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ABSTRACT
Patients with metastatic melanoma were treated with tremelimumab and interferon-α (IFN) in
a previously reported clinical trial [NCT00610857]. Responses were assessed by RECIST criteria as
complete (CR) or partial (PR), stable disease (SD) or progressive disease (PD). In this study, T-cell receptor
(TCR) beta-chain repertoire was immunosequenced in peripheral blood mononuclear cells (PBMC)
specimens (N = 33) and tumor samples (N = 18) utilizing the immunoSEQ® Assay to determine repertoire
clonality and T cell fractions at pre-treatment (tumor and PBMC), one month (PBMC) and 3 months
(PBMC) time points and evaluate its association with clinical outcomes. In the pretreatment tumor
microenvironment (TME), T cell clonality was significantly (p = .035) different and greater in patients who
achieved disease control (CR, PR, SD) versus those with non-disease control (PD) as best response to
treatment. Further, there was significantly (p = .001) increased TCR fraction in tissue of responders (CR,
PR) versus non-responders (PD, SD). In examining T cell clonality in the circulation (PBMC), no significant
associations were found in the pretreatment samples. However, early on-treatment (4 weeks) there was
a significant decrease in T cell clonality that was associated with improved overall survival (p = .01) and
progression-free survival (p = .04). In addition, analysis of temporal changes in tumor-infiltrating
lymphocytes (TIL) and peripheral TCR repertoire revealed that responders had significantly higher clonal
expansion of TIL in the circulation at 4 weeks than non-responders (p = .036). Our study provided
interesting mechanistic data related to CTLA-4 Blockade and IFN and potential biomarkers of immu-
notherapeutic benefit.
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Introduction

The treatment landscape of metastatic melanoma has
improved drastically over the last decade with the identifica-
tion of small molecule inhibitors of BRAF and MEK and
immunotherapeutic antibodies directed at cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4) and pro-
grammed cell-death protein 1 (PD-1).1,2 However, despite
the success with these therapies, more than half of the patients
do not experience long-term clinical remission and there is
a critical need to investigate novel drug combinations in the
salvage setting as well as mechanistic studies and predictive
biomarkers of response to extend therapeutic benefits to the
majority of patients.

In metastatic melanoma, interferon-α (IFN) has been
shown to interrupt tumor immune tolerance, via shifting Th
polarity towards Th1 in the tumor microenvironment
(TME),3 increasing dendritic cell antigen presentation to
immune effectors,4,5 and potentiating natural killer cell-
mediated immunity.6 However, tumor tolerance has been
shown to limit IFN clinical activity when used as monother-
apy. Therefore, adding CTLA-4 blockers plays a critical role in
reversing this effect and increasing T cell activation and
proliferation.7–13 Based on this hypothesis of potential

synergistic antitumor effects of CTLA-blockade and IFN com-
bination treatment, patients with metastatic melanoma were
treated with tremelimumab and IFN in a previously reported
study.14 The study demonstrated promising durable antitu-
mor activity of the combination with acceptable toxicity.

Early studies have shown that increased T-cell infiltration
within the tumor biopsy of primary melanoma is associated
with improved clinical outcomes following immunotherapy.15,16

Additionally, increased density of tumor-infiltrating lymphocytes
(TILs) is an independent prognostic factor for sentinel lymph
node metastatic status and survival.17 Since antitumor effects of
anti-CTLA-4 are mediated in part by reprogramming of T-cells,
a number of studies have investigated blood and tumor biopsy
T-cell subpopulations and correlated immunologic changes with
patient outcomes. It has been reported that during treatment with
ipilimumab, survival was significantly associated with increased
total CD4 and CD8 lymphocyte count.18–21 Other studies have
explored the impact of CTLA-4 blockade on the circulating T-cell
receptor (TCR) repertoire, as TCR repertoire is proposed to be
a mirror of human adaptive immune responses and the presence
of diverse T-cell clones may indicate biological effects of treat-
ment. In one study, CTLA-4 blockade using tremelimumab in
metastatic melanoma diversified the clonal T cell pool in the
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blood, without clear correlation with survival.22 In another study,
pre-treatment peripheral blood TCR diversity was correlated to
clinical outcomes with ipilimumab treatment in a small group of
melanoma patients.23

The aim of the present study was to evaluate the effect of
combined treatment of tremelimumab and IFN on the clon-
ality of TCR repertoire in tumor and peripheral blood, and
correlate it with clinical outcome. Utilizing biospecimens
from our previously reported study,14 immunosequencing of
the TCR beta chain repertoire was performed in the TME and
PBMCs utilizing Adaptive Biotechnologies’ immunoSEQ®
Assay to determine repertoire clonality and T cell fraction.

Results

Patient characteristics, clinical efficacy, and safety

Patient demographics and baseline disease characteristics of
the 37 enrolled patients have been summarized in Table 1.
Clinical efficacy and toxicity data were reported previously.14

Association of T-cell receptor clonality in tumor tissue
with response

To examine whether pre-treatment TCR clonality was asso-
ciated with clinical benefit, deep immunosequencing of the
T-cell repertoire was done using pre-treatment tumor samples
of patients (n = 18) (Figure 1 and supplemental figure 1). It
was observed that T cell clonality was significantly (p = .035)
different and greater in patients who achieved disease control
(CR, PR, SD) versus those with non-disease control (PD)
(Figure 1(c)). Further, TCR fraction in tumor tissues was
compared in responders and non-responders and it was
observed that there was a significant (p = .001) increase in
TCR fraction in the tumor tissue in responders (CR, PR)
versus non-responders (PD, SD) (Figure 1(b))

Association of T-cell receptor clonality in tumor tissue
with survival

Further, we evaluated if pre-treatment TCR clonality corre-
lated with PFS and OS outcomes. However, we observed no
significant correlations. Interestingly, there was a separation
of the survival curves where higher TCR clonality at baseline
(> 0.12) potentially correlated with better PFS (p = .36) and
OS (p = .19) (Figure 2). The lack of significance in terms of
survival associations may be a factor of the limited sample size
of the study.

Association of T-cell receptor clonality in PBMCs with
response

We further investigated whether TCR clonality in the PBMC
specimens was associated with response to treatment by per-
forming TCR sequencing at baseline and early on-treatment
(n = 33 patients) (Figure 3 and supplemental Figure 2 and
3). Unlike the tumor TCR clonality, no significant association
was found between pre-treatment PBMC TCR clonality and
response. However, there was a trend where patients with
disease control tended to have lower clonality at baseline
and at 4 weeks.

Responders vs Non-responders Disease Control vs Progression

P = 0.385 P = 0.001 P = 0.035 P = 0.442

a b c d

Figure 1. Correlation of T-cell repertoire characteristics of pre-treatment tumor specimens with clinical outcomes. (a) and (b) T-cell clonality and T-cell fraction
stratified by responders (CR/PR) and non-responders (SD/PD). (c) and (d) T-cell clonality and T-cell fraction stratified by disease control (CR/PR/SD) and disease
progression (PD).

Table 1. Patient demographics and baseline disease characteristics (N = 37
patients).

Patient Demographics and Baseline Disease Characteristics (N = 37 patients)

Variable Number of patients Percentage

Age (years)
Median 56
Range 28–76

Cutaneous/unknown primary 29 78
Ocular 8 22
Sex
Male 23 62
Female 14 38

Performance Status
0 18 49
1 19 51

Previous therapy 22 60
No. of previous regimens (range) 1–5
Adjuvant IFN 14 38
High-dose IL-2 7 19

Previous brain metastases 2 5.4
AJCC stage
M1a 9 24
M1b 6 16
M1c 22 60
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Association of T-cell receptor clonality in PBMC with survival

Next, we examined if peripheral T-cell repertoire features were
associated with survival outcomes (Figure 4). It was found that
there was no statistical association of pre-treatment/baseline
clonality with PFS and OS. However, early on-treatment (4
weeks), patients with lower peripheral clonality had longer
PFS and OS intervals than those with higher peripheral clonality
(p = .04 for PFS and p = .01 for OS).

Evolution of T cell repertoire in PBMCs during treatment

To investigate the dynamics of the peripheral T cell repertoire
upon CTLA4 blockade and high-dose interferon-alfa (HDI) com-
bination treatment, we compared the peripheral T cell repertoire

over different time points (baseline, 4 weeks and 12 weeks).
Repertoire turnover, as measured by the Morisita Index, showed
a trend towards responders having greater turnover post-
treatment than non-responders (Figure 5(a) and supplementary
figure 4A). This was evident as non-responders had higher values
of Morisita index in comparison to responders, closer to 1, which
indicates a more similar repertoire for different time points, while
lower values of Morisita index indicate more dis-similarity, con-
sistentwith greater repertoire turnover. Similarly, the total number
of clones expanding in the peripheral repertoire varied over time
within an individual patient (p = .034) with responders showing
a greater increase in the number of expanded clones than non-
responders, though it was not statistically significant (Figure 5(b)
and supplementary figure 4B).Whenwe restricted quantification
to only expanded clones that were also found in the tumor

Overall SurvivalProgression-Free Survival

Median Clonality: 0.120
P-value: 0.19

Median Clonality: 0.120
P-value: 0.36

Figure 2. Kaplan-Meier survival plots showing (a) PFS and (b) OS comparing patients with higher (> 0.12) or lower (< 0.12) tumor TCR clonality at baseline.

P = 0.923      0.563       0.638

Responders vs Non-responders

Week 4 Week 12

Disease Control vs Progression

P = 0.207     0.022 0.618

Week 4 Week 12

Figure 3. Peripheral T-cell clonality of all patients separated by clinical outcomes and time point. (a) Peripheral T-cell clonality stratified by responders (CR/PR) and
non-responders (SD/PD). (b). Peripheral T-cell clonality stratified by disease control (CR/PR/SD) and disease progression (PD).
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repertoire, we observed that responders had significantlymoreTIL
that expanded in the periphery at 4 weeks than non-responders
(p = .036) (Figure 5(c) and supplementary figure 4C).

Association of T-cell receptor clonality in PBMC with toxicity

We hypothesized that a greater repertoire turnover (as mea-
sured by a lower Morisita Index) following immunotherapy

treatment may also correlate with the development of immune-
related adverse events due to the possible expansion of auto-
reactive T cells. We tested PBMC samples from patients who
experienced an adverse event and assessed the T-cell repertoire
turnover relative to baseline at week 4 and week 12 stratified by
presence or absence of adverse event and by adverse event
severity. No significant associations were found as tested by
linear mixed-effects model in terms of AE incidence (time
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Median Clonality: 0.108

Hazard Ratio: 1.96x increased 

risk per 0.1 increase in clonality

P-value: 0.01

Median Clonality: 0.081

P-value: 0.99

Progression-Free Survival

Median Clonality: 0.076

P-value: 0.50

Median Clonality: 0.108

Hazard Ratio: 1.77x increased 

risk per 0.1 increase in clonality

P-value: 0.04

Median Clonality: 0.077

P-value: 0.57

Figure 4. Kaplan-Meier survival plots showing PFS and OS comparing patients with higher or lower median TCR clonality at baseline, week 4 and week 12.

P = 0.626     0.664 P = 0.036 0.175

a b c

P = 0.224     0.534

Week 4 Week 12 Week 4 Week 12 Week 4 Week 12

Figure 5. (a) T-cell Repertoire turnover at week 4 and week 12 relative to baseline stratified by clinical response; (b) T-cell clonal expansion at week 4 and week 12
relative to baseline stratified by clinical response; (c) Tumor-infiltrating lymphocytes (TILs) clonal expansion at week 4 and week 12 stratified by clinical response.
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point p-value = 0.302 and AE p-value = 0.263) (Figure 6(a)), or
severity (time point p-value = 0.301 and AE p-value = 0.363)
(Figure 6(b)).

Discussion

Over the past few years, application of immunosequencing
has gained traction among cancer researchers as it provides
a snapshot of the repertoire of immune cells at any given time
and assists in tracking adaptive changes as a result of various
immunotherapeutic perturbations. Several groups have
attempted to study immune repertoire characteristics using
immunosequencing in various solid tumors, in an effort to
gain insights into the underlying mechanisms and identify
novel biomarkers of response and toxicity.24–27 In this study,
we have employed immunosequencing techniques to more
deeply characterize both intratumoral and peripheral T-cell
responses following treatment with combination therapy of
tremelimumab and IFN. Our data showed that an increased
TCR fraction and T cell clonality in the pre-treatment TME
was associated with favorable clinical outcomes. In PBMCs, at
4 weeks post-treatment, a statistically significant association
was noted between decrease in T cell clonality and improve-
ment in PFS and OS.

Our findings in terms of the association of high T cell
clonality and TCR fraction with immunotherapeutic response
are consistent with previous studies that demonstrated
increased baseline density and clonality of TIL to be asso-
ciated with improved survival in solid tumors following treat-
ment with immunotherapy.24,28,29 In metastatic melanoma
patients, Tumeh et al. showed that pre-treatment samples
from responding patients treated with Pembrolizumab had
higher CD8 T cell at the invasive tumor margin and inside
tumors and were associated with a more diverse TIL
repertoire.24 However, another study involving sequential
combination treatment with ipilimumab and nivolumab in
melanoma patients did not show significant differences
between increased baseline CD8 + T cell density, and clonality
in responders vs non-responders.30

TCR portion of T cell plays a critical role in antigen
presentation, therefore an increased T cell fraction has
been associated with increased antigenicity and tumor anti-
gen presentation by dendritic cells.31,32 Further, increased
T cell infiltration in tumor has been associated with a more
robust inflammatory response, with marked increase in
cytokines and interferon-γ secretion and regulatory ligands
inhibitors expression, mitigating checkpoints inhibitors
targets.33 On the other hand, increased T cell clonality in
responders may reflect a high tumor mutation rate,
increased immunogenic neoantigen production, and easier
immune cell recognition of the tumor as “foreign”.34,35

Thus, tumors with a high number of clonal neoantigens
may be more likely to elicit effective immune responses
following immunotherapy.35 Therefore, defining the tumor
repertoire at baseline provides a useful tool to determine
general immunocompetence and possible response to
immunotherapy. It was interesting to observe in our study,
that patients with SD had a unique combination of high
clonality (a feature associated with favorable response) and
low TIL fraction (a feature associated with poor prognosis)
(supplementary Figure 1). This is interesting when consid-
ering that patients with SD generally do not achieve durable
clinical benefits and usually fall in the middle between
responders and progressors in terms of clinical benefits.
More work is needed to better understand this phenomenon
immunologically.

In examining T cell clonality within the circulation, no
significant associations were found in the pretreatment sam-
ples and baseline TCR diversity was not associated with clin-
ical outcomes. Similar to our findings, a study by Robert et al.
found no association between baseline peripheral TCR reper-
toire diversity and response to CTLA-4 blockade with
tremelimumab.22 However, a pilot study by Postow and col-
leagues reported that higher response rate was observed in
metastatic melanoma patients treated with ipilimumab, who
presented with a more diverse peripheral TCR repertoire at
baseline.23 Similarly, in patients with pancreatic ductal ade-
nocarcinoma receiving ipilimumab, a diverse baseline TCR
repertoire was associated with longer median OS.36

a b

Week 4 Week 12 Week 4 Week 12

P = 0.251   0.525 P = 0.254  0.602

Figure 6. (a) T-cell Repertoire turnover relative to baseline at week 4 and week 12 stratified by presence or absence of adverse event; (b) T-cell Repertoire turnover
relative to baseline at week 4 and week 12 stratified by severity of adverse event.
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In our analysis of PBMC samples obtained early on-
treatment (4 weeks), there was a significant association
between a decrease in T cell clonality and OS and PFS. In
our study, decrease in T cell clonality early on-treatment (4
weeks) and the improvement in OS and PFS can be
a restoration of interferon-mediated effect on tumor-killing
after using CTLA-4 blockers, increasing T cell activation and
broadening the peripheral T cell repertoire compared with
baseline.11–13 The addition of IFN interrupts immune toler-
ance, increases dendritic cell activation and survival4,37 and
increases Th1-mediated pro-inflammatory cytokines in per-
ipheral circulation.38

To address clone level changes in the peripheral TCR reper-
toire following treatment, we compared the peripheral T cell
repertoire over 3 time points. In our analysis, no significant
association was found between clonal expansion and clinical out-
comes, though there was a trend towards greater clonal expansion
in responding patients at 4 weeks and 12 weeks. In a previous
study by Hopkins et al. long-term survivors of pancreatic cancer
treated with ipilimumab had significantly more expanded clones
in comparison to short-term survivors (p < .05).36 Further, as
individual T cell clones present in tumors can also be tracked in
the peripheral blood during treatment, we restricted our clonal
analysis to measure only expanded clones that are also found in
the tumor repertoire. Interestingly, we observed that responders
had significantly more TIL expanded in the periphery at 4 weeks
than non-responders, consistent with clonal expansion of tumor
antigen-specific T cells. Similar to our findings, Snyder et al.
demonstrated that bladder cancer patients with substantial expan-
sion of tumor-associated TCR clones in the peripheral blood 3
weeks after starting treatment with atezolizumab had more favor-
able outcomes.39 The expansion of tumor-associated TCRs in the
peripheral blood of responding patients may suggest that T cells
shuttle back and forth between the tumor and the peripheral
compartment where circulating immune cells somewhat reflect
or overlap with the tumor’s TIL repertoire. Therefore, a greater
number of tumor-specific TCR clones could limit the magnitude
of tumor escape due to the presence of more specific T-cells in the
circulation. With respect to biomarker development, our finding
reinforces the potential value of pursuing noninvasive metrics
such as peripheral TCR clonal expansion early on-treatment as
a potential predictive biomarker for therapeutic decision-making.

Further, we also observed that T-cell repertoire turnover
was not associated with both the development and severity of
toxicities after receiving immunotherapy treatment. Prior stu-
dies have reported that increasing T cell repertoire turnover is
associated with the development of autoimmune toxicities
after receiving tremelimumab22 and ipilimumab.40,41 These
observations were explained by the fact that not all T cell
activation following immunotherapy can be tumor antigen-
specific and development of toxicity may be mechanistically
linked to proliferation and mobilization of autoreactive T cell
populations.

The major limitation of our study was the small number of
patients who were enrolled. Our sample size might have not
been adequate to show a statistically significant difference in
a number of critical analyses. Nevertheless, our study provides
further evidence to support the utility of TCRβ sequencing to
elucidate the effects of immunotherapy on TIL and PBMC as

well as the assessment of response and immune-related adverse
events of immunotherapies.

Conclusion

Higher T cell clonality and TIL fraction in the pretreatment
TME were found to be associated with immunotherapeutic
response. In the circulation, lower peripheral clonality early
on-treatment was significantly associated with improved sur-
vival. Further, higher TIL expansion in the peripheral reper-
toire early on-treatment was associated with response to
therapy. These findings warrant further investigation and
exploration in relation to other immunotherapeutics.

Patient and methods

Patients

Patients with inoperable metastatic melanoma were enrolled
in the study.14 Patients were treated with tremelimumab
15 mg/kg intravenously every 12 weeks. HDI was adminis-
tered concurrently, including intravenous induction at 20
MU/m2/d for 5 days per week for 4 weeks, followed by
maintenance at 10 MU/m2/day subcutaneously three times
a week for 8 weeks per cycle of tremelimumab. From cycle 2
onward, HDI was administered subcutaneously. Patients
without evidence of disease progression or limiting toxicities
were offered additional cycles of therapy up to a maximum of
four cycles. The institutional review board at the University of
Pittsburgh approved the study and a written informed consent
was obtained from all the patients.

Response and toxicity assessment

Response to treatment was evaluated by assessing target lesions
with Response Evaluation Criteria in Solid Tumors [RECIST]
version 1 using imaging studies, carried out at the end of each
cycle or earlier if clinically indicated.42 Patients were classified as
having a complete response (CR), partial response (PR), stable
disease (SD), or Progressive disease (PD). Descriptions and
grading scales found in the National Cancer Institute
Common Terminology Criteria for Adverse Events (version
3.0) were used for grading and reporting of adverse events
(AEs). In addition, overall survival (OS) and progression-free
survival (PFS) data were obtained for all patients.

Analysis of TCRβ repertoire

The TCR repertoire of PBMC specimens (N = 33 patients)
and TME (N = 18) was immunosequenced at pre-treatment
(TME and PBMC), one month post-treatment (PBMC), and
three months post-treatment (PBMC). Immunosequencing of
the CDR3 regions of human TCRβ chains was performed
using the immunoSEQ® Assay (Adaptive Biotechnologies,
Seattle, WA). Extracted genomic DNA was amplified in
a bias-controlled multiplex polymerase chain reaction, fol-
lowed by high-throughput sequencing. Sequences were col-
lapsed and filtered in order to identify and quantitate the
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absolute abundance of each unique TCRβ CDR3 region for
further analysis as previously described.43–45

Clonality and T-cell fraction were calculated for each immu-
nosequenced sample. Clonality is defined as (1 – Peilou’s
Evenness) and was calculated on productive rearrangements by
Equation 1,

Clonality ¼ 1þ
PN

i pilog2 pið Þ
log2 Nð Þ (1)

where pi is the proportional abundance of rearrangement i
and N is the total number of rearrangements in a sample.
Clonality values range from 0 to 1 and describe the shape of
the frequency distribution: clonality values approaching 0
indicate a very even distribution of frequencies, whereas
values approaching 1 indicate an increasingly asymmetric
distribution in which a few clones are present at high
frequencies.46 T-cell fraction was defined as the proportion
of T cells to all nucleated cells in a sample.

The Morisita Index is a measure of repertoire similarity, as
defined by Equation 2,

MI ¼ 2
PS

i aibiPS

i
a2i

A2 þ
PS

i
b2i

B2

� �
AB

(2)

where ai and bi are the T cell counts of clone i in samples
A and B, A and Bare the total number of T cells in samples
A and B, and S is the total number of unique clones in the
union of samples A and B. Like clonality, the Morisita Index
ranges from 0 to 1, with values closer to 1 indicating high
similarity and less repertoire turnover.47 In this study, post-
treatment PBMC repertoires were compared to pre-treatment
for each patient.

Clonal expansion also compared post-treatment PBMC
repertoires to pre-treatment for each patient. As previously
described, clones that increased in frequency above our sta-
tistical threshold (multiple testing corrected p-value � 0.01)
in the post-treatment repertoire (relative to pre-treatment)
were identified as expanded.48

Statistical methods

Two-tailed, non-parametric statistical tests were used to com-
pare patient response (Wilcoxon Rank Sum or Kruskal-Wallis
Tests) and time points (Wilcoxon Signed Rank Test).
Multivariate analyses were performed with linear mixed-
effects models. Likelihood Ratio Tests were applied to Cox
Proportional Hazard models to determine associations
between continuous variables and PFS/OS. Unless otherwise
specified, p-values � 0.05 were considered statistically sig-
nificant. Statistical analyses were performed in R version 3.5.1.
Given the limited sample size, our attempts for adjusting the
p-values for multiple testing led to the loss of statistical sig-
nificance using a p-value of 0.05 (except for the correlation of
T-fraction in pre-treatment tumor specimens with an objec-
tive response as summarized in Figure 1).
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