these results from those in the main text in 

which diurnal fluctuations in temperature were included in our analysis of potential impacts 

of climate change on dengue dynamics (see Fig. 6). In general, the impacts of warmer 

average temperatures led to fewer reported cases overall when diurnal fluctuations in 

temperature were not considered (Fig. B.17). This is due, in part, to the same mechanisms 

underlying increases in cases when diurnal fluctuations were considered in the absence of 

increased temperature due to climate change (see Fig. 5). In the absence of diurnal 

fluctuations, the total number of reported cases that occurred in Miami after the initial 

introduction was much lower than that of the case with diurnal fluctuations when an increase 

in average temperature of 0.5–1.5 °C were considered (Fig. B.17B). In San Juan, the total 

number of cases expected did not differ substantially between the scenarios with and without 

diurnal fluctuations when average temperatures were increased by 1.5 °C; however, the total 

number of cases expected was much lower when diurnal fluctuations were not included for 

increases in average temperature of 0.5 °C and 1 °C (Fig.B.17A).
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Fig. B.17. 
Cumulative number of cases reported following a single introduction on the day given on the 

horizontal axis under current average yearly temperatures (solid line) and when average 

yearly temperatures are increased by 0.5 °C (dashed line), 0.5 °C (dotted line), or 1.5 °C 

(dash-dotted line). All parameters are the default values listed in Tables 1–2. Average yearly 

temperatures (M1 in the top half of Table 2) are increased by the values given in the legend 

of this figure.

B.1 Climate change: increases in variation

In the main text, we investigated the impacts of increases in temperature on dengue 

dynamics; however, increases in temperature variation may also be a result of global climate 

change, and could have an impact on dengue transmission (Rummukainen, 2012; Hales et 

al., 2002). Here we investigate the impacts of increased variation in temperature on dengue 

emergence and spread by modifying the parameter A1 in Eq. (1). For this section, we have 

included variation in diurnal fluctuations so that these results are most readily comparable to 

those presented in Fig. 6. Here we multiply A1 by 0.8 and 1.2 and compare the cumulative 

number of reported cases that occur following introductions throughout the year. We note 

that these values correspond to a 20% decrease and 20% increase in variation, respectively. 

We compare these particular scenarios in order to investigate the general trend in cases as 

variation increases. When variation was increased, (1.2A1), substantially larger outbreaks 
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were observed in Miami, New Orleans, El Paso, and Atlanta compared to current variation 

in temperatures, although for the values of increased variation we considered here, the 

period of time in which importations of dengue led to local transmission and outbreaks did 

not change substantially in most of the cities. The predictions for our model when a 20% 

increase was considered were similar to those of the scenarios in which average 

temperatures were increased by 0.5 °C.
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Fig. B.18. 
Cumulative number of cases reported following a single introduction on the day given on the 

horizontal axis under current average yearly temperatures (solid line) and when variation in 

seasonal temperatures is changed by a factor of 0.8 (dotted line) and 1.2 (dashed line). These 

values correspond to a 20% decrease and 20% increase in variation, respectively. All 

parameters are the default values listed in Tables 1–2. Variation in seasonal temperatures (A1 

in Table 2, Eq. (1)) are changed by multiplying A1 by the values given in the legend of this 

figure.

Appendix C.

Adult vector survival parameterization

Here we briefly show how the general results of this study differ if we utilize a different 

characterization of average adult vector lifespan as it relates to temperature. We compared 

the cumulative reported incidence within a year of initial introduction of dengue when adult 

vector survival was described by the curves given in Fig. C.19. One curve was taken from a 

meta-analysis of temperature-dependent survival for Ae. aegypti in the field (Brady et al., 

2014), and the other was taken from a study of temperature-dependent survival in a lab 

setting (Yang et al., 2009). In general, the number of cases expected following an initial 

introduction was much greater when survival was characterized from the laboratory data 
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than those expected when survival was characterized from the field data (Fig. C.20). In some 

cases the difference was relatively minor (El Paso, Atlanta, and Los Angeles), but the 

difference in survival characterizations led to around five times as many cases in San Juan 

when survival was characterized from the laboratory data versus the field data and in some 

cases almost six times as many cases in Miami. This emphasizes that the results we obtained 

using the adult vector lifespan estimated from (Brady et al., 2014) are relatively conservative 

when compared to those that could be obtained by using the adult vector lifespan estimated 

from (Yang et al., 2009).
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Fig. C.19. 
Two potential characterizations of average adult vector lifespan as they relate to temperature. 

The solid curve is obtained from (Brady et al., 2014) and is used throughout this work. The 

dashed curve is obtained from (Yang et al., 2009).
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Fig. C.20. 
Cumulative number of cases reported following a single introduction on the day given on the 

horizontal axis when adult vector survival was desribed by (Brady et al., 2014) (solid line) or 

(Yang et al., 2009) (dashed line). All parameters are the default values listed in Tables 1–2. 

For these simulations, temperature varies seasonally only.

Appendix D.

Supplementary Data

Supplementary data associated with this article can be found, in the online version, at https://

doi.org/10.1016/j.epidem.2019.05.003.
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Fig. 1. 
Temperature-dependent life history traits of Ae. aegypti. (A) Average larval development 

time as obtained from (Rueda et al., 1990). (B) Average adult vector lifespan obtained from 

(Brady et al., 2014).
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Fig. 2. 
Dengue infection dissemination and average EIP at different temperatures. The fraction of 

total mosquitoes censored at each time point that have disseminated infection (black circles 

and error bars that represent mean and standard error) for three different temperatures (A) 

26°C, (B) 28°C, and (C) 30°C. In each panel (A)-(C), colored lines represent 100 trajectories 

generated by bootstrap sampling of the means. (D) The average EIP as a function of 

temperature. Circles represent the means obtained from each fit of the gamma distribution to 

the data, and the blue curve is Eq. (4) fit to the average EIP data points.
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Fig. 3. 
The impacts of seasonal fluctuations of temperature on demographic, viral, and 

epidemiological measures. Fluctuations in the average daily temperature (T(t)) (A), average 

EIP (ω(T)) (B), vector-host ratio (Eq. 2.8) (C), average adult vector lifespan (Lv (T)) (D), 

and the instantaneous probability of surviving the EIP (Eq.(5)) (E). All parameters are the 

default values given in Tables 1–2.
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Fig. 4. 
Cumulative number of cases reported within one year following an initial introduction on the 

day listed on the horizontal axis. A log10 scale is used to emphasize comparisons among 

cities. Note that the curves in this figure are shown in a linear scale below as part of Fig. 5. 

All parameters are the default values given in Tables 1–2.
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Fig. 5. 
Cumulative number of cases reported following a single introduction on the day given on the 

horizontal axis in the presence of seasonal temperature fluctuations (solid line) and seasonal 

and diurnal fluctuations (dashed line). All parameters are the default values listed in Tables 

1. Parameter values for the different temperature characterizations are given in Table 2.
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Fig. 6. 
Cumulative number of cases reported following a single introduction on the day given on the 

horizontal axis under current average yearly temperatures (solid line) and when average 

yearly temperatures are increased by 0.5 °C (dashed line), 1 °C (dotted line), or 1.5 °C 

(dash-dotted line). All parameters are the default values listed in Tables 1–2. Average yearly 

temperatures (M1 in the top half of Table 2) are increased by the values given in the legend 

of this figure.
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Fig. 7. 
Timing of the initial introduction that leads to reported outbreak sizes of greater than (A) 1, 

(B) 10, or (C) 100 total cases under three different average temperature assumptions: current 

temperatures, and when average yearly temperatures are increased by 0.5 °C, 1 °C, or1.5 °C. 

All parameters are the default values listed in Tables 1–2. Average yearly temperatures (M1 

in the top half of Table 2) are increased by the values given in the legend of this figure. Note 

that Los Angeles was excluded from this analysis since none of these scenarios led to more 

than one case.
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Table 3

List of maximum and minimum average adult vector lifespans and minimum average EIPs and the dates at 

which these extreme values occur.

City Minimum lifespan (date) Maximum lifespan (date) Minimum EIP (date)

Miami 23.26 days (Jul 28) 24.67 (Apr 11 &Nov 12) 4.81 (Jul 28)

Los Angeles 19.62 (Feb 7) 24.25 (Aug 8) 27.79 (Aug 8)

San Juan 23.52 (Aug 3) 24.57 (Feb 2) 5.36 (Aug 3)

Atlanta 10.31 (Jan 16) 24.69 (Jun 1 &Sep 2) 7.92 (Jul 17)

New Orleans 19.27 (Jan 17) 24.69 (May 5 &Oct 1) 4.38 (Jul 19)

El Paso 12.17 (Jan 12) 24.69 (May 16 &Sep 11) 5.33 (Jul 14)
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