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ABSTRACT
Antigen recognition by MHC class I molecules is a key step for the initiation of the immune response. We
hypothesized that expression of these molecules could be a marker of immune-activated breast cancers.
Data from KM Plotter were extracted to develop an exploratory cohort. Information from Cancer
Genome Atlas (TCGA) and METABRIC was used to create two validation cohorts. Raw data were re-
processed and analyzed using plyr R and Bioconductor. We predicted epitope-HLA binding to MHC
I molecules by using NetMHC 4.0. Cox proportional hazards regression was computed to correlate gene
expression and survival outcome. There was a weak but positive correlation between mutational burden
and the expression of most MHC class I molecules. In the exploratory cohort, expression of HLA-A and
HLA-B was associated with favorable relapse-free survival (RFS) and overall survival (OS) in the basal-like
subgroup. This was confirmed in the METABRIC and TCGA dataset. Expression of HLA-A and HLA-B was
associated with biomarkers of T cell activation (GZMA, GZMB, and PRF1) and improved the predictive
capacity of known immunologic signatures. Several neopeptides expressed in breast cancer were also
identified including FUK, SNAPC3, GC, ANO8, DOT1L, HIST1H3F, MYBPH, STX2, FRMD6, CPSF1, or SMTN,
among others. Expression of HLA A and B is associated with T cell activation and identifies immune
activated, basal-like breast cancers with favorable prognosis. Antigen recognition markers should be
incorporated into the assessment of the tumor immune state of basal-like breast patients.
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Introduction

Immunotherapy has become a standard of care for the treat-
ment of many solid tumors. Moreover, it is expected that in
the future, immunomodulators alone or in combination with
other therapies will be the main therapy in many indications1.
Recent examples of tumor types in which immunotherapy has
produced clinical activity include, among others, melanoma,
non-small cell lung cancer, bladder cancer, and head and neck
tumors.1,2

The mechanism of action of approved immunotherapies is
based on reduction of inhibitory signals, leading to activation
of an immune response against the tumor.2 This is achieved
by targeting immune checkpoint inhibitors with antibodies
like those binding PD1, PD-L1, or CTLA-4.3 The inhibition of
these transmembrane molecules facilitates the activation of an
anti-tumor T cell response.3 However, this effect is not pro-
duced in all treated tumors and, in addition, it is not absent of
secondary effects.2 In this context, identification of tumors
that will respond to immunotherapy is the main goal to
increase efficacy, while avoiding undesirable toxicities.2 For

checkpoint inhibitors, it has been suggested that the immune
system must be activated against the tumor in order to induce
an anti-tumor response, a scenario called a “hot tumor”.3

Identification of those responsive tumors and the develop-
ment of strategies to reverse unresponsive ones to make them
sensitive is challenging, but represents one of the most
demanding needs in this area.4 Data support that high muta-
tional burden is associated with a higher response to
immunotherapy.1,5,6 However, there are sparse data on any
other marker of benefit.

A key step in the initiation of the immune response is the
recognition and presentation of tumor antigens to effector cells
like CD8 + T cells.7 The major histocompatibility complex class
I (MHC-I) molecules play a central role in this process by
presenting native intracellular proteins or neoantigens pro-
duced by cancer cells to effector CD8 + T cells, therefore,
initiating an immune response.7–9 We hypothesized that
expression of MHC-I molecules could be a surrogate marker
for “hot tumors” and, therefore, these tumors would be asso-
ciated with better prognosis, due to increased adaptive antitu-
mor immune response. This hypothesis is supported by recent
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data suggesting that human leukocyte antigen (HLA) class
I genotype influences response to checkpoint inhibitors.10

In addition, administration of some therapies including
chemotherapy can indirectly activate the immune system by
increasing the genomic instability and by releasing tumor
neoantigens.11–13 In this context, those tumors that express
a higher level of tumor-infiltrating lymphocytes (TILs) respond
better to chemotherapy and are associated with favorable
outcome.14–16

In our study, we aimed to explore the presence and prog-
nostic role of MHC-I in breast tumors and their association
with mutational tumor burden and prognosis. In addition, we
explored the pattern of mutations associated with the pre-
sence of MHC class I genes describing potential neopeptides
produced by these tumors.

Results

Association of human MHC-I components with
mutational burden

We observed that there was a weak but positive correlation
between mutational burden and the expression of most HLA
genes. Those HLA molecules with higher magnitude associa-
tion included HLA-A, HLA-B, and HLA-H. For others like
HLA DOA and HLA J, the association was negative
(Supplementary Figure 1A).

MHC-I expression and breast cancer prognosis

Given the association between mutational load and HLA
A and B expression, we then explored their correlation with
clinical outcome in the different breast cancer subtypes. HLA-
H was not considered for further studies as it has been
described as a pseudogene of HLA-A.17

An association between both HLA-A and HLA-B with
favorable relapse-free survival (RFS) was observed in the
basal-like (HLA-A, HR: 0.41, CI 0.32–0.54; Log rank p <
.001 and HLA-B, HR: 0.41, CI 0.32–0.53; Log rank p < .001)
and HER2-enriched breast cancer subtypes (HLA-A, HR:
0.45, CI 0.3–0.68; Log rank p < .001 and HLA-B, HR: 0.45,
CI 0.31–0.67; Log rank p < .001) (Figure 1(a)). Of note, no
association with patient outcome, as measured by RFS, was
observed in the luminal A subtype, and a weak association
was found in the Luminal B subtype (Supplementary Figure
2A). Next, we evaluated the prognostic role of HLA-A and
HLAB in relation to overall survival (OS) in the basal-like and
HER2-enriched tumors. In a similar manner, both molecules
were associated with favorable OS, particularly in basal-like
tumors (HLA-A, HR: 0.29, CI 0.18–0.48; Log rank p < .001;
and HLA-B, HR: 0.27, CI 0.16–0.44; Log rank p < .001)
(Figure 1(b)). Again for luminal A and B no correlation was
identified for OS, with the exception of HLA A in luminal
B tumors (Supplementary Figure 2B).

For the confirmatory cohorts, the basal-like subtype dis-
played the strongest association with outcome in both
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Figure 1. Transcriptomic expression of HLA-A and HLA-B, and association with clinical outcome in an exploratory cohort of breast cancer patients. Kaplan-Meier
survival plots show the association between HLA-A and HLA-B expression levels and patient prognosis, including relapse-free survival (RFS) (A) and overall survival
(OS) (B) for basal (n = 879) and HER2+ (n = 335) breast tumors, respectively.
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validation datasets (Cohort 1: OS HLA-A, HR: 0.59, CI
0.42–0.82; Log rank p = .002; HLA-B, HR: 0.60, CI
0.44–0.82; Log rank p = .001; cohort 2: OS HLA-A, HR:
0.34, CI 0.16–0.75; Log rank p = .005; HLA-B, HR: 0.21, CI
0.006–0.71; Log rank p = .005) (Figure 2(a,b)). Association
with outcome was also observed for the HER2 subtype,
although this association was not as strong as for basal tumors
(Figure 2(a,b)). A combined analysis of the benefit observed
by tumor subtype is observed for HLA-A and HLA-B in
Supplementary Figure 3A and B for RFS and OS, respectively,
demonstrating the mayor effect identified in the basal like and
HER2 subtypes.

Since mutations in MHC-I components have been asso-
ciated with a lack of response to immune checkpoint
inhibitors,18 we evaluated the presence of mutations in HLA
genes. Using TCGA data, we did not observe any association
between mutations in HLA-A and HLA-B and prognosis (Cox
regression p = .36). However, the numbers of patients with
such mutations was low (n = 13).

Pattern of mutations and expression of HLA-A and HLA-B

Using data from TCGA, we next explored the pattern of
mutations associated with the upregulation of HLA-A and
HLA-B. A list of all genes found to be mutated with their
corresponding correlation values is shown in Figure 3(a).
When both HLA-A and HLA-B were upregulated, functional
analyses of the mutated genes showed that they fall into the
transcription regulation and immune response categories

(Figure 3(b)). Considering exclusively the upregulation of
HLA-A, the most frequently mutated genes were included in
protein and lipid transport, and DNA repair. In the case of
HLA-B, genes coding for immune response and protein and
lipid transport were identified (Figure 3(c)).

Identification of neoantigens in mutated tumors

Once the most frequently mutated genes in tumors with
upregulation of HLA-A and HLA-B were recognized, we
aimed to identify potential neoantigens that could be pro-
duced by those altered genetic sequences. As can be seen in
Table 1, several mutations do lead to peptides that can result
in high-affinity binding with MHC-1 molecules. Some of
these showed a high grade of affinity with % Rank below 0.5
like FUK, SNAPC3, GC, ANO8, DOT1L, HIST1H3F, MYBPH,
STX2, FRMD6, CPSF1, or SMTN, among others.

Association between HLA-A and HLA-B and t cell
activation

Expression of granzyme A (GZMA), granzyme B (GZMB), and
PRF1 have been described as markers of T cell activation mea-
sured by gene expression in cohorts of patients.19 In this context,
we investigated the association of HLA-A and HLA-B expression
with levels of GZMA, GZMB and PRF1 using data from TCGA.
As shown in Figure 4(a), a strong and positive correlation was
observed between the expression of HLA-A and HLA-B and
activation of effector T cells. These data confirm the capacity of
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Figure 2. Transcriptomic expression of HLA-A and HLA-B, and association with clinical outcome in two validation cohorts (METABRIC and TCGA) of breast cancer
patients. Kaplan-Meier survival plots using data from the METABRIC project (A) and TCGA (B) show the association of HLA-A and HLA-B expression levels, with patient
overall survival (OS), for basal and HER2+ breast tumors.
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HLA-A and -B to identify hot tumors that have capacity to
mediate an immune T cell response. Finally, given the fact that
the strongest association with T cell activation and outcome was
observed in basal-like tumors, we aimed to explore the expression
of HLA A and -B by tumor subtype. As shown in Figure 4(b), the
highest expression of HLA-A and HLA-B was observed for the
basal-like subtype followed by the HER2-enriched subtype.

Prognosis of HLA-A and HLA-B based on immune
signatures

As can be seen in Figure 4(c), the predictive capacity of HLA-
A and HLA-B, was similar to the other signatures, particularly
in the basal-like population. However, the inclusion of HLA-
A and HLA-B to the described signatures improved their
prognostic value, suggesting that antigen recognition is a key
step to identify “hot tumors” (Figure 4(d)).

Discussion

The presence of immune infiltration in the tumor is a marker of
favorable outcome, particularly in basal-like and HER2 positive
breast tumors.14,15 For T cells to be activated, and therefore
mediate an immune response, effective antigen presentation
within the tumor is a key step.10,12 In our article, we identify
that breast cancer tumors with high expression of the MHC-I
molecules HLA-A and HLA-B, have an increased immune
T cell activation and, consequently, favorable prognosis.

We first explored the association of MHC molecules with
mutational load. We did so as data suggest an association
between the total number of somatic mutations and immune
infiltration.6,11 We identified a positive but weak correlation
between mutational burden and MHC-I, HLA-A, HLA-B, and
HLA-H.

When we evaluated the prognostic value of HLA-A and
HLA-B, we found that their upregulation was associated with
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Figure 3. Functional analyses for mutated genes associated with high HLA-A and HLA-B expression levels. A. List of mutated genes associated (p < 0,001) with
upregulation of HLA-A and HLA-B (orange), HLA-A (blue) and HLA-B (green). The total number of genes for each function for HLA-A and HLA-B jointly (B) and
individually (C). The selection of genes and their respective functions are described in material and methods.
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favorable prognosis, including improved relapse-free and
overall survival. These findings were confirmed in several
cohorts of patients, including validation cohorts from TCGA
and METABRIC databases.

Expression of HLA-A and HLA-B correlated strongly with
T cell activation, using GZMA, GZMB, and PRF1 as surro-
gates. When compared with other immune signatures like the
cytotoxic T signature, the expanded immune gene signature,
and the IFN gamma signature,19,20 the expression of these two

genes, predicted prognosis with similar predictive accuracy. In
addition, when HLA-A and HLA-B were added to the existing
signatures the predictive value improved, demonstrating the
importance of antigen presentation in the activation of the
immune response. Between the different breast cancer sub-
types, the basal-like subtype was the one with the greatest
association with activation of T cells, the highest magnitude of
association with prognosis and was the subtype with the high-
est expression of HLA-A and HLA-B. The importance of

Table 1. Neoantigens sequences of the identified mutated genes and their binding affinity with HLA molecules as described in material and methods. Specific
mutations induce new antigen proteins which are recognized for peptides of HLA isoforms. Affinity is shown with % Rank.

Gene Mutation Original sequence Mutated sequence Recognition peptide nM Rank

HLA-A0101 FUK M318I QPLTMAYVS QPLTIAYVS ATQPLTIAY 43.9 0.08
SNAPC3 T129S TDLVTLGVR TDLVSLGVR DTDLVSLGV 161.2 0.2
LCTL R347W HFTTRYITE HFTTWYITE GTGHFTTWY 239.8 0.25
TDO2 T30A DKSQTGVNR DKSQAGVNR ATDKSQAGV 456.7 0.4

HLA-A0201 SNAPC3 T129S TDLVTLGVR TDLVSLGVR YLDTDLVSL 5 0.03
GC T347A MDKYTFELS MDKYAFELS LMDKYAFEL 6.6 0.06
DOT1L V240M SVIFVNNFA SVIFMNNFA FMNNFANFA 9.7 0.125
CPSF1 S356T DGMRSVRAF DGMRTVRAF ALADGMRTV 16.3 0.25

HLA-A0301 ANO8 E116Q TATYESLLR TATYQSLLR ATYQSLLRK 11.9 0.025
OGN G280A PIVLGKHPN PIVLAKHPN SAYPIVLAK 27.1 0.125
FBXW10 R532T LKTFRHKDP LKTFTHKDP KTFTHKDPK 54.2 0.25

HLA-A2402 DOT1L V240M SVIFVNNFA SVIFMNNFA IFMNNFANF 15.1 0.015
HIST1H3F S58L RYQKSTELL RYQKLTELL RYQKLTELL 18.9 0.02
LCTL R347W HFTTRYITE HFTTWYITE WYITEWSLL 58.7 0.125

HLA-A2601 MYBPH I230V DQDSILFIR DQDSVLFIR EIPDSVIFM 24.6 0.04
STX2 I232M MINNIERNV MINNMERNV EVKKMINNM 48.1 0.07
VNN2 D81N VTPEDALYG VTPENALYG DVTPENALY 88.6 0.1
ANO8 V759L FGYVVLFSS FGYVLLFSS EMFGYVLLF 329.9 0.25

R105C HRHTRAYAF HRHTCAYAF CAYAFTATY 347.7 0.25
GP1BA S601W FLRGSLPTF FLRGWLPTF FLRGWLPTF 670.7 0.4

HLA-B0702 FRMD6 H418P SSAIHRKLK SSAIPRKLK IPRKLKLEL 4.8 0.01
CPSF1 G923R EEGAGARGR EEGARARGR GARARGRAL 10.6 0.04

RARGRALRL 19.1 0.09
GHRL E66K GGQAEGAED GGQAKGAED SPRGGGQAK 36.6 0.175
GTPBP3 R323W VRRARERLE VRRAWERLE RAREVRRAW 40.9 0.2

HLA-B0801 SMTN M703T SGSTMMQTK SGSTTMQTK TMQTKRHEL 23.4 0.07
CNPY3 G223R AALGGKKSK AALGRKKSK LGRKKSKAA 25.3 0.07
CPSF1 G923R EEGAGARGR EEGARARGR GARARGRAL 69.1 0.2

RARGRALRL 123.1 0.4
KLC1 E325Q KRALEIREK KRALQIREK QIREKKQGL 172.9 0.4

HLA-B1501 CPSF1 P262H LTSLPFDCT LTSLHFDCT SLHFDCTPF 20.2 0.175
FBXW10 Q788E KAQKQGQLE KAQKEGQLE AQKEGQLEF 24.1 0.25

HLA-B2705 ANO8 R105C HRHTRAYAF HRHTCAYAF HRHTCAYAF 18 0.06
CPSF1 H964P ALRLHPMAI ALRLPPMAI GRALRLPPM 30.7 0.125
HIST1H3F S58L RYQKSTELL RYQKLTELL LRYQKLTEL 59.5 0.25
FBXW10 T983A FRVNTEFVL FRVNAEFVL FRVNAEFVL 61.7 0.3

HLA-B3901 CPSF1 T266P PFDCTQALA PFDCPQALA TPFDCPQAL 10.2 0.025
ANO8 R105C HRHTRAYAF HRHTCAYAF HRHTCAYAF 13.5 0.04
FBXW10 T983A FRVNTEFVL FRVNAEFVL FRVNAEFVL 16.9 0.05
RDX E499Q EASAELSNE EASAQLSNE AQLSNEAAL 93 0.175
OGN D112H EVDIDAVPP EVDIHAVPP IHAVPPPPL 80.8 0.175
ANO8 V759L FGYVVLFSS FGYVLLFSS LKEMFGYVL 116.5 0.2
FUK S56R KRVGSGGAT KRVGRGGAT GRGGATQPL 195 0.3
ATAD3A M432I DVAPMGREG DVAPIGREG SKAADVAPI 189.4 0.3
KLC1 Y313H KRGKYKEAE KRGKHKEAE HKEAEKRAL 194.1 0.3
RAB10 F10L YDLLFKLLL YDLLLKLLL ERLEYDLLL 267.8 0.4
LCTL D459H WSLLDKFEW WSLLHKFEW HKFEWAGGI 246.9 0.4
SNAPC3 T129S TDLVTLGVR TDLVSLGVR YLDTDLVSL 268.9 0.4

HLA-B4001 ANO8 V759L FGYVVLFSS FGYVLLFSS KEMFGYVLL 4.3 0.01
OGN K119T PPLPKESAY PPLPKESAY KESAYPIVL 6.2 0.015
DOT1L E46G RWVCEEIPD RWVCGEIPD GEIPDSVIF 11.2 0.05
RAB10 F10L YDLLFKLLL YDLLLKLLL LEYDLLLKL 17.2 0.08
FBXW10 T983A FRVNTEFVL FRVNAEFVL LEFRVNAEF 90.6 0.3
UBA5 R17Q QELERELAQ QELEQELAQ LEQELEQEL 126.1 0.4
GTPBP3 R323W VRRARERLE VRRAWERLE WERLEYDLL 104 0.4
SNAPC3 G178E MIEEGELIL MIEEEELIL IEEEELILM 115.3 0.4

HLA-B5801 LCTL R347W HFTTRYITE HFTTWYITE FTTWYITEW 5.3 0.025
D459H WSLLDKFEW WSLLHKFEW WSLLHKFEW 16 0.1
R347W HFTTRYITE HFTTWYITE RGTGHFTTW 34.2 0.175

EHMT2 A635T ALEKALVIQ ALEKTLVIQ KALEKTLVI 40.7 0.2
ANO8 R105C HRHTRAYAF HRHTCAYAF CAYAFTATY 44.9 0.25
RAB10 F10L YDLLFKLLL YDLLLKLLL LLLKLLLRW 42.3 0.25
EHMT2 A635T ALEKALVIQ ALEKTLVIQ KTLVIQLNL 64.6 0.3
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immunotherapy in basal breast cancer has recently been high-
lighted by positive results from the combination of immuno-
modulators, like atezolizumab, with chemotherapy.21

Presence of TILs has been clearly associated with favorable
outcome and response to therapy.13–15 In this line, our study
also identifies patients with good prognosis. Unfortunately,
the available datasets do not provide information to compare
our gene signature with the presence of TILs and, therefore,
future prospective studies will be necessary.

As antigen presentation defects can influence response to
checkpoint inhibitors, we also explored the importance of
mutations in HLA-A and HLA-B in relation to patient out-
come. For instance, truncating mutations in the gene encod-
ing the antigen-presenting protein beta-2-microglobulin
(B2M) have been described. These lead to a loss of expression
MHC-I and reduced response to PD(L)-1 blockade.18

However, in our study, no significant association with prog-
nosis was found, probably due to the number of mutations in
HLA-A and HLA-B being very low.

In summary, expression of HLA-A and HLA-B is asso-
ciated with T cell activation and identifies immune activated,
basal-like breast cancers with favorable prognosis. These find-
ings support the importance of antigen presentation and
recognition as an initial step in the activation of the immune
system. While the reported associations do not imply causal-
ity, they do generate hypotheses that can be tested in the

laboratory as well as in the clinical setting. Such additional
research is warranted especially to try to identify patients
most likely to respond to immunotherapy.

Material and methods

Exploratory cohort

The exploratory cohort was set up by using samples from the KM
Plotter Online Tool (http://www.kmplot.com).22 This publicly
available database allows the investigation of the relationship
between gene expression and patient outcome including overall
survival (OS) and relapse-free survival (RFS) in 879 basal-like,
2504 luminal A, 1425 luminal B and 335 HER2+ samples from
breast cancer patients (as of January 2019). Patients were divided
according to the best cutoff values of the gene expression (lowest
p value) into “high” vs. “low” expression. RFS was defined as the
time from diagnosis to the first recurrence, and OS as the time
from diagnosis to patient death. The median follow-up for RFS
was 68 months and for OS was 80 months.

Confirmatory cohorts

Two validation cohorts were established. The first cohort was
(cohort 1) set up by using samples from the METABRIC
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d

Figure 4. Prognosis of HLA-A and HLA-B based on immune signatures. A. Correlation between HLA-A and HLA-B expression and the expression of T cell activated
genes (GZMA, GZMB, and PRF1). B. HLA-A and HLA-B expression in different breast cancer subtypes. C. The table shows the hazard ratio and the Kaplan-Meier
p value, as described in material and methods, for HLA-A and HLA-B, and three immune signatures previously described for relapse-free survival (RFS) and overall
survival (OS), in basal and HER2+ breast tumors. D. Inclusion of HLA-A and HLA-B in previously validated signatures. Those signatures which predictive capacity
improved with the inclusion of HLA-A and HLA-B are highlighted in green.
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project.23 The entire dataset, containing 1988 patients, was
downloaded from the European Genome-Phenome Archive
(EGA). Median follow up for OS was 116.45 months. The raw
data were re-processed to reduce the batch effects present in
the original analysis. Data were summarized using the bea-
darray package24 in the R statistical environment (www.r-pro
ject.org). Annotation was performed using the Illumina
HumanV3 database from Bioconductor. Unmapped probes
were removed from the dataset (n = 319) and quantile nor-
malization was performed across the entire dataset using the
preprocess Core package.25 In cases where multiple probes
were linked to a single gene, the probe with the highest
dynamic range was selected to represent the gene.

The second cohort (cohort 2) was obtained from The
Cancer Genome Atlas dataset. Data were downloaded from
the GDC data portal (https://portal.gdc.cancer.gov/). Median
follow up for OS was 28.83 months. For analysis, the pre-
processed level 3 data were used. Individual sample files were
merged using the plyr R package as described previously.26

Definition of molecular subtypes

Breast cancer intrinsic subtypes were designated according to
the 2017 St Gallen guidelines.27 In brief, ER negative and
HER2 negative patients were designated as basal, HER2 posi-
tive ER negative patients were designated as HER2-enriched,
and ER positive, HER2 negative and MKI67 low patients as
Luminal A. All remaining ER positive patients were desig-
nated as Luminal B patients. Instead of using immunohisto-
chemical results (which were available for only a proportion
of patients), designation of molecular subtype was made using
the gene-array or RNAseq derived gene expression.

Functional analysis of HLA-A and -B associated mutations

We used upregulated HLA samples described previously
(TCGA database) to explore the pattern of mutations asso-
ciated with the upregulation of HLA-A and HLA-B genes. The
mutated selected genes had a correlation p value <.001. The
function of the identified genes was analyzed using the gene
ontology biological process classification from the Ensembl
dataset (https://www.ensembl.org/index.html).

Identification of neopeptides

For each mutation in the dataset, we constructed a 9-mer peptide.
The substitution position was located in themiddle of the peptide,
at position 5. Two sequences were constructed per mutation, one
for the wild-type and the other for the mutated sequence. Both
sequences were in FASTA format. Themutated peptide sequences
were used as input in the NetMHC 4.0 epitope-HLA prediction.28

The results for each HLA were stored in tab-delimited files.
Peptides were defined as neopeptides for a certain HLAmolecule
when the mutated sequence was predicted to bind. Binding affi-
nity was defined in nanoMolar units, and % Rank predicted
affinity compared to a set of 400,000 random natural peptides.
Those peptides with predicted % Rank < 2 were classified as
binders. Peptides with % Rank > 2 were filtered out.

Prognosis of validated immune signatures

We used three immune signatures previously described (IFN
gamma signature, expanded immune gene signature, and
Cytotoxic T lymphocyte (CTL) level signature19,20 to compare
predictive value in relation to HLA-A and HLA-B expression.
This comparison was performed using data from the KM
Plotter Online Tool (http://www.kmplot.com) as described
previously.23

Statistical analysis

Cox proportional hazards regression was computed to explore
the association between gene expression and outcomes.
Kaplan-Meier plots were drawn to visualize the survival dif-
ferences. Correlation between continuous variables was com-
puted using Spearman correlation. Mutational status and gene
expression were compared using Mann–Whitney test.
Multiple genes were combined into a signature by using
their mean expression. Statistical significance was defined as
p < .05. Meta-analytical was performed using the inverse
variance method (DerSimonian–Laird estimator for tau^2).
Random effects model and Q test were used to evaluate
subgroup differences. * p ≤ 0.05; ** p ≤ 0.01 and *** p ≤ 0.001.
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